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Abstract

Automatic Language Identification (ALI) is the detection of the natural language of an input text
by a machine. It is the first necessary step to do any language-dependent natural language pro-
cessing task. Various methods have been successfully applied to a wide range of languages, and
the state-of-the-art automatic language identifiers are mainly based on character n-gram models
trained on huge corpora. However, there are many languages which are not yet automatically pro-
cessed, for instance minority and informal languages. Many of these languages are only spoken
and do not exist in a written format. Social media platforms and new technologies have facili-
tated the emergence of written format for these spoken languages based on pronunciation. The
latter are not well represented on the Web, commonly referred to as under-resourced languages,
and the current available ALI tools fail to properly recognize them. In this paper, we revisit the
problem of ALI with the focus on Arabicized Berber and dialectal Arabic short texts. We intro-
duce new resources and evaluate the existing methods. The results show that machine learning
models combined with lexicons are well suited for detecting Arabicized Berber and different
Arabic varieties and distinguishing between them, giving a macro-average F-score of 92.94%.

1 Introduction

Automatic Language Identification (ALI) is a well-studied field in computational linguistics, since early
1960’s, where various methods achieved successful results for many languages. ALI is commonly framed
as a categorization.1 problem. However, the rapid growth and wide dissemination of social media plat-
forms and new technologies have contributed to the emergence of written forms of some varieties which
are either minority or colloquial languages. These languages were not written before social media and
mobile phone messaging services, and they are typically under-resourced. The state-of-the-art available
ALI tools fail to recognize them and represent them by a unique category; standard language. For in-
stance, whatever is written in Arabic script, and is clearly not Persian, Pashto or Urdu, is considered as
Arabic, Modern Standard Arabic (MSA) precisely, even though there are many Arabic varieties which
are considerably different from each other.

There are also other less known languages written in Arabic script but which are completely different
from all Arabic varieties. In North Africa, for instance, Berber or Tamazight2, which is widely used, is
also written in Arabic script mainly in Algeria, Libya and Morocco. Arabicized Berber (BER) or Berber
written in Arabic script is an under-resourced language and unknown to all available ALI tools which
misclassify it as Arabic (MSA).3 Arabicized Berber does not use special characters and it coexists with
Maghrebi Arabic where the dialectal contact has made it hard for non-Maghrebi people to distinguish

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

1Assigning a predefined category to a given text based on the presence or absence of some features.
2An Afro-Asiatic language widely spoken in North Africa and different from Arabic. It has 13 varieties and each has formal

and informal forms. It has its unique script called Tifinagh but for convenience Latin and Arabic scripts are also used. Using
Arabic script to transliterate Berber has existed since the beginning of the Islamic Era (L. Souag, 2004).

3Among the freely available language identification tools, we tried Google Translator, Open Xerox language and Translated
labs at http://labs.translated.net.
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it from local Arabic dialects.4 For instance each word in the Arabicized Berber sentence ’AHml sAqwl
mA$y dwl kAn’ 5 which means ’love is from heart and not just a word’ has a false friend in MSA and
all Arabic dialects. In MSA, the sentence means literally ’I carry I will say going countries was’ which
does not mean anything.

In this study, we deal with the automatic detection of Arabicized Berber and distinguishing it from
the most popular Arabic varieties. We consider only the seven most popular Arabic dialects, based on
the geographical classification, plus MSA. There are many local dialects due to the linguistic richness
of the Arab world, but it is hard to deal with all of them for two reasons: it is hard to get enough data,
and it is hard to find reliable linguistic features as these local dialects are very hard to describe and full
of unpredictability and hybridization (Hassan R.S., 1992). We start the paper by a brief overview about
the related work done for Arabicized Berber and dialectal Arabic ALI in Section 2. We then describe
the process of building the linguistic resources (dataset and lexicons) used in this paper and motivate the
adopted classification in Section 3. We next describe the experiments and analyze the results in Sections
4 and 5, and finally conclude with the findings and future plans.

