
Appendix: Executing Instructions in Situated Collaborative Interactions
Alane Suhr

Cornell University
suhr@cs.cornell.edu

Claudia Yan
IBM

claudiab.yan@gmail.com

Jacob Schluger∗
Cornell University
jes543@cornell.edu

Stanley Yu∗
Columbia University

stanley.yu@columbia.edu

Hadi Khader∗∗
Intel

hadi.kh.khader@gmail.com

Marwa Mouallem∗∗
IBM

marwamouallem@gmail.com

Iris Zhang
Facebook

irisz@fb.com

Yoav Artzi
Cornell University

yoav@cs.cornell.edu

A CEREALBAR Game Design
This appendix supplements Section 2 with further
game design details and discussion of the reason-
ing behind them.
World View Figure 3 shows the leader’s point
of view, and Figure 4 shows the follower’s. The
leader observes the entire environment, while the
follower only has access to a restricted first per-
son view. The leader can also toggle to an over-
head view to see obstructed cards using the cam-
era button, and has access to the follower’s current
view to aide them in writing instructions that make
sense to the follower. Selected cards are outlined
in blue for both players. Invalid selections appear
in red for the leader only. This setup makes the
follower dependent on the leader, limits the fol-
lower ability to plan the card collection strategy,
and encourages collaboration.
Game Progression The two players switch con-
trol of the game by taking turns. During each
turn, the follower can take ten (Ψf = 10) steps
while the leader can take five (Ψl = 5). Allow-
ing the follower more steps than the leader incen-
tivizes delegating lengthier tasks to the follower,
such as grabbing multiple cards per turn or moving
further away. We do not count actions which do
not change the player’s location or rotation, such
as moving forward into an obstacle, against this
limit. We additionally limit the amount of time
each player has per turn. This requires players
to move quickly without frustrating their partner
by taking a long time, and additionally limits the
maximum time per game. Both players begin with
six turns each. The game ends when the players
run out of turns.

The leader turn ends once they press the end
turn button or after 45 seconds. The end turn but-

∗ ,∗∗: Equal contribution. All work done at Cornell.

ton is disabled as long as there are no instructions
in the follower queue to nudge the leader to use
the follower if time allows it. The allotted 45 sec-
onds allow the leader sufficient time to move, plan,
and write instructions. During the leader’s turn,
they can add any number of new instructions to
the queue.

The follower only receives control if there are
instructions in the queue. If the queue is empty
when the leader finishes their turn, the follower’s
turn is skipped, but the number of turns remain-
ing still decreases. The follower’s turn ends au-
tomatically when they run out of steps, after 15
seconds, or when they complete all instructions in
the queue. During the follower’s turn, they can
mark any number of instructions as complete us-
ing the DONE action. The follower sees the cur-
rent and previous instructions, even if there are
more instructions in the queue. They must mark
the current instruction as complete before seeing
the next. This is done to simplify the reasoning
available to the follower. For example, to avoid
cases where the follower skips a command based
on future ones. Because there may be more future
instructions in the queue, this incentivizes the fol-
lower to not waste moves in the current instruction
and be as efficient as possible. During data collec-
tion, this provides alignment of actions to instruc-
tions because it prohibits a follower from taking
actions aligning with a future instruction without
marking the current instruction as complete. With-
out instruction completion annotation, the prob-
lem of alignment between instructions and actions
becomes much more difficult when processing the
recorded interactions.

Scoring Points When a valid set is made, the
selected cards disappear, and three cards are ran-
domly generated and placed on the grid such that

the new grid contains a least one valid set. The two
players earn a point, and are given extra turns. The
number of added turns decays as they complete
more sets, eventually reaching zero added turns.
The maximum possible number of turns in a game
is 65. In the training data, 454 games reached this
number of turns. Adding extra turns when a set is
made allows us to collect more data from games
that are going well. It also allows us to pay play-
ers based on the number of sets completed, and
incentivizes them to play as well as possible. If a
game is going poorly, e.g., if the pair fails to earn a
point in the first six turns, the game will end early.
However, if the game is going well, implying the
pair is collaborating well, the game will continue
for longer, and will contain a longer sequence of
instructions.

