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Abstract

We investigate the application of kernel methods to representing both structural and lexical
knowledge for predicting polarity of opinions in consumer product review. We introduce any-
gram kernels which model lexical information in a significantly faster way than the traditional
n-gram features, while capturing all possible orders of n-grams (n) in a sequence without the need
to explicitly present a pre-specified set of such orders. We also modify the traditional tree ker-
nel function to compute the similarity based on word embedding vectors instead of exact string
match and present experiments using the new models.

1 Introduction

The automatic identification and analysis of opinion and sentiment in text (Pang and Lee, 2008) has
emerged as a major natural language processing task in recent years, due in part to the abundance of
opinions now available online. Initially, much of the focus of sentiment analysis research was on de-
tecting the overall sentiment of documents and sentences (Pang et al., 2002). This kind of analysis is
insufficient when the sentence or document contains multiple opinions directed towards multiple targets
and the goal is to identify each of them individually. For example, a review of a laptop may discuss
various features of the product such as battery life, speed and memory. While the review may carry a
positive assessment of the laptop in general, the sentiment towards some of these aspects may be neg-
ative. Aspect-based sentiment analysis (ABSA) (Hu and Liu, 2004) aims to tackle this problem. In
this work, we address the problem of aspect-based sentiment analysis and follow recent SemEval shared
tasks in using consumer reviews of laptops and restaurants as our test domains.

The majority of machine learning approaches to sentiment analysis have relied on bag-of-n-
grams (Pang and Lee, 2008). However, n-grams lead to large sparse feature sets which are not com-
putationally efficient. Moreover, only a limited number of orders of n-grams (i.e. n) can be used and
the choice of n requires tuning. To tackle this issue, we introduce any-gram kernels which 1) capture all
orders of n-grams and 2) are faster while 3) performing at the same level as traditional n-gram features.

Recent research has shown that structural features extracted from syntactic analysis of text can boost
the performance of surface-oriented models, by capturing information that these models cannot (Karl-
gren et al., 2010; Kiritchenko et al., 2014). For example, in If you like spicy food get the chicken
vindaloo., a lexicon-based model assigns a positive sentiment to the aspect term spicy food due to the
nearby presence of like , whereas a syntax-based model has the potential to recognise that like does not
convey an opinion when it is modified by if. We use tree kernels to model both the constituency and de-
pendency structure of the sentences. This approach is more efficient than hand-crafted syntactic features,
as it requires less engineering effort and is faster to develop.

Traditional tree kernel function computes the similarity of trees based on the exact string match of the
node labels including words. This method overlooks the similarity between words which can be used
interchangeably in the context. Plank and Moschitti (2013) address this problem by generalizing words
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using word clusters and latent semantic analysis (LSA). Word embeddings (Bengio et al., 2003), which
have been used successfully in tasks involving similarity between words (Collobert and Weston, 2008;
Mikolov et al., 2013; Baroni et al., 2014), are an alternative approach to obtain this generalization. We
modify the tree kernel function so that the similarity of trees are computed based on the similarity of
pre-trained word embedding vectors. We conduct experiments using the new kernel function and find
that these similarities are not conclusively more useful than mere string matches.

2 Related Work

Although tree kernels have been previously used in sentiment analysis, no work has directly employed
them in ABSA. The closest work has been carried out by Nguyen and Shirai (2015), who use tree
kernels to first identify opinion words related to a given aspect term, which are then used in calculating
the sentiment score for that aspect term. In sentence-level polarity prediction, Trindade et al. (2013)
augment constituency tree kernels by inserting WordNet senses and contextual polarity of words as new
nodes under terminal nodes. Agarwal et al. (2011) apply tree kernels with a customized tree format for
tweets, instead of using parse trees, where tokens are gathered under a root node together with POS tags
and a set of special tags used to represent the types of tokens (e.g. STOP for stop words). In document-
level sentiment classification, Tu et al. (2012) combine constituency or dependency tree kernels with
bag-of-word features. To represent documents, they use several minimal subtrees each of which contains
at least one subjective word based on a sentiment lexicon.