2 Related Work

Current available automatic language identifiers rely on character n-gram models and statistics using
large training corpora to identify the language of an input text (Zampieri and Gebre, 2012). They are
mainly trained on standard languages and not on the varieties of each language, for instance available
language identification tools can easily distinguish Arabic from Persian, Pashto and Urdu based on char-
acter sets and topology. However, they fail to properly distinguish between languages which use the same
character set. Goutte et al., (2016) and Malmasi et al., (2016) give a comprehensive bibliography of the
recently published work dealing with discriminating between similar languages and language varieties
for different languages. There is some work done to identify spoken Berber. For instance Halimouche et
al., (2014) discriminated between affirmative and interrogative Berber sentences using prosodic informa-
tion, and Chelali et al., (2015) used speech signal information to automatically identify Berber speaker.
We are not aware of any work which deals with automatic identification of written Arabicized Berber.

Recently, there is an increasing interest in processing Arabic informal varieties (Arabic dialects) using
various methods. The main challenge is the lack of freely available data (Benajiba and Diab, 2010).
Most of the work focuses on distinguishing between Modern Standard Arabic (MSA) and dialectal Ara-
bic (DA) where the latter is regarded as one class which consists mainly of Egyptian Arabic (Elfardy
and Diab 2013). Further, Zaidan and Callison-Burch (2014) distinguished between four Arabic varieties
(MSA, Egyptian, Gulf and Levantine dialects) using n-gram models. The system is trained on a large
dataset and achieved an accuracy of 85.7%. However, the performance of the system can not be general-
ized to other domains and topics, especially that the data comes from the same domain (users’ comments
on selected newspapers websites). Sadat et al., (2014) distinguished between eighteen6 Arabic vari-
eties using probabilistic models (character n-gram Markov language model and Naive Bayes classifiers)
across social media datasets. The system was tested on 1,800 sentences (100 sentences for each Arabic
variety) and the authors reported an overall accuracy of 98%. The small size of the used test dataset
makes it hard to generalize the performance of the system to all dialectal Arabic content. Also Saâdane
(2015) in her PhD classified Maghrebi Arabic (Algerian, Moroccan and Tunisian dialects) using morpho-
syntactic information. Furthermore, Malmasi et al., (2015) distinguished between six Arabic varieties,
namely MSA, Egyptian, Tunisian, Syrian, Jordanian and Palestinian, on sentence-level, using a Parallel
Multidialectal Corpus (Bouamor et al., 2014).

It is hard to compare the performance of the proposed systems, among others, namely that all of them
were trained and tested on different datasets (different domains, topics and sizes). To the best of our

4In all polls about the hardest Arabic dialect to learn, Arabic speakers mention Maghrebi Arabic which has Berber, French
and words of unknown origins unlike other Arabic dialects.

5We use Buckwalter Arabic transliteration scheme. For the complete chart see: http://www.qamus.org/
transliteration.htm.

6Egypt; Iraq; Gulf including Bahrein, Emirates, Kuwait, Qatar, Oman and Saudi Arabia; Maghrebi including Algeria,
Tunisia, Morocco, Libya, Mauritania; Levantine including Jordan, Lebanon, Palestine, Syria; and Sudan.
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knowledge, there is no single work done to evaluate the systems on one large multi-domain dataset.
Hence, it is wrong to consider the automatic identification of Arabic varieties as a solved task, especially
that there is no available tool which can be used to deal with further NLP tasks for dialectal Arabic.

In this paper, we propose an automatic language identifier which distinguishes between Arabicized
Berber and the eight most popular high level Arabic variants (Algerian, Egyptian, Gulf, Levantine, Iraqi
(Mesopotamian), Moroccan, Tunisian dialects and MSA). We also present the dataset and the lexicons
which were newly built as part of a Masters thesis project in Language Technology (Adouane, 2016).
Both the dataset and the lexicons are freely available for research from the first author.