B CEREALBAR Transition Function
The transition function in CEREALBAR T : S ×
Γ × A → S × Γ is formally defined in Table 2.
Each of the rules in the table is additionally asso-
ciated with a domain over which it is not defined,
for example when α = Follower and a ∈ X (i.e.,
the follower can not give instructions). The rules
are:

Rule 1: When an instruction is issued, it is added
to the end of the queue. This action does not
use a step, so the number of steps remaining
ψ does not decrease. This rule is not defined
when α = Follower because the follower
cannot give an instruction.

Rule 2: When the leader ends their turn, and the
queue is not empty, control switches to the
follower, and the number of steps remaining
in the turn is the maximum number for the
follower Ψf .

Rule 3: When the leader ends their turn, and the
queue is empty, control does not switch to the
follower; instead, a new leader turn begins
with Ψl available steps.

Rule 4: When the leader runs out of remaining
steps, control does not immediately switch
to the follower. This allows the leader to is-
sue more instructions before manually ending
their turn or when their time runs out.

Rule 5: When the follower marks an instruction
as finished, and more instructions remain in
the queue, the current instruction at the head

of the queue is removed. This action does not
use a step.

Rule 6: When the follower marks an instruc-
tion as finished, if the finished instruction
was the last in the queue, control automati-
cally switches to the leader with Ψl remain-
ing steps.

Rule 7: When the follower runs out of steps in
their turn, control immediately switches to
the leader with Ψl remaining steps.

Rule 8: Both agents can take actions which
modify the world state s. Each such ac-
tion a ∈ Aw costs a step. We assume ac-
cess to a domain-specific transition function,
Tw : S ×Aw → S, that describes how an en-
vironment action modifies the environment.
There may exist combinations of states and
actions for which Tw is not defined; for ex-
ample, an agent moving forward onto an ob-
stacle. Additionally, ∀s ∈ S and a ∈ Aw,
T (s, 〈Q,Leader, 0〉, a) results in an invalid
state because, while the leader can still issue
instructions after running out of steps, they
cannot move.

C Data Collection Details
Figures 3 and 4 show the leader’s and follower’s
interfaces.
Crowdsourcing Management We use a quali-
fication task to both teach workers how to play
the game and to mark workers as qualified for
our main task. We restrict those who can qualify
to workers located in majority English-speaking
countries with at least 90% approved HITs and at
least 100 completed HITs. The qualification task
has three components: an interactive tutorial for
the leader role, an interactive tutorial for the fol-
lower role, and a short quiz about the gameplay.
In both tutorials, turn-switching is disabled and
workers have an unlimited number of moves to
use to complete the tutorial. Each tutorial uses the
same map. This allows us to pre-program instruc-
tions for the tutorials.

In the leader tutorial, the worker has access to
the full game board. They are asked to send a
command to the follower, and are instructed via
in-game prompts to collect a specific set of cards.
Finally, they are asked to collect two more sets in
the environment that are valid. Workers who send

Figure 3: The CEREALBAR leader gameplay interface.

Figure 4: The CEREALBAR follower gameplay interface.

Rule No. Domain Definition
1 ∀x̄ ∈ X , s ∈ S T (s, 〈Q̄,Leader, ψ〉, x̄) = (s, 〈Q̄x̄,Leader, ψ〉)
2 ∀s ∈ S, |Q̄| ≥ 1 T (s, 〈Q̄,Leader, ψ〉, DONE) = (s, 〈Q̄,Follower,Ψf 〉)
3 ∀s ∈ S, |Q̄| = 0 T (s, 〈〈 〉,Leader, ψ〉, DONE) = (s〈Q̄,Leader,Ψl〉)
4 ∀a ∈ Aw, s ∈ S T (s, 〈Q̄,Leader, 1〉, a) = (Tw(s, a), 〈Q̄,Leader, 0〉)
5 ∀s ∈ S, |Q̄| > 1 T (s, 〈x̄Q̄,Follower, ψ〉, DONE) = (s, 〈Q̄,Follower, ψ〉)
6 ∀s ∈ S, |Q̄| = 1 T (s, 〈Q̄,Follower, ψ〉, DONE) = (s, 〈〈 〉,Leader,Ψl〉)
7 ∀a ∈ Aw, s ∈ S T (s, 〈Q̄,Follower, 1〉, a) = (Tw(s, a), 〈Q̄,Leader,Ψl〉)