Wiegand and Klakow (2010) employ tree kernels to represent constituency and predicate-argument
structure (PAS) in finding opinion holders. They enrich these trees by inserting nodes with generalized
concept labels such as location, opinion and person. Their results show that while augmenting the con-
stituency trees is useful, PAS trees do not benefit from extra information. Their best tree kernel setting
outperforms their hand-crafted features and their combination leads to a higher performance.

Syntax has also been used in sentiment analysis using hand-crafted features. Johansson and Moschitti
(2013) build a set of classifiers and re-rankers for identification of opinion holders, opinion expressions
and their polarity in the MPQA corpus (Wiebe et al., 2005). These systems exploit dependency paths
within opinion expressions and between opinion holders and opinion expressions. They evaluate these
systems extrinsically using a product attribute (aspect) polarity classifier on a product review dataset,
which is similar to the task addressed here. This classifier uses syntactic path features from candidate
attributes to sentiment words and identified opinion expressions. Dong et al. (2015) introduce a context-
free grammar for sentiment in which positive and negative polarity symbols replace syntactic labels in
non-terminals. They build a parser which learns this grammar using only sentences annotated with their
polarity without any information about their syntactic structure. Socher et al. (2013) build a dataset of
movie reviews automatically parsed and manually annotated for the polarity of each constituent. This
dataset is then used to compute compositional vector representations of phrases in a neural network
framework, which are then used as features in training a model to predict the polarity of each phrase.

Pre-trained word embeddings have previously been used by (Liu et al., 2015) in a similar task of aspect
term extraction on the same dataset used here, as initial weights in neural network models and also as
features in conditional random field models. Their results show that word embeddings can improve over
the baselines of both of these models. To the best of our knowledge, our study is the first to use word
embeddings in tree kernel computation.

3 Kernel Methods

Kernel methods provide a means to define custom similarity functions, called kernel functions, which
can be used by some machine learning algorithms such as support vector machines (SVM) to calculate
the similarity between two data points which are not represented as vectors of numbers. Tree kernels
(Collins and Duffy, 2002; Moschitti, 2006) are examples of these functions that compute the similarity
between two data points represented as trees, based on the number of common fragments between them.
Therefore, the need for explicitly encoding an instance in terms of manually designed and extracted
features is eliminated, while benefiting from a very high-dimensional feature space. This approach has
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Figure 1: A sample tree and examples of its subtree and subset tree fragments

shown to be effective in many NLP tasks including parsing and named entity recognition (Collins and
Duffy, 2002), semantic role labelling (Moschitti, 2006), sentiment analysis (see §2) and machine trans-
lation quality estimation (Hardmeier et al., 2012; Kaljahi et al., 2014). In the following sections, we
describe tree kernels and introduce any-gram kernels which are built on top of tree kernels. We also
introduce a model which incorporates pre-trained word embedding vectors in tree kernel calculation.

3.1 Tree Kernels

The kernel function applied to tree pair T1 and T2 is defined as follows:

K(T1, T2) =
∑

n1∈{T1 nodes}

∑
n2∈{T2 nodes}

∆(n1, n2) (1)

where ∆ calculates the similarity between every two nodes in the tree as follows (Moschitti, 2006):

∆(n1, n2) =


0 : if pr1 6= pr2

1 : if pr1 = pr2 & n1, n2 are pre-terminals∏nc
j=1(σ + ∆(cjn1

, cjn2
)) : otherwise

(2)

where pr1 and pr2 are the production rules rewriting n1 and n2 respectively, nc is the number of
children of either node, as they have the same number of children because they have the same production
rules, and cjn1

is the jth child of node n1. σ controls the type of tree fragments to be used: 0 is for
subtree fragments which include a node in the tree with the whole sub-tree under it (Figure 1b) and 1 is
for subset fragments which loosen this constraint by allowing the internal nodes as terminals, resulting in
more substructures (Figure 1c). Moschitti (2006) introduces an efficient implementation within a SVM
framework, where instead of all node pairs, the ∆ function is applied only on similar node pairs.