3 Building Linguistic Resources

Arabicized Berber (BER) has been officially used only in online newspapers and official institutions
in North African countries like Algeria and Libya. It has been also used recently on social media by
people who do not master the Berber script or Tifinagh and by those who do not master French.7 An
important question to answer when dealing with Arabic varieties is whether these variants are dialects or
languages. There is no linguistically well-motivated answer since these varieties are different with their
own regional/local varieties and are spoken in different countries. However, modern Arabic dialectology
considers each Arabic variety as a stand-alone language (Hassan R.S., 1992). In this paper, we use the
terms variety, dialect and language interchangeably.

It is necessary to decide how to cluster Arabic variants in order to be able to properly analyze and pro-
cess them automatically. Nonetheless, it is not easy to distinguish each variant from another, particularly
for short texts, because of the considerable lexical overlap and similarities between them. Moreover,
it is very hard and expensive to collect data for each single variant given that some are rarely used on
the Web. Based on the fact that people of the same region tend to use the same vocabulary and have
the same pronunciation, Habash (2010) suggested to group Arabic dialects in six main groups, namely
Egyptian (which includes Egyptian, Libyan and Sudanese), Levantine (which includes Lebanese, Jor-
danian, Palestinian and Syrian), Gulf (including Gulf Cooperation Council Countries), Iraqi, Maghrebi
(which includes Algerian, Moroccan and Tunisian) and the rest is grouped in one class called ’Other’.

We use slightly different division where we count each Maghrebi variant as a stand-alone language.
Moreover, we differently cluster Gulf/Mesopotamian8 dialect group. We base our dialect clustering
on common linguistic features, for instance the use of ’ch’ instead of ’k’ (Palva, 2006). So for the
Mesopotamian Arabic, we include many local variants of Iraqi, Kuwaiti, Qatari and Emirati spoken Ara-
bic. We group the rest of regions in the Gulf Arabic.9 Our motivation is that these two broad regional
dialectal groups (Maghrebi and Gulf/Mesopotamian) include a wide variety of languages which are eas-
ily distinguished by humans. Therefore, machines should be also able to discriminate between these
varieties. In this study, we consider eight high level dialectal groups which are: Algerian (ALG), Egyp-
tian (EGY), Gulf (GUL), Levantine (LEV), Mesopotamian (KUI), Moroccan (MOR), Tunisian (TUN)
dialects plus MSA. In all cases, we focus on the language of the indigenous populations and not on the
Pidgin Arabic.10

The use of Arabic dialects (in written format) on the Web is a quite recent phenomenon which started
with the emergence of social media platforms and new technology devices. These Arabic variants, which
use non-standardized orthography based on pronunciation or what is called ’write as you speak’ principle,
are still not well represented on the Web. This makes it hard to automatically process and analyze
them (Diab et al., 2010). To overcome the deficiency of linguistic resources,11 we built from scratch

7It is wrong to assume that all people from North Africa master French and use it in social media instead of Berber.
8There is no clear-cut dialectal borderlines between the Arabic varieties spoken in the Arabian Peninsula, namely between

Gulf Arabic and Mesopotamian Arabic. Qafisheh (1977) gave a thorough morpho-syntactic analysis of the Gulf Arabic includ-
ing Bahraini, Emirati, Qatari, Kuwaiti and regions of Saudi Arabia and excluding the Arabic dialects spoken in the rest of the
Gulf countries. However, we do not have any morpho-syntactic parser, if it exists at all, to take all the grammars into account.

9Recent works consider all spoken Arabic in Gulf Cooperation Council Countries as Gulf Arabic.
10Simplified language varieties created by foreigners living in Arabic-speaking countries to make communication easier.
11There are collections by individuals but unfortunately not digitalized or which do not respect corpus linguistics annotation

conventions.
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linguistic resources consisting of dataset and lexicon for each Arabic variety considered in this study and
Arabicized Berber.