8
∀a ∈ Aw, s ∈ S

T
(
s, 〈Q̄, α, ψ〉, a

)
=

(
Tw(s, a), 〈Q̄, α, ψ − 1〉

)
∀ψ ∈ IN>1

∀α ∈ {Leader,Follower}
Table 2: Definition of transition function T . Tw is the world state transition function.

a command and collect a total of three sets suc-
cessfully complete this tutorial.

In the follower tutorial, the worker has access
only to the follower view. Pre-written commands
are issued to the worker, and they must follow
them one-by-one to complete a set. The com-
mands include an example of the leader correct-
ing a set-planning mistake. If the worker marks
all commands as finished and successfully collects
one set, the follower tutorial is complete.

Finally, workers are asked to read the game in-
structions and complete a short quiz. They are
asked questions regarding the validity of card sets,
the responsibilities of both players, and how each
game ends.

We maintain two groups of workers split by ex-
perience with the game, and use separate pools of
HITs for each. A worker can join the expert pool
if they have shown they understand how to play
as a leader and as a follower through at least one
game each. This allows new players to learn the
game rules without frustrating expert players. At
the end of data collection, 95 workers were in the
expert pool while 169 were in the non-expert pool,
for a total of 264 participating workers.

We pay workers a bonus per point they earn, in-
creasing the bonus as more points are earned, in
addition to a base pay of per game. We do not
pay leaders and followers differently. The median
game cost was $5.80.
The CEREALBAR Dataset In total, we collect
1,526 games played by both experts and non-
experts. Of these, we keep 1,202 (78.8%) games,
comprising 23,979 total instructions, discarding
those where no instructions were complete, or
where alignment between instructions and actions
was suspected low-quality. For example, we re-
moved interactions with a low proportion of in-
structions being marked as complete, or very long
action sequences from the follower, both which in-
dicate the follower did not properly complete in-

Mean Median Max
Score / Interaction 7.9 9.0 19

Instr. / Interaction 19.9 24.0 40
Tokens / Instr. 14.0 13.0 55

Follower Actions / Instr. 8.5 8.0 50
Interactions 1,202

Vocabulary Size 3,641

Table 3: Human-human games data statistics. All
statistics except the number of examples are computed
on the training set only.

structions.
When splitting the data, we ensured the mean

score between the three splits was roughly the
same. Table 3 shows basic statistics of the data
we collected after pruning. 82.6% of post-pruning
games are from the expert pool. In the training
set, the mean number of completed instructions is
19.9 and the median is 24.0. 83.3% of games have
a score greater than zero. We include games with
a score of zero if the alignment between instruc-
tions and actions is high-quality according to our
pruning heuristics. The vocabulary size is com-
puted by lowercasing all word types and tokeniz-
ing using the NLTK word tokenizer. Our dataset
contains longer interactions than several existing
datasets for sequential instruction following and
interaction (e.g., Chen and Mooney, 2011; Long
et al., 2016; He et al., 2017; de Vries et al., 2018;
Kim et al., 2019; Hu et al., 2019; Udagawa and
Aizawa, 2019), though still shorter than the Cards
corpus (Djalali et al., 2011, 2012; Potts, 2012).
Individual sentences are also longer than several
similar corpora (e.g., Chen and Mooney, 2011;
Djalali et al., 2011; Long et al., 2016; He et al.,
2017; Hu et al., 2019).

D Model Architecture Details
LINGUNET Formal Description We provide a
formal description of LINGUNET for reference
only. LINGUNET was originally introduced by
Misra et al. (2018) and Blukis et al. (2018).

The input to LINGUNET are the environment
representation F0 and instruction representation

x̄. LINGUNET consists of three major stages: a
series of convolutions on F0, a series of text-based
convolutions derived from x̄, and a series of trans-
posed convolutions to form a final prediction. The
output of the LINGUNET is a feature map with the
same width and height as F0. Each stage has the
same number of operations, which we refer to as
the depth L.