3.2 Any-gram Kernels

N-gram features have been predominantly used in sentiment analysis and have shown to be very effective
(Pang et al., 2002). While unigrams capture the individual sentiment-bearing words, higher orders of n-
gram can also capture contextual information. However, there is no clear consensus as to what order of
n-gram is the most effective in this task (Pang et al., 2002; Dave et al., 2003). Consequently, various
orders should be empirically compared or combined together. Considering the sparsity of these features,
especially in the higher orders, these approaches impose high computational costs. We propose any-gram
kernels, which not only avoids this expense, but also models all orders of n-grams in a sequence. In this
model, sentence tokens are arranged in a binary tree in such a way that all possible n-grams are captured
by valid tree fragments, which are those extracted by subset tree kernels. Figure 2 shows an example of
an n-gram tree and some of the tree fragments extracted from it acting as n-grams.

Adding a dummy X node under the left child helps extract unigrams (Figure 2b), as no valid tree
fragment can consist of only one node. Bigrams are represented by tree fragments rooted at a two-
children node with both of its children (Figure 2c). Trigrams are formed by tree fragments rooted at a
two-children node with both of its children, and the children of the right child (Figure 2d). The n-grams
for n>3 are represented in a similar way, which are not shown in Figure 2. As can be seen in Figure 2, a
dummy root node is used to help extract the unigram for the first word of the sentence (Good). Note that
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Figure 2: N-gram tree for Good, fast service. and examples of its unigram, bigram and trigram fragments

these fragments are valid n-grams despite the duplicate nodes in them because no two different n-grams
can be represented by a single such fragment. However, there are different fragments which represent
a single n-gram. For example, the Good-, bigram is extracted with the fragment shown in Figure 2c as
well as another one including the same fragment plus an X node under Good (not shown in the figure).
These duplicates are inevitable but do not noticeably affect the performance. In total, the any-gram tree
for a sentence of length N contains 3N + 1 nodes. Another advantage of any-gram kernels is that other
information (e.g. location of aspect term) can be plugged into the tree.

Any-gram kernels can be compared to string kernels (Lodhi et al., 2002) where the n-grams are not ex-
plicitly extracted for the learning algorithm but calculated using the string kernel function. The difference
is that string kernels require the order of n-grams (n) to be fixed. Also, the tree kernel implementation
of the any-gram kernels is faster as the tree kernels are computed in O(K+M) average time, where K
and M are the number of nodes of the two trees. When translated to the sentence length, the complexity
of the any-gram kernel is O(|s1|+|s2|) which is still linear to the sentence lengths |s1| and |s2|, as the
number of nodes in the any-gram tree of sentence s is 3|s|+1 which is linear to the sentence length.
However, the complexity of the string kernels is O(n|s1||s2|).

3.3 Tree Kernels with Word Embeddings

The ∆ presented in equation 2 computes the similarity of two production rules based on exact string
match between the peer nodes in the rules. Consequently, similar but not identical tree fragments such
as JJ->amazing and JJ->wonderful will be ruled out even though they can contribute to the
similarity of two trees. Therefore, a mechanism which accounts for the similarity of nodes with different
surface forms in this computation may be useful. To this end, we modify the ∆ to compute the production
rule similarity based on the similarity of the word embedding vectors of their peer node pairs.1 Formally:

∆(n1, n2) =


0 : if |pr1|! = |pr2| or ∏|pr1|

i=1 t(n(pr1)i, n(pr2)i) = 0

1 : if n1, n2 are pre-terminals and
∏|pr1|

i=1 t(n(pr1)i, n(pr2)i) = 1∏nc
j=1(σ + ∆(cjn1

, cjn2
)) : otherwise

(3)

where pr1 and pr2 are the production rules rewriting n1 and n2 respectively, |pr1| and |pr2| are the
number of nodes in the production rules, n(pr1)i and n(pr2)i are the ith peer nodes of the two production
rules (e.g. amazing and wonderful as the 2nd nodes in the example production rules provided above) and
t is a threshold function defined as follows:

1Obviously, exact match is used for the syntactic labels on the syntactic trees. For simplicity, we do not include this in the
formal notation, but it can be easily addressed in the implementation.

