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Abstract

Many methods have been used to recognise author personality traits from text, typically combin-
ing linguistic feature engineering with shallow learning models, e.g. linear regression or Support
Vector Machines. This work uses deep-learning-based models and atomic features of text, the
characters, to build hierarchical, vectorial word and sentence representations for trait inference.
This method, applied to a corpus of tweets, shows state-of-the-art performance across five traits
compared with prior work. The results, supported by preliminary visualisation work, are encour-
aging for the ability to detect complex human traits.

1 Introduction

Techniques falling under the umbrella of “deep-learning” are increasingly commonplace in the space of
Natural Language Processing (NLP) (Manning, 2016). Such methods have been applied to a number of
tasks from part-of-speech-tagging (Ling et al., 2015) to sentiment analysis (Socher et al., 2013). Essen-
tially, each of these tasks is concerned with learning representations of language at different levels. The
work we outline here is no different in essence, though we choose perhaps the highest level of represen-
tation – that of the author of a given text rather than the text itself. This task, modelling people from
their language, is one built on the long-standing foundation that language use is known to be influenced
by sociodemographic characteristics such as gender and personality (Tannen, 1990; Pennebaker et al.,
2003). The study of personality traits in particular is supported by the notion that they are considered
temporally stable (Matthews et al., 2003), and thus our modelling ability is enriched by the acquisition
of more data over time.

Computational personality recognition, and its broader applications, is becoming of increasing interest
with workshops exploring the topic (Celli et al., 2014; Tkalčič et al., 2014). The addition of personality
traits in the PAN Author Profiling challenge at CLEF in 2015 (Rangel et al., 2015) is further evidence.
Much prior literature in this field has used some variation of enriched bag-of-words; e.g. the “Open
vocabulary” approach (Schwartz et al., 2013). This is understandable as exploring the relationship be-
tween word use and traits has delivered significant insight into aspects of human behaviour (Pennebaker
et al., 2003). Different levels of representation of language have been used such as syntactic, semantic,
and higher-order such as the psychologically-derived lexica of the Linguistic Inquiry and Word Count
(LIWC) tool (Pennebaker et al., 2015). One drawback of this bag-of-linguistic-features approach is that
considerable effort can be spent on feature engineering. Another is an unspoken assumption that these
features, like the traits to which they relate, are similarly stable: the same language features always
indicate the same traits. However, this is not the case. As Nowson and Gill (2014) have shown, the rela-
tionship between language and personality is not consistent across all forms of communication and that it
is more complex. In order to better explore this complexity in this work we propose a novel deep-learning
feature-engineering-free modelisation of the problem of personality trait recognition. The task is framed
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as one of supervised sequence regression based on a joint atomic representation of the text: specifically
on the character and word level. In this context, we are exploring short texts. Typically, classification
of such texts tends to be particularly challenging for state-of-the-art BoW based approaches due, in part,
to the noisy nature of such data (Han and Baldwin, 2011). To cope with this we propose a novel recur-
rent and compositional neural network architecture, capable of constructing representations at character,
word and sentence level. The paper is structured as follows: after we consider previous approaches to
the task of computational personality recognition, including those which have a deep-learning compo-
nent, we describe our model. We report on two sets of experiments, the first of which demonstrates the
effectiveness of the model in inferring personality for users, while the second reports on the short text
level analysis. In both settings, the proposed model achieves state-of-the-art performance across five
personality traits.

2 Related Work

Early work on computational personality recognition (Argamon et al., 2005; Nowson and Oberlander,
2006) used SVM-based approaches and manipulated lexical and grammatical feature sets. Today, ac-
cording to the organisers (Rangel et al., 2015) “most” participants to the PAN 2015 Author Profiling
task still use a combination of SVM and feature engineering. Data labelled with personality data is
sparse (Nowson and Gill, 2014) and there has been more interest in reporting novel feature sets. In the
PAN task alone1 there were features used from multiple levels of representation on language. Surface
forms were present in word, lemma and character n-grams, while syntactic features included POS tags
and dependency relations. There were some efforts of feature curation, such as analysis of punctuation
and emoticon use, along with the use of latent semantic analysis for topic modelling. Another popular
feature set is the use of external resources such as LIWC (Pennebaker et al., 2015) which, in this context,
represents over 20 years of psychology-based feature engineering. When applied to tweets, however,
LIWC requires further cleaning of the data (Kreindler, 2016).