3.1 Dataset

For Arabicized Berber, two Berber native speakers collected 503 documents (5,801 words) from north
African countries mainly from forums, blogs and Facebook. For more data, we have selected varied texts
from Algerian newspapers and segmented them. Originally the news texts are short, around 1,500 words
each, so we considered each paragraph as a document (maximum 178 words). The selected newspapers
use various Berber standard varieties written in Arabic script.

For each Arabic variety, two native speakers have manually collected content from various social
media platforms (forums, blogs and micro-blogs) where each user’s comment is counted as a single
document/text. We gave instructions, for instance ’Collect only what is clearly written in your dialect,
i.e. texts containing at least one clear dialectal word and you can easily understand it and reproduce the
same in your daily interactions’. We have also compiled a list of dialectal words for each Arabic variety
based on our knowledge. We then used a script with the compiled words as keywords to collect more
data. Likewise, we collected 1,000 documents (around 54,150 words) for each dialect, roughly published
between 2012-2016 in various platforms (micro-blogs, forums, blogs and online newspapers) from all
over the Arab world. The same native speakers have been asked to clean the data following the same set
of instructions.

We ended up with an unbalanced corpus of between 2,430 documents (64,027 words) and 6,000 doc-
uments or (170,000 words) for each dialect. In total, the collected dataset contains 579,285 words. In
terms of data source distribution, the majority of the content comes from blogs and forums where users
are trying to promote their dialects; roughly 50%, around 30% of the data comes from popular YouTube
channels and the rest is collected from micro-blogs. The selection of the data sources is based on the
quality of the dialectal content, i.e. we know that the content of the selected forums and blogs is dialectal
which is used to teach or promote dialects between users. Ideally we would have looked at just some
data resources and harvest content as much as possible either manually or using a script. But given the
fact that data depends on the platform it is used in12 and our goal that is to build a general system which
will be able to handle various domain/topic independent data, we have used various data domains deal-
ing with quite varied topics like cartoons, cooking, health/body care, movies, music, politics and social
issues. We labeled each document with the corresponding Arabic variety.

We introduced necessary pre-processing rules such as tokenization, normalization and removal of non-
discriminative words including punctuation, emoticons, any word occurring in the MSA data more than
100 times (prepositions, verbs, common nouns, proper nouns, adverbs, etc.) and Named Entities (NE).
Removing non-discriminative words is motivated by the fact that these words are either prevalent in all
Arabic varieties or they do not carry any important linguistic information like emoticons and punctua-
tion. The choice of removing NE is motivated by the fact that NE are either dialect (region) specific or
prevalent; i.e. they exist in many regions, so they are weak discriminants. Moreover, we want the system
to be robust and effective by learning the language variety and not heuristics about a given region. The
pre-processing step was done manually because of the absence of the appropriate tools.

To assess the reliability of the annotated data, we have conducted a human evaluation. As a sample,
we have picked up randomly 100 documents for each language from the collection, removed the labels,
shuffled and put all in one file (900 unlabeled documents in total). We asked two native speakers for
each language, not the same ones who collected the original data, to pick out what s/he thinks is written
in his/her dialect, i.e. can understand easily and can produce the same in his/her daily life. All the
annotators are educated, either have already finished their university or are still students. This means
that all of them are expected to properly distinguish between MSA and dialectal Arabic. To interpret the
results, we computed the inter-annotator agreement for each language to see how often the annotators
agree. Since we have two annotators per language, we computed the Cohen’s kappa coefficient which is

12For instance the use of special markers in some platforms and the allowed length of the texts where shorter text means
more abbreviations.
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a standard metric used to evaluate the quality of a set of annotations in classification tasks by assessing
the annotators’ agreement (Carletta, 1996). Overall, the data quality is ’satisfactory’ for Algerian, Gulf
and Tunisian dialects by interpreting the kappa metric which is between 0.6–0.8. The quality of the rest
of the dialectal data is ’really good’, kappa 0.8–1.