63



Laptop Restaurant
Train Test Train Test

# sentences 3045 800 3041 800
# aspect terms 2358 654 3693 1134

% positive 42% 52% 59% 65%
% negative 37% 20% 22% 17%
% neutral 19% 26% 17% 17%
% conflict2 2% 2% 2% 1%

Table 1: Number of sentences, aspect terms and their polarity distributions in the data sets

t(n1, n2) =

{
0 : if sim(Vn1 , Vn2) < θ

1 : if sim(Vn1 , Vn2) ≥ θ (4)

where Vn1 and Vn2 are the word embedding vectors of two input nodes, sim is a vector similarity
function and θ is the similarity threshold above which the two nodes are considered equal for the kernel
computation. With θ = 1, the kernel value will be equal to the value of the traditional tree kernel.

Since all possible peer node pairs in the production rule pair need to be compared, unlike the traditional
tree kernel, the worst-case complexity is increased to O(N×M), where N and M are the number of
nodes in T1 and T2 respectively. To partially remedy this situation, we use dynamic programming where
we store newly calculated production rule similarity as well as node similarity in a table for later use.

4 Experiments

Data We use the data released for Task 4 of SemEval 2014 (Pontiki et al., 2014) (called SE14 hereafter),
which is concerned with ABSA. The data is in the form of consumer reviews from two domains: laptops
and restaurants. Table 1 shows various characteristics of the data including the number of sentences and
aspect terms and the percentage of each polarity type. As seen in Table 1, the restaurant dataset contains
more aspect terms than the laptop ones, as most of its sentences have more than one aspect term. In
terms of the polarity class distribution, the conflict polarity accounts for only a tiny portion of the aspect
terms, whereas the positive polarity dominates the datasets except for the laptop training set where it
has a similar share as the negative polarity. The proportion of neutral and negative polarities tend to be
similar, which is also consistent across the four datasets.

Experiment Details To obtain the syntactic analysis of the data, we parse them into their constituency
structures using a PCFG-LA parser (Petrov et al., 2006). The parser is trained on the entire Wall Street
Journal section of the Penn Treebank (Marcus et al., 1993). We then obtain dependency parses by con-
verting these constituency parses using the Stanford converter (de Marneffe and Manning, 2008). To
apply tree kernels, we use the SVMLight-TK implementation (Moschitti, 2006)3. Based on a set of
preliminary experiments, we use subset tree kernels and the one-versus-one (OVO) method to convert
the binary output of the SVM to multi-class (positive, negative, neutral and conflict). The error/margin
trade-off of the SVM (C) is tuned using development sets randomly extracted from the official training
sets. For tree kernels with word embeddings, we use cosine similarity for sim in equation 4. The θ
parameter is tuned on the development set, where the optimum value is selected from {0.7, 0.8, 0.9}.
The pre-trained word vectors used are the publicly available ones trained using GloVe (Pennington et al.,
2014) trained on 42B-token corpus of Common Crawl (1.9M vocabulary) with 300 dimensions.4

4.1 Word Any-gram Kernels
We start by modelling the word any-grams using traditional tree kernels, where for each aspect term, we
take the any-gram tree formed using all tokens in the sentence in which the aspect term appears, as input

2The conflict polarity is used when both positive and negative sentiments are expressed towards the aspect term as in Waiters
are slow but sweet.

3http://disi.unitn.it/moschitti/Tree-Kernel.htm
4http://nlp.stanford.edu/projects/glove/. We chose these word embeddings as they cover a wide range

of domains and performed better than the other commonly used ones trained on 100GB Google News corpus using word2vec.
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String Match Word Similarity
Laptop Restaurant Laptop Restaurant

Dev Test Dev Test Dev Test Dev Test
Majority 42.67 52.12 60.45 64.19 - - - -
HCng1+2 67.61 60.24 67.59 71.16 - - - -
NGTKw 65.04 60.24 67.26 70.72 64.78 (-) 62.08 (+) 68.40 (+) 70.99 (+)
NGTKs 62.47 58.41 68.07 74.16 - - - -
NGTKw.s 71.21 67.43 70.99 75.93 69.67 (-) 68.50 (+) 71.31 (+) 75.93 (=)
SyTKc 61.44 58.41 65.96 71.16 62.47 (+) 58.26 (-) 65.64 (-) 71.08 (-)
SyTKc.s 68.64 65.44 70.02 76.54 67.87 (-) 66.06 (+) 69.69 (-) 75.84 (-)
SyTKd 61.70 61.62 65.80 72.13 61.18 (-) 58.41 (-) 66.61 (+) 72.13 (=)
SyTKd.s 65.81 65.44 69.37 75.22 65.81 (=) 64.98 (-) 69.37 (=) 74.96 (-)
SyTKcs.ds 68.89 67.13 71.96 76.10 68.38 (-) 68.35 (+) 70.99 (-) 76.46 (+)
SE14 Best - 70.48 - 80.95 - - - -