Deep-learning based approaches to personality trait recognition are, unsurprisingly given the typical
size of data sets, relatively few. The model detailed in Kalghatgi et al. (2015) presents a neural network
based approach to personality prediction of users. In this model, a Multilayer Perceptron (MLP) takes
as input a collection of hand-crafted grammatical and social behavioral features from each user and
assigns a label to each of the 5 personality traits. Unfortunately no evaluation of this work, nor details
of the dataset, were provided. The work of Su et al. (2016) describes a Recurrent Neural Network
(RNN) based system, exploiting the turn-taking of conversation for personality trait prediction. In their
work, RNNs are employed to model the temporal evolution of dialog, taking as input LIWC-based and
grammatical features. The output of the RNNs is then used for the prediction of personality trait scores
of the participants of the conversations. It is worth noting that both works utilise hand-crafted features
which rely heavily on domain expertise. Also the focus is on the prediction of trait scores on the user
level given all the available text from a user. In contrast, not only can the approach presented in this paper
infer the personality of a user given a collection of short texts, it is also flexible to predict trait scores
from a single short text, arguably a more challenging task considering the limited amount of information.

The model we present in Section 3.2 is inspired by Ling et al. (2015), who proposed a character-level
word representation learning model under the assumption that character sequences are syntactically and
semantically informative of the words they compose. Based on a widely used RNN named long short-
term memory network (LSTM) (Hochreiter and Schmidhuber, 1997), the model learns the embeddings
of characters and how they can be used to construct words. Inspired by this, Yang et al. (2016) introduced
Hierarchical Attention Networks where the representation of a document is hierarchically built up. The
work of (Ling et al., 2015) provides a way to construct words from their constituent characters (Character
to Word, C2W) while Yang et al. (2016) describe a hierarchical approach to building representations of
documents from words to sentences, and eventually to documents (Word to Sentence to Document,
W2S2D). In this work, inspired by the above works, we present a hierarchical model situated between
the above two models, connecting characters, words and sentences, and ultimately personality traits

1Due to space consideration we are unable to cite the individual works.
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(Character to Word to Sentence for Personality Trait, C2W2S4PT).

3 Proposed Model

To motivate our methodology, we review a commonly-used approach to representing sentences and dis-
cuss some of its limitations and motivation. Then, we propose the use of a compositional model to tackle
the identified problems.

3.1 Current Issues and Motivation
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Figure 1: Illustration of the
C2W2S4PT model. Dotted boxes
indicate concatenation.

One classical approach for applying deep learning models to
NLP problems involves word lookup tables where words are
typically represented by dense real-valued vectors in a low-
dimensional space (Socher et al., 2013). In order to obtain a sen-
sible set of embeddings, a common practice is to train on a large
corpus in an unsupervised fashion, e.g. Word2Vec (Mikolov et
al., 2013). Despite the success in capturing syntactic and seman-
tic information with such word vectors, there are two practical
problems with such an approach (Ling et al., 2015). First, due to
the flexibility of language, previously unseen words are bound
to occur regardless of how large the unsupervised training cor-
pus is. The problem is particularly serious for text extracted
from social media platforms such as Twitter and Facebook due
to the noisy nature of user-generated text – e.g. typos, ad hoc
acronyms and abbreviations, phonetic substitutions, and even
meaningless strings (Han and Baldwin, 2011). Second, the num-
ber of parameters for a model to learn is overwhelmingly large.
Assume each word is represented by a vector of d dimensions,
the total size of the word lookup table is d × |V | where |V | is
the size of the vocabulary which tends to scale to the order of
hundreds and thousands. Again, this problem is even more pro-
nounced in noisier domain such as short text generated by online
users. To address the above issues, we adopt a compositional
character to word model described in the next section.