First, a series of L convolutional layers is ap-
plied to F0. Each layer at depth l is a sequence of
two convolution operations separated by a leaky
ReLU non-linearity:

Fl = NORM(RELU(RELU(Fl−1 ∗KC
l) ∗KC′

l)) .

We use a stride of two when convolving with KC′
l ,

and do not apply NORM when l = L.
In the second stage, the instruction represen-

tation x̄ is split into L segments x̄l such that
x̄ = [x̄1; . . . ; x̄L] and segments have equal length.
Each segment is mapped to a 1×1 kernel KI

l using
learned weights WI

l and biases bIl . KI
l is normal-

ized and used to convolve over Fl:
Gl = NORM(Fl ∗ ||KI

l ||2) .

As before, we do not apply NORM when l = L.
In the last stage, a series of transposed convo-

lutions1 are applied starting from the bottom layer
and gradually synthesizing a larger feature map.
For l > 1:
Hl = NORM(RELU(RELU([Hl+1;Gl]∗>KT

l)∗>KT ′
l)) ,

where [H; G] indicates channel-wise concatena-
tion of feature maps H and G, HH+1 is a zero
matrix, and NORM is not applied when l = L.
We use a stride of two when convolving with KT ′

l .
At the topmost layer of LINGUNET, a final trans-
posed convolution is applied to form a feature map
H′1:

H′1 = [H2;G1] ∗> KT
1 .

The top layer H′1 ∈ R4×W×H is split into the
four planning distributions as the output of the
LINGUNET.
Frames of Reference The world state is first
embedded using a feature lookup and a text-
conditioned kernel (Section 4; Input Representa-
tion). This feature map is rotated and centered to
create F0, so that the agent’s location when be-
ginning to follow the instruction is in the center,
and the agent is facing in a consistent direction.
Therefore, LINGUNET (Section 4; Stage 1: Plan

1We use ∗> to represent the transposed convolution oper-
ation.

Prediction) operates over a feature map relative to
the agent’s frame of reference at the time of start-
ing to follow the instruction.

The action generator (Section 4; Stage 2: Ac-
tion Generation) also operates on feature maps rel-
ative to the agent’s frame of reference, updated
as the agent moves and turns in the environment
changing its location and orientation. At each ac-
tion generation prediction step, the concatenated
planning distributions P are rotated, centered, and
cropped around the agent’s current orientation.
This orientation is determined by the orientation
when starting the instructions and the actions it has
executed so far for the current instruction.

E Learning Details
E.1 Stage 1 Loss Computation
This section provides formal details of the loss
computation used in Section 5.1. For ease of
notation, we consider a single example Ī =
〈(s1, γ1, a1), . . . , (sn, γn, an)〉, where the instruc-
tion at the head of the queue Q̄ is x̄.

The loss of the visitation distribution p(ρ |
s1, x̄) is:

LV (θ1) = −
∑
ρ

p∗V (ρ) log p(ρ | s1, x̄) ,

where the summation is over all positions ρ in the
environment and p∗V (ρ) is proportional to the num-
ber of states st ∈ Ī where the follower is in posi-
tion ρ.

We compute the goal and avoidance distribution
losses only for positions that have cards:
LG(θ1) =

− 1
W×H

∑
ρ∈C p

∗
G(ρ) log p(GOAL = 1 | ρ, s1, x̄)

LA(θ1) =

− 1
W×H

∑
ρ∈C p

∗
A(ρ) log p(AVOID = 1 | ρ, s1, x̄) ,

where C is the set positions that contain cards,
W is the width of the environment, and H is the
height. We set p∗G(ρ) to 1 for all ρ that contain a
card that the follower changed its selection status
in Ī , and 0 for all other positions. Similarly, we
set p∗A(ρ) to 1 for all ρ that have cards that the fol-
lower does not change during the interaction Ī , but
zero for the initial position regardless of whether
it contains a card.

The loss for the no passing distribution is:
LP (θ1) =

− 1
W×H

∑
ρ p
∗
P (ρ) log p(NOPASS = 1 | ρ, s1, x̄) ,

where p∗P (ρ) is 1 for all positions the agent cannot
move onto, and zero otherwise.