3.2 Lexicons

We removed 18,000 documents (2,000 documents, between 60,000 and 170,000 words, for each Arabic
variety and Arabicized Berber) to be used for training and evaluation. We extracted from the rest of
the data all the unique vocabulary, using a script, to build lexicons. We have also added dialectal words
collected from exchange forums where users were trying to promote their culture and dialects. The
reason we have done so is the desperate lack of digitalized dialectal lexicons13 and the few available
ones are outdated word lists in paper format. For MSA, we have used the content of two freely available
books. We would have also used an MSA dictionary, but this would need more effort as the freely
available dictionaries are not designed to be easily used for any computational purpose.

In order to have even more refined lexicons, we used Term Frequency-Inverse document Frequency
(TF-IDF)14 to measure the importance of each word to each dialect. Table 1 shows the number of unique
words (types) of the compiled lexicons for each language after applying TF-IDF and removing non-
informative words. The specific vocabulary of each Arabicized Berber and Arabic variety is stored in a
separate .txt file, one word per line.

Table 1: The size (total number of unique vocabulary) of the compiled lexicons.

4 Methods and Experiments

We use supervised machine learning, namely Cavnar’s Text classification, support vector machines
(SVM) and Prediction by Partial Matching (PPM) methods. For features, we use both character-based n-
gram15 and word-based n-gram16 models, then we combine them. We also use the words of the compiled
lexicons as features. We focus more on social media short texts, so we limit the text maximum length to
140 characters (which is the maximum length of a tweet) assuming that if a method works for short texts,
it should work better for longer texts as there will be access to more information. We use a balanced
dataset containing 18,000 documents (2,000 documents, between 60,000 and 170,000 words, for each
language) where we used 80% (total of 14,400 documents or 1,600 for each language) for training and
20%, total of 3,600 documents or 131,412 words (400 documents for each language), for evaluation.

4.1 Cavnar’s Text Classification Method

Cavnar’s Text Classification Method is one of the automatic language identification (ALI) statistical stan-
dard methods. It is a ranked collection of the most common character-based n-grams for each language
used as its profile (Cavnar and Trenkle, 1994). The distance between language profiles is defined as the
sum of all distances between the ranking of the n-gram profiles, and the language with the minimum
distance from the source text will be returned. We experimented with different character-based n-grams
and combinations and found that 3-grams performed the best with a macro-average F-score of 52.41%.
Table 2 shows the performance of the Cavnar’s method per language.

13"For many regions, no substantial dictionaries are available. We have reasonable dictionaries for Levantine, Algerian and
Iraqi, but these are sometimes outdated and need to be replaced or updated" (Behnstdt and Woidich, 2013).

14A weighting scheme used to measure the importance of each word in a document and a other documents based on its
frequency.

15A sequence of n characters from a given sequence of text where n is an integer.
16A sequence of n words from a given sequence of text where n is an integer.
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Language Precision (%) Recall (%) F-score (%)
ALG 41.34 37.00 39.05
BER 98.43 94.00 96.16
EGY 56.20 38.50 45.70
GUL 32.69 50.50 39.69
KUI 47.05 53.75 50.18
LEV 46.23 36.75 40.95
MOR 57.14 48.00 52.17
MSA 63.28 81.00 71.05
TUN 39.71 34.25 36.78

Table 2: Cavnar’s method performance using character 3-grams.

The results show that except for Arabicized Berber (BER) which is properly identified, Cavnar’s clas-
sifier finds it hard to distinguish Arabic varieties from each other even though it performs better in
distinguishing MSA from dialectal Arabic. Our main purpose in using Cavnar’s method is to set its
performance as our baseline.