From the personality perspective, character-based features
have been widely adopted in trait inference, such as character n-
grams(González-Gallardo et al., 2015; Sulea and Dichiu, 2015),
emoticons (Nowson et al., 2015; Palomino-Garibay et al., 2015),
and character flooding (Nowson et al., 2015; Giménez et al.,
2015). Motivated by this and the issues identified above, we propose in the next section a composi-
tional model that operates hierarchically at the character, word and sentence level, capable of harnessing
personality-sensitive signals buried as deep as the character level.

3.2 Character to Word to Sentence for Personality Traits

To address the problems identified in Section 3.1, we propose to extend the compositional character
to word model first introduced by Ling et al. (2015) wherein the representation of each word is con-
structed, via a character-level bi-directional RNN (Char-Bi-RNN), from its constituent characters. The
constructed word vectors are then fed to another layer of word-level Bi-RNN (Word-Bi-RNN) and a sen-
tence is represented by the concatenation of the last and first hidden states of the forward and backward
Word-RNNs respectively. Eventually, a feedforward neural network takes as input the representation
of a sentence and returns a scalar as the prediction for a specific personality trait. Thus, we name the
model C2W2S4PT (Character to Word to Sentence for Personality Traits) which is illustrated in Figure 1.
Specifically, suppose we have a sentence s consisting of a sequence of words {w1, w2, . . . , wi, . . . , wm}.
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We define a function c(wi, j) which takes as input a word wi, together with an index j and returns the
one-hot vector representation of the jth character of the word wi. Then, to get the embedding ci,j of the
character, we transform c(wi, j) by: ci,j = Ecc(wi, j) where Ec ∈ Rd×|C| and |C| is the size of the
character vocabulary. Next, in order to construct the representation of word wi, the sequence of charac-
ter embeddings {ci,1, . . . , ci,n} is taken as input to the Char-Bi-RNN (assuming wi is comprised of n
characters). In this work, we employ gated recurrent unit (GRU) (Cho et al., 2014) as the recurrent unit
in the Bi-RNNs, given that recent studies indicate that GRU achieves comparable, if not better, results to
LSTM (Chung et al., 2014).2 Concretely, the forward pass of the Char-Bi-RNN is carried out using the
following:
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should be noted that both the forward and backward Char-RNN share the same character embeddings.
Ultimately, wi is represented by the concatenation of the last and first hidden states of the forward and
backward Char-RNNs: ewi
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>. Once all the word representations ewi

for i ∈ [1, n] have
been constructed from their constituent characters, they are then processed by the Word-Bi-RNN, similar
to Char-Bi-RNN but on word level with word rather than character embeddings:
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the bias terms. In a similar fashion to how a word is represented, we construct the sentence embedding
by concatenation: es = [

−→
h w

m;
←−
h w

1 ]>. Lastly, to estimate the score for a particular personality trait, we
top the Word-Bi-RNN with an MLP which takes as input the sentence embedding es and returns the
estimated score ŷs: hs = ReLU(W ehes +bh) and then ŷs = W hyhs + by where ReLU is the REctified
Linear Unit defined as ReLU(x) = max(0, x), W eh,W hy the parameters for the model to learn, bh, by
the bias terms, and hs the hidden representation of the MLP. All the components in the model are jointly
trained with mean square error being the objective function: L(θ) = 1

n

∑n
i=1(ysi− ŷsi)

2 where ysi is the
ground truth personality score of sentence si and θ the collection of all embedding and weight matrices
and bias terms for the model to learn.