The auxiliary goal-prediction loss is:

LG′(θ1) =

− 1
W×H

∑
ρ∈C p

∗
G(ρ) log p′G(GOAL = 1 | ρ, s1, x̄) .

We compute the goal probability with the learned
parameters WG′ and bG

′
:

p′G(GOAL = 1 | ρ, s1, x̄) = σ(WG′
S′ρ + bG

′
) ,

where S′ρ is the vector along the channel dimen-
sion for position ρ in the environment embedding
tensor S′.

E.2 Example Aggregation

Error Classes We identify two classes of erro-
neous states in CEREALBAR: (a) not selecting the
correct set of cards specified by the instruction;
and (b) finishing with the right card selection, but
stopping at the wrong position. To recover from
case (a), the agent could unselect cards it shouldn’t
have selected, or select cards it missed. Alterna-
tively, the agent could recognize it has made an er-
ror, and instead stop and wait for the next leader
instruction, anticipating a correction. However,
learning this requires access to previous world
states and instructions. We focus on modification
of the learning algorithm using example aggrega-
tion, and leave this case for future work. We in-
stead target class (b), and add a discriminator to
the model to allow the model to learn different rea-
soning for examples that require implicit actions,
as discussed in Section 5.2.
Creating Recovery Examples The oracle gen-
erates a sequence of state-action pairs to go from
s′, the incorrect initial state from the previous in-
struction, to state st at index t in the correct se-
quence such that st is either the first state in the
sequence where a card’s state changes, or if no
cards are changed, the final state sn. The oracle
finds a sequence of state-action pairs expressing
the shortest path s′ to st. Finally, it appends the re-
mainder of the correct state-action sequence start-
ing from index t, 〈(st, γt, at), . . . , (sn, γn, an)〉.

If the correct sequence for Ī(i,j+1) is
〈sn, γn, DONE〉 (i.e., no action was done in
the original example), we do not generate a new
path, but instead use the state-action sequence
〈s′, γ′, DONE〉 as annotation for Ī ′(i,j+1). These
examples are annotated as not requiring implicit
reasoning.

During inference on the previous example Ī(i,j),
it is possible that some leader actions associated
with that example may not be executed (i.e., if the
follower predicted DONE too soon). If this hap-

pens, the leader must execute actions to ‘catch
up’ to the follower in the generated recovery ex-
ample. We first find the sequence of leader ac-
tions starting from the first leader turn associ-
ated with Ī(i,j) that was not executed during in-
ference, to the final leader turn associated with
Ī(i,j+1). When generating the recovery sequence
Ī ′(i,j+1), we take into consideration this sequence
as affecting the world states s. For example, sup-
pose that the agent stops a turn early during in-
ference, and the final leader’s turn consisting of
actions 〈FORWARD, FORWARD, FORWARD, DONE〉was
not executed. Instead of stopping in, for exam-
ple, position (3, 0), this may mean the leader has
stopped in position (0, 0). When creating the re-
covery example, the first world state s0 shows the
leader at position (0, 0) rather than (3, 0). To
correct this, the recovery example will start with
a leader turn, where the leader executes the se-
quence 〈FORWARD, FORWARD, FORWARD, DONE〉.

F Evaluation Details
Cascaded Evaluation To compute metrics us-
ing cascaded evaluation, we construct a set of cas-
caded evaluation examples from the original test
set. We assume access to a test set of M recorded
interactions

{
Ī(i)
}M
i=1

, where each Ī(i) =〈(
s

(i)
1 , γ

(i)
1 , a

(i)
1

)
, . . . ,

(
s

(i)

|Ī| , γ
(i)

|Ī| , a
(i)

|Ī|

)〉
. For

each instruction x̄j in Ī(i), we create an example

Ī
(i,j)
C =

〈(
s

(i)
j′ , γ

(i)
j′ , a

(i)
j′

)
, . . . ,

(
s

(i)

|Ī| , γ
(i)

|Ī| , a
(i)

|Ī|

)〉
,

where j′ is the first follower step of executing
x̄j . We treat each Ī

(i,j)
C as a separate example.