Table 2: Accuracy of majority baseline, hand-crafted (HC) unigram+bigram features, any-gram kernel
(NGTK) and syntax tree kernel systems (SyTK) and best SemEval 2014 system, evaluated on the laptop
and restaurant development and test sets, based on exact string match and word embedding similarity

to our tree kernel algorithm. An example input tree is similar to the one shown in Figure 2 but with an
AT node replacing the X node under the right child corresponding to an aspect term token (service in this
example). The results are given in Table 2 (NGTKw under String Match column. The table also includes
the performance of a majority baseline for comparison.

The second row of the table (HCng1+2) contains the performance of an alternative system using hand-
crafted unigrams and bigram features, containing 20K and 23K features for the laptop and restaurant
datasets respectively. The performance of word any-gram kernels is on a par with the hand-crafted n-
gram features (except on the laptop development set), although they are computationally cheaper and
require much less engineering effort to select most useful orders and combination of orders of n-grams.
We measured the time spent for the classification of both test sets using each model on the same machine.
The average of three runs for NGTKw and HCng1+2 were 50 and 490 ms respectively.5 The comparison
also suggest that higher orders of n-gram contained in the any-gram kernels are not useful in this task.

4.2 Constituency Tree Kernels

To use tree kernels for ABSA, the aspect terms need to be marked in the parse tree (Hovy et al., 2013),
mainly to differentiate between multiple aspect terms in a sentence and also as information supplied to
the algorithm. We tried a set of various formats for this purpose and decided to use one in which a
node indicating aspect term (AT) is inserted above the pre-terminal node in the span of aspect term. The
results for this format are presented in Table 2 under String Match column (SyTKc) and an example tree
is shown in Figure 3a. As can be seen, the constituency structure alone tends to be less effective than
word n-grams.

4.3 Dependency Tree Kernels

While constituency trees can be readily used as input to tree kernels, dependency trees need to be restruc-
tured for this purpose, by moving the dependency labels from the arcs to nodes. We follow the format of
Kaljahi et al. (2014), in which the nodes in the resulting trees are word forms and dependency relations,
and we also included POS tags as they proved to be useful. In the resulting tree, a word is a child of its
POS tag, which is in turn a child of its dependency relation to its head. The dependency relation is in turn
the child of the head word. This continues until the root node. Aspect terms are represented by attaching
an AT label to the dependency relations. Figure 3b depicts an example tree in this format and Table 2
shows its accuracy (SyTKd) under String Match column. Dependency tree kernels tend to outperform
the constituency ones. This may be an indication that relationships between words are more important
than the hierarchical structure of in which they are arranged for this task.

5In fact, training and tuning time are also considerably lower. With the SVM that we use here, tree kernels have only the C
parameter to be tuned, but the RBF kernels for hand-crafted features have the C and gamma parameters to be tuned.

65



NP

JJ

Good

,

,

JJ

fast

AT

NN

service

.

.

(a) Constituency tree

root AT

NN

service

amod

JJ

Good

punct

,

,

amod

JJ

fast

punct

.

.

(b) Dependency tree

1

NP

1

JJ

Good

0

,

,

1

JJ

fast

AT

0

NN

service

0

.

.

(c) a with sentiment scores

0

root AT

NN

service

1

amod

JJ

Good

0

punct

,

,

1

amod

JJ

fast

0

punct

.

.