3.2.1 Multitask Learning
While the dimensions of personality in any single model are designed to be independent of one an-
other, there are often strong correlations between traits (Matthews et al., 2003). Understanding that
such correlations exist, we ask whether it is beneficial to train a model capable of simultaneously pre-
dicting multiple highly correlated personality traits. To support this, we report the Pearson correlations
of our dataset (see section 4.1) in Table 1 where EXT, STA, AGR, CON and OPN are abbreviations

2We performed additional experiments which confirmed this finding. Therefore due to space considerations, we do not
report results using LSTMs here.
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EXT STA AGR CON OPN
EXT 0.295*** 0.257** 0.216** 0.057
STA 0.295*** 0.351*** 0.091 0.045
AGR 0.257** 0.351*** 0.035 0.039
CON 0.216** 0.091 0.035 0.174*
OPN 0.057 0.045 0.039 0.174*

Note: *** p 6 0.001, ** p 6 0.01, * p 6 0.05

Table 1: Pearson correlations for the five personality traits

for Extroversion, Emotional Stability (the inverse of Neuroticism), Agreeableness, Conscientiousness
and Openness respectively. This gives us confidence that there are at least linear relationships between
individual traits which could potentially be exploited by multitask learning (Caruana, 1997). Inspired
by this and building on top of the compositional model, we propose a multitask learning model which
shares the Char-Bi-RNN and Word-Bi-RNN components but has personality-trait-specific final layers,
to predict multiple correlated personality traits simultaneously. Concretely, while Char-Bi-RNN and
Word-Bi-RNN remain the same as described in Section 3.2, we utilise a collection of personality-
trait-specific final layers: hp,s = ReLU(W pehes + bph) and then ŷp,s = W phyhp,s + bpy where
p ∈ {EXT, STA, AGR, CON, OPN}, W peh,W phy, bph, bpy are the trait-specific weight matrices and
bias terms, and loss functions: Lp(θp) = 1

n

∑n
i=1(yp,si − ŷp,si)

2 where Lp(θp) is the loss function for a
specific personality trait p. Note that, apart from the Bi-RNN embedding and weight matrices and bias
terms, θp now also includes the trait-specific weight matrices W peh,W phy and bias terms bph, bpy. The
model is then jointly trained using the sum of the loss functions: L(θ) =

∑
p∈P Lp(θp) where P is a

collection of (correlated) personality traits and θ =
⋃

p∈P

θp.

4 Experiments and Results

We report two sets of experiments: the first a comparison at the user level between our feature-
engineering-free approach and current state-of-the-art models which rely on linguistic features; the sec-
ond designed to evaluate the performance of the proposed model against other feature-engineering-free
approaches on individual short texts. We show that in both settings, i.e., against models with or without
feature engineering, our proposed model achieves better results across all personality traits.

4.1 Dataset

We use the English data from the PAN 2015 Author Profiling task dataset (Rangel et al., 2015), collected
from Twitter and consisting of 14, 166 tweets and 152 users. For each user there is a set of tweets (average
n = 100) and gold standard personality labels. The five trait labels – scores between -0.5 and 0.5 – are
calculated following the author’s self-assessment responses to the short Big 5 test, BFI-10 (Rammstedt
and John, 2007) which is the most widely accepted and exploited scheme for personality recognition and
has the most solid grounding in language (Poria et al., 2013).

In our experiments, each tweet is tokenised using Twokenizer (Owoputi et al., 2013), in order to
preserve hashtag-preceded topics and user mentions. Unlike the majority of the language used in a
tweet, URLs and mentions are used for their targets, and not their surface forms. Therefore each text
is normalised by mapping these features to single characters (e.g., @username → @, http://t.co/ →
ˆ). Thus we limit the risk of modelling, say, character usage which was not directly influenced by the
personality of the author.