For each metric, we report the proportion of the
maximum value possible for each Ī(i,j)

C , and av-
erage across all examples Ī(i,j)

C . When comput-
ing the proportion of instructions followed in cas-
caded evaluation, the maximum possible for ex-
ample Ī(i,j)

C is the number of remaining instruc-
tions N − j where N is the number of instructions
in Ī(i). When computing the proportion of points
scored, we subtract the points scored in the game
before step j to only account for points possible in
the instructions present in Ī(i,j)

C .
Performance of the Static Oracle The static or-
acle does not have perfect performance. This is be-
cause the follower’s turn ended before all ten steps
were used in some recorded interactions. Dur-
ing evaluation, however, we allow the follower to
move for all ten available steps. This sometimes
leads to misalignment between leader and follower

actions. This means some expected sets can not be
completed.

G Implementation and
Hyperparameters

Hyperparameters We tune hyperparameters on
the development set. We use a word embedding
size of 64, and encode instructions into a vector
of length 64 using a single-layer RNN with LSTM
units. We lowercase words in the vocabulary and
map all words with a frequency of one in the train-
ing set to a single out-of-vocabulary token. We use
a hex property embedding size of 32. S′ has four
channels. The text-based kernels map to a feature
map with 24 channels. The convolution and trans-
pose convolution phases of LINGUNET use kernel
sizes of three.

The action generator uses a forward RNN with a
single layer consisting of 128 LSTM hidden units.
The action embedding size is 32. We rotate, trans-
form, and crop the input plan distribution to a
4 × 5 × 5 feature map around the agent’s cur-
rent position and rotation for each generated ac-
tion. CNNP maps the cropped distributions to a
feature map with eight channels, and has a kernel
size of three and stride of one. During fine-tuning,
each KIMP

l does not have biases. For all LSTMs,
we initialize the hidden state h0 as a zero vector.
For brevity, cell memory cD, also initialized as a
zero vector, is omitted from RNN descriptions.
Learning The plan prediction stage (Stage 1) in-
cludes the following parameters and parameter-
ized components: φX , RNNX , φS , Ws, bs, and
LINGUNET. The action generation stage (Stage
2) includes the following parameters and parame-
terized components: CNNP , WP

1 , WP
2 , bP1 , bP2 ,

φA, RNNA, WA, and bA. We add the follow-
ing parameters for the early goal prediction auxil-
iary objective and implicit reasoning discriminator
WG′ , bG

′
, and KIMP

l , 1 < l < L.
For pretraining Stage 1, we use a learning rate

of 0.0075 using ADAM (Kingma and Ba, 2014)
and an L2 coefficient of 10−6. For pretraining
Stage 2 and during fine-tuning, we use a learn-
ing rate of 0.001 and ADAM with no L2 regular-
ization. For pretraining Stage 1 and during fine-
tuning, λV = 1, λG = 1, λA = 0.1, λP = 0.1,
and λG′ = 1. During fine-tuning, λIMP = 0.7.
During evaluation, we limit the maximum action
sequence length to 25.

For all experiments, we keep 5% of the train-
ing data as held-out from parameter updates and

used as a validation set. We use patience for stop-
ping during pretraining of the plan predictor and
the action generator (Section 5.1). We start with
a patience of 10, which increases by a factor of
1.01 each time the stopping metric improves on
the validation set. For plan prediction training,
we use patience on the validation set accuracy of
predicted goal locations. We compute goal loca-
tion predictions by finding all positions ρ such that
p(GOAL = 1 | ρ, s1, x̄) ≥ 0.5. For action gen-
eration, we stop when card-state accuracy reaches
a maximum on the validation set. For fine-tuning
(Section 5.2), we stop training after 25 epochs, and
choose the epoch that maximizes the proportion of
points scored computed using cascaded evaluation
(Section 6) on the validation set.
SEQ2SEQ+ATTN Baseline We embed the sen-
tence tokens into 64-dimensional vectors, and
compute a sentence representation using a single-
layer RNN with 64 LSTM hidden units. We
embed each position in the environment with a
learned embedding function φS mapping to a vec-
tor of size 32. The resulting feature map is put
through four convolutional layers separated by
leaky ReLU non-linearities. Each convolutional
layer has a stride of two and divides the number of
channels in half. The output of the last convolu-
tional layer is flattened to a vector.