4.2 Support Vector Machines (SVM)

We use the LinearSVC classifier (method) as implemented in Scikit-learn package (Pedregosa et al.,
2011)17 with the default parameters.18 Furthermore, we use the binary classification setting as opposed
to the 9-class classification, for instance ’is a document written in BER or something else (Arabic va-
rieties)’ as opposed to ’is a document written in BER, MSA, ALG, EGY, GUL, LEV, KUI, MOR or
TUN.’ Both classification settings return only one label or category as an output because each classifier
is implemented as a group of classifiers, and the label with the highest prediction score is returned. We
experimented with various features (character and word based n-grams of different lengths and combi-
nations) and found that combining character-based 5-grams and 6-grams with the words of the compiled
lexicons performed the best with a macro-average F-score of 92.94%. Table 3 shows the performance of
the SVM method per language.

Language Precision (%) Recall (%) F-score (%)
ALG 91.79 92.25 92.02
BER 100 100 100
EGY 95.63 82.00 88.29
GUL 86.92 89.75 88.31
KUI 91.20 93.25 92.21
LEV 91.71 88.50 90.08
MOR 93.84 95.25 94.54
MSA 93.46 100 96.62
TUN 92.98 96.00 94.46

Table 3: SVM performance combining character-based 5-grams and 6-grams with lexicons.

SVM classifier performs very well for BER and even better than the Cavnar’s classifier. It also per-
forms very well in distinguishing Arabic varieties. It identifiers MOR and TUN better than ALG. Like-
wise, it recognizes KUI better than GUL. MSA is also well distinguished from other varieties.

17For more information see: http://scikit-learn.org/stable/.
18The default parameters for each classifier are detailed in http://scikit-learn.org/stable/.
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4.3 Prediction by Partial Matching (PPM)

A lossless compression algorithm which has been successfully applied to language identification (Bo-
bicev, 2015) as well as other tasks. PPM encodes all the symbols (characters or words) of a training
data within their context where a context of each symbol is a sequence of preceding symbols of different
lengths.19 PPM is a simple method which does not require feature selection as it considers the entire
text as a single string and computes the probability distribution for each symbol using a blending mech-
anism. We implemented a simple version of the PPM method as explained in (Moffat, 1990; Bobicev,
2015) where we used the context of 5 characters for each symbol and the benchmark escape method
called C. Hence, we implemented the PPMC5 version of PPM. Here, we use the entire text length. The
method reaches a macro-average F-score of 87.55%.

At the end, we validated our three models using the 10-fold cross-validation technique. Each time,
we preserve one fold for validation and train on the rest 9 folds. This gives us an idea on how a model
is dataset independent. For each method, we used the same settings above and found that the accuracy
values are close to each other for all cross-validation folds, and close to the overall accuracy. This means
that the models are not an overfit.

It is unfair to compare the results of the three methods as we limited the maximum text length to 140
characters for both SVM and Cavnar’s methods and used full-length text for the PPM method. Now, we
use the full-length text for all methods using the same experimental setups. The results are shown in
Table 4 where ’DV’ is short for ’dialectal vocabulary’ and it refers to the words of the compiled lexicons.

Method Features Maximum Text Length Macro-average F-score (%)
Cavnar Character 3-grams 140 characters 52.41
Cavnar Character 3-grams Full length 81.57
SVM Character 5-6-grams + DV 140 characters 92.94
SVM Character 5-6-grams + DV Full length 93.40
PPMC5 No features Full length 87.55

Table 4: Performance of the three methods with full-length text.

The results show that increasing the length of the text improves the performance of both Cavnar’s and
SVM methods. Cavnar’s method performs poorly for short texts (maximum length of 140 characters).
It is true that SVM outperforms the Cavnar’s method because it has access to extra data (lexicons).
However, even with the same experimental setup (using character-based 3-grams as features with text
maximum length of 140 characters), SVM still outperforms the Cavnar’s method which is taken as our
baseline.

5 Error Analysis

Analyzing the confusion matrix of each method shows that the confusions are of the same type with
different frequencies. For illustration, we show in Table 5 the confusion matrix of the SVM method
using the combination of character-based 5-6-grams and the dialectal vocabulary as features and text
maximum length of 140 characters.