4.2 Evaluation Method

Due to the unavailability of the test corpus – withheld by the PAN 2015 organisers – we compare the k-
fold cross-validation performance (k = 5 or 10) on the available dataset. Performance is measured using
Root Mean Square Error (RMSE) on either the tweet level or user level depending on the granularity of
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the task: RMSEtweet =
√∑T

i=1(ysi−ŷsi )
2

T and RMSEuser =
√∑U

i=1(yuseri−ŷuseri )
2

U where T and U
are the total numbers of tweets and users in the corpus, ysi and ŷsi the true and estimated personality
trait score of the ith tweet, similarly yuseri and ŷuseri are their user-level counterparts. Each tweet in
the dataset inherits the same five trait scores as assigned to the author from whom they were drawn.
ŷuseri = 1

Ti

∑Ti
j=1 ŷsj where Ti refers to the total number of tweets of useri. In Section 4.3 and 4.4, we

present the results measured at the user and tweet level using RMSEuser and RMSEtweet respectively.
It is important to note that, to enable direct comparison, we use exactly the same dataset and evaluation
metricRMSEuser as in the works of (Sulea and Dichiu, 2015; Mirkin et al., 2015; Nowson et al., 2015).

4.3 Personality Trait Prediction at User Level

We test the proposed models on the dataset described in Section 4.1 and train our model to predict the
personality trait scores based purely on the text with no additional features supplied. To demonstrate
the effectiveness of the proposed model, we evaluate the performance on the user level against models
incorporating linguistic and psychologically motivated features. This allows us to directly compare the
performance of current state-of-the-art models and C2W2S4PT. For 5-fold cross-validation, we com-
pare to the tied-highest ranked (under evaluation conditions) of the PAN 2015 submissions (Sulea and
Dichiu, 2015).3 For 10-fold cross-validation, we similarly choose the work by ranking and metric report-
ing (Nowson et al., 2005). As here, these works predicted scores on text level, and averaged for each user.
Therefore, we include subsequent work which reports results on concatenated tweets – a single document
per user (Mirkin et al., 2015). We also show the most straightforward baseline Average Baseline
which assigns the average of all the scores to each user. C2W2S4PT is trained with Adam (Kingma
and Ba, 2014) and hyper-parameters: Ec ∈ R50×|C|,

−→
h c

i,j and
←−
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i,j ∈ R256,
−→
h w

i and
←−
h w

i ∈ R256,
W eh ∈ R512×256, bh ∈ R256, W hy ∈ R256×1, by ∈ R, dropout rate to the embedding output: 0.5,
batch size: 32. Training is performed until 100 epochs are reached. The RMSEuser results are shown
in Table 2.

RNN-based models outperform the previous state of the art In the 5-fold cross-validation group,
C2W2S4PT - Multitask All is superior to the baselines, achieving better performance in three
traits (tying the remaining traits). This is worth noting considering the model is trained jointly on all
five traits. Even greater improvement is attained by training on fewer personality traits with state-of-
the-art performance achieved mostly by C2W2S4PT. In terms of the performance measured by 10-fold
cross-validation, the dominance of the RNN-based models is even more pronounced with C2W2S4PT
outperforming the two selected baseline systems across all personality traits. Overall, in comparison
to the previous state-of-the-art models in both groups, C2W2S4PT not only outperforms them – by a
significant margin in the case of 10-fold cross-validation – but it also achieves so without any hand-
crafted features, underlining the soundness of the approach.

4.4 Personality Trait Prediction at Single Tweet Level

Although user-level evaluation is the common practice, we choose tweet-level performance to study the
models’ capabilities to infer personality at a lower granularity level. To support our evaluation, a number
of baselines were created. To facilitate fair comparison, the only feature used is the surface form of the
text. Average Baseline, the most straightforward baseline, assigns the average of all the scores to
each tweet. Also, two BoW systems, namely, Random Forest and SVM Regression, have been
implemented for comparison. For these two BoW-based baseline systems, we perform grid search to find
the best hyper-parameter configuration. For SVM Regression, the hyper-parameters include: kernel
∈ {linear, rbf} and C ∈ {0.01, 0.1, 1.0, 10.0} whereas for Random Forest, the number of trees is
chosen from the set {10, 50, 100, 500, 1000}.

Additionally, two simpler RNN-based models, namely Bi-GRU-Char and Bi-GRU-Word, which
only work on character and word level respectively but share the same structure of the final MLP classifier
(hs and ŷs), have also been presented in contrast to