(d) b with sentiment scores

Figure 3: Sample plain constituency and dependency tree kernel representation for Good, fast service. (a
and b) and with sentiment scores added (c and d)

4.4 Adding Sentiment Scores

Sentiment lexica assign a score to each word representing the polarity of its sentiment and are often
constructed automatically or semi-automatically. We follow Wagner et al. (2014) in constructing a sen-
timent lexicon which is a combination of four commonly used lexica including MPQA (Wilson et al.,
2005), SentiWordNet (Baccianella et al., 2010), General Inquirer 6 and Opinion Lexicon (Hu and Liu,
2004). The combined polarity score using their method is in the range [-4,4], where the sign of the score
represents the polarity and its value expresses the strength of the sentiment it bears. However, to avoid
sparsity, we use a coarse-grained set of three scores {−1, 0, 1}, for negative, neutral/unknown, positive
polarities in the same order, which also turns out to perform better in our experiments.

Starting with the any-gram kernels, we replace the words with their sentiment polarity scores and
replicate the experiments. Table 2 shows the performance of the resulting system (NGTKs). According to
the results, the sentiment score n-grams are more useful than the word n-grams for the restaurant dataset.
However, the opposite seems to be true for the laptop dataset. When this system is combined with the
word n-grams, the resulting system (NGTKw.s in Table 2 under String Match) significantly outperforms
both of its components. Interestingly, the gain is more significant for the laptop dataset this time.

We now attempt to include sentiment scores in the parse trees. We experiment with various formats,
including inserting the scores as nodes or replacing terminals with their scores in the original tree and
combining the two trees. We also propagate them upwards in the tree to parent nodes until the root
node, by assigning each node the majority score among all its children’s positive and negative scores
(neutral excluded).7 In case of ties, the propagated score is set to neutral. Of the formats experimented
with, the one with a single tree in which the scores are propagated and inserted as new nodes above
their corresponding nodes outperformed others. An example tree is shown in Figure 3c. The propagated
score for node NP is 1, as there are only two positive scores (1) among all its children (good and fast).
Table 2 shows the accuracy of this setting (SyTKc.s under String Match column). Adding polarity scores
substantially increases the performance, although the model complexity does not change significantly.

As in constituency tree kernels, we add sentiment scores to several positions in the dependency trees
and find the best performance when they are inserted as nodes above the dependency relation nodes. For
instance, in the example tree in Figure 3d, the polarity score for fast (1) is inserted as a node above its
dependency relation node (amod) to its head (service). The accuracy obtained using these augmented
trees is shown in Table 2 (SyTKd.s under String Match column).

6http://www.wjh.harvard.edu/∼inquirer/
7We also tried using the average children score, which performed marginally lower than the majority score.
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Interestingly, constituency and dependency tree kernels tend to perform closely, despite their different
structures. While the latter slightly outperforms the former with plain trees, the former benefits more
from the polarity scores. One reason can be that more structure is added to the constituency trees than to
the dependency trees due to additional nodes for propagated scores.

Finally, we investigate the extent to which the different structures of constituency and dependency tree
kernels complement each other by combining SyTKc.s and SyTKd.s. The results are shown in Table 2
(SyTKcs.ds under String Match column). The laptop test set and the restaurant development sets benefit
the most from the combination, while the other datasets do not see significant changes. This suggests that
the complementarity of these two representations is dependent on the data. Compared to the any-gram
kernels, the syntactic tree kernels perform slightly better on the restaurant dataset, but are outperformed
on the laptop dataset, despite the any-gram kernels carrying less information and being simpler.

4.5 Using Word Embeddings

As described in §3.3 and §4, we replace word forms with word embeddings in kernel computation and use
cosine similarity between them instead of exact string match between word forms. The Word Similarity
column in Table 2 shows the performance of the systems replicated using this method. As can be seen,
the changes are inconsistent, but in general the word embedding similarities tend to be helpful for any-
gram kernels, contributing from 0.27 to 1.84 percentages of accuracy. However, most of the changes for
syntactic tree kernels are negative, the sharpest being 3.21 percent for the laptop test set with SyTKd.

Our analysis shows that the optimized similarity threshold tends to be as high as 0.9, while there is only
about 500 type token pairs in each domain’s dataset which are as similar. Interestingly, an overwhelming
number of these pairs involve numbers and stop words. Perhaps, it would be worthwhile to examine
word embeddings trained on a corpus in the same domain as the target data set instead of a large but
general corpus, or those tuned to better capture sentimental facets of words. For example, with the word
embedding used here, the cosine similarity between good and bad is 77%, which is higher than the
similarity score of superb and brilliant which is 72%.