We initialize the decoder hidden state to a zero-
vector. In each timestep we pass in the concate-
nation of the embedding of the previous output,
the embedded environment vector, and the previ-
ous result of the attention computation on the sen-
tence. We take the initial attention result to be a
zero vector. We compute the attention over the
sentence hidden states using the dot product of
hidden state with the current hidden state in the
decoder RNN. The resulting attention state is con-
catenated with the decoder hidden state and the
embedded environment vector, put through a leaky
ReLU non-linearity, and and finally through a sin-
gle fully-connected layer to predict probabilities
over actions.

We train the model using teacher forcing and
apply the same learning rate, optimizer, and stop-
ping criteria as the fine-tuning experiments.

References
Valts Blukis, Nataly Brukhim, Andrew Bennett,

Ross A. Knepper, and Yoav Artzi. 2018. Follow-
ing high-level navigation instructions on a simulated

quadcopter with imitation learning. In Proceedings
of the Robotics: Science and Systems Conference.

David L. Chen and Raymond J. Mooney. 2011. Learn-
ing to interpret natural language navigation instruc-
tions from observations. In Proceedings of the Na-
tional Conference on Artificial Intelligence.

Alex Djalali, David Clausen, Sven Lauer, Karl Schultz,
and Christopher Potts. 2011. Modeling expert ef-
fects and common ground using questions under
discussion. In AAAI Fall Symposium: Building
Representations of Common Ground with Intelligent
Agents.

Alex Djalali, Sven Lauer, and Christopher Potts. 2012.
Corpus evidence for preference-driven interpreta-
tion. In Logic, Language and Meaning, pages 150–
159.

He He, Anusha Balakrishnan, Mihail Eric, and Percy
Liang. 2017. Learning symmetric collaborative di-
alogue agents with dynamic knowledge graph em-
beddings. In Proceedings of the Annual Meeting
of the Association for Computational Linguistics,
pages 1766–1776.

Hengyuan Hu, Denis Yarats, Qucheng Gong, Yuan-
dong Tian, and Mike Lewis. 2019. Hierarchical de-
cision making by generating and following natural
language instructions. CoRR, abs/906.00744.

Jin-Hwa Kim, Nikita Kitaev, Xinlei Chen, Marcus
Rohrbach, Yuandong Tian, Dhruv Batra, and Devi
Parikh. 2019. CoDraw: Collaborative Drawing as a
Testbed for Grounded Goal-driven Communication.
CoRR, abs/1704.04517.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. In Proceedings
of the International Conference on Learning Repre-
sentations.

Reginald Long, Panupong Pasupat, and Percy Liang.
2016. Simpler context-dependent logical forms via
model projections. In Proceedings of the Annual
Meeting of the Association for Computational Lin-
guistics, pages 1456–1465.

Dipendra Misra, Andrew Bennett, Valts Blukis, Eyvind
Niklasson, Max Shatkhin, and Yoav Artzi. 2018.
Mapping instructions to actions in 3D environments
with visual goal prediction. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2667–2678.

Christopher Potts. 2012. Goal-driven answers in the
Cards dialogue corpus. In Proceedings of the West
Coast Conference on Formal Linguistics, pages 1–
20.

Takuma Udagawa and Akiko Aizawa. 2019. A nat-
ural language corpus of common grounding under
continuous and partially-observable context. In Pro-
ceedings of the Conference on Artificial Intelligence.

Harm de Vries, Kurt Shuster, Dhruv Batra, Devi
Parikh, Jason Weston, and Douwe Kiela. 2018.
Talk the Walk: Navigating New York City
through grounded dialogue. arXiv preprint
arXiv:1807.03367.

https://doi.org/10.18653/v1/P17-1162
https://doi.org/10.18653/v1/P17-1162
https://doi.org/10.18653/v1/P17-1162
https://doi.org/10.18653/v1/P16-1138
https://doi.org/10.18653/v1/P16-1138
https://www.aclweb.org/anthology/D18-1287
https://www.aclweb.org/anthology/D18-1287