Most confusions are between very close Arabic varieties, namely Maghrebi dialects (ALG, MOR,
TUN) and between GUL and KUI dialects. This is expected and accepted because, as mentioned above,
there are no dialectal clear-cut borderlines between neighboring dialects. In more details, there are more
MOR and TUN documents confused with ALG ones compared to the ALG documents confused with
MOR or TUN documents. The same is applicable for KUI documents confused with GUL ones. This
may be related to the fact that in practice it is impossible to draw the dialectal borderlines, especially
for very short texts as in our case. Moreover, there are confusions between Maghrebi, Egyptian and
Levantine varieties. This is explained by the fact that some Levantine dialects (southern Syria and some

19Previous works reported that taking the context of 5 characters is the best maximum context length. This makes a perfect
sense because long matches are less frequent to occur by chance.
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Table 5: SVM confusion matrix using character-based 5-6-grams and dialectal vocabulary.

parts of Lebanon, including Beirut) share the use of split-morpheme negations with Egyptian and north
African dialects (Palva, 2006). It is also important to notice that while BER is rarely confused, MSA is
often confused with the rest of Arabic varieties.

6 Conclusion and Future Directions

In this study, we dealt with both tasks of identifying Arabicized Berber and different Arabic varieties
as well as discriminating between all of them. For Arabic, we considered eight high level varieties
(Algerian (ALG), Egyptian (EGY), Gulf (GUL), Levantine (LEV), Mesopotamian (KUI), Moroccan
(MOR), Tunisian (TUN) dialects plus Modern Standard Arabic (MSA)) which are the most popular
Arabic variants. The task is challenging at many levels. First, Arabicized Berber and Arabic varieties,
except MSA, are under-resourced and undocumented. Second, dialectal Arabic is mostly used in social
media and mobile phone messages. This makes the task harder since this genre allows only short texts.

To overcome these challenges, we created the necessary linguistic resources (dataset and lexicons). We
framed the task as a categorization problem for short texts written in very similar languages. We applied
one of the automatic language identification standard methods, namely supervised machine learning
including Cavnar’s text classification, support vector machines (SVM) and the Prediction by Partial
Matching methods. We set the performance of the Cavnar’s method as our baseline. All in all, for
short texts of 140 characters or less, Cavnar’s character-based method is not efficient in distinguishing
Arabic varieties from each other, particularly the very close ones like Maghrebi dialects. The reason
is that all the varieties use the same character set with almost the same distribution. Nevertheless, it
performs better in discriminating between MSA and dialectal Arabic. Also, it distinguishes Arabicized
Berber fairly well from Arabic. SVM combining the character-based 5-6-grams with the words of the
compiled lexicons performs fairly well for short texts, and increasing the text length performs even better.
Likewise, the PPM (precisely PPMC5) method is good at distinguishing Arabicized Berber from Arabic
and MSA from dialectal Arabic. Error analysis shows that all the errors, whatever the method, are of the
same type; confusion between very similar languages.

So far, we have applied the automatic language identification standard methods to discriminate be-
tween Arabicized Berber and Arabic varieties which are under-resourced languages, and we found that
supervised machine learning using character-based n-gram models are well suited for our task to a large
extent. This should be a good start to automatically process dialectal Arabic. For now, we find it hard
to compare our system to other reported results of related work because the datasets used in evaluation
are different. We would like to test our system on larger and multi-domain/topic datasets to see how it
performs as well as test it on some newly collected corpora, for instance (Salama et al., 2014). This will
allow us to improve the system and generalize the results.

Still, there are other points we want to explore further in future work like distinguishing between
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varieties of Arabicized Berber, and applying the two step classification process which consists in first
identifying the regional dialectal group, for instance Maghrebi Arabic, then apply some different feature
weighting to identify the dialect itself. It would be also possible to analyze the misspellings which seem
to be consistent within the same variant because the orthography is based on the pronunciation. This
could help improving the dialectal Arabic identification. Another way worth exploring is to include user
metadata (extralinguistic information) like the location.
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