5 Discussion

Despite their simplicity and efficiency, the models built here achieve reasonably good performance. In
fact, our best settings can take the third and fifth place among 31 systems submitted to the SE14 shared
task (subtask 2 of task 4) for the laptop and restaurant domains respectively, although our goal here has
not been to outperform the state of the art using these systems individually. Table 2 show the performance
of the best system (Wagner et al., 2014) submitted to this shared task (SE14 Best), which achieves on
average 4 points higher accuracy than the best systems built here. This system is built using n-grams and
sentiment lexicon features. It combines the output of a rule-based system as features with bag-of-n-gram
features. The rule-based system sums the polarity scores of all words around the aspect term in terms
of token, discourse chunk and dependency path distance. Their bag-of-n-gram features target the aspect
term context and combine word forms with polarity scores and part-of-speech tags. A similar speed test
done for any-gram kernels in §4.1 shows that their system is 5 times slower than the tree kernel systems
built here. To improve the state of the art, a combination strategy can be sought which effectively exploits
the merits of both kinds of approaches.

6 Concluding Remarks

We have presented a series of experiments with tree kernels for aspect-based sentiment analysis and
shown that a) tree kernels in the form of any gram kernels can be used as an efficient alternative to bag-
of-ngrams, b) similarity based on word embeddings does not appear to be obviously superior to simple
string match, c) constituency and dependency structure can be fruitfully combined, and d) it is always
worth including information from sentiment lexica in the trees. A possible future work is to find methods
to effectively combine tree kernels with state-of-the-art hand-crafted features.
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Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. 2003. A neural probabilistic language
model. Journal of Machine Learning Research, 3:1137–1155.

Michael Collins and Nigel Duffy. 2002. New Ranking Algorithms for Parsing and Tagging: Kernels over Discrete
Structures, and the Voted Perceptron. In Proceedings of ACL, pages 263–270.

Ronan Collobert and Jason Weston. 2008. A unified architecture for natural language processing: Deep neural
networks with multitask learning. In Proceedings of the 25th International Conference on Machine Learning,
pages 160–167.

Kushal Dave, Steve Lawrence, and David M. Pennock. 2003. Mining the peanut gallery: Opinion extraction and
semantic classification of product reviews. In Proceedings of the 12th International Conference on World Wide
Web, pages 519–528.

Marie-Catherine de Marneffe and Christopher D. Manning. 2008. The Stanford typed dependencies represen-
tation. In Proceedings of the COLING Workshop on Cross-Framework and Cross-Domain Parser Evaluation,
pages 1–8.

Li Dong, Furu Wei, Shujie Liu, Ming Zhou, and Ke Xu. 2015. A statistical parsing framework for sentiment
classification. Computational Linguistics, 41(2):293–336.

C. Hardmeier, J. Nivre, and J. Tiedemann. 2012. Tree Kernels for Machine Translation Quality Estimation. In
Proceedings of WMT, pages 109–113.

Dirk Hovy, Shashank Shrivastava, Sujay Kumar Jauhar, Mrinmaya Sachan, Kartik Goyal, Huying Li, Whitney
Sanders, and Eduard Hovy. 2013. Identifying metaphorical word use with tree kernels. In Proceedings of
the First Workshop on Metaphor in NLP, pages 52–57, Atlanta, Georgia, June. Association for Computational
Linguistics.

Minqing Hu and Bing Liu. 2004. Mining and summarizing customer reviews. In Proceedings of the Tenth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 168–177.

Richard Johansson and Alessandro Moschitti. 2013. Relational features in fine-grained opinion analysis. Compu-
tational Linguistics, 39(3):473–509.

Rasoul Samed Zadeh Kaljahi, Jennifer Foster, Raphael Rubino, and Johann Roturier. 2014. Quality Estimation
of English-French Machine Translation: A Detailed Study of the Role of Syntax. In Proceedings of COLING,
pages 2052–2063.

Jussi Karlgren, Gunnar Eriksson, Magnus Sahlgren, and Oscar Täckström. 2010. Between bags and trees–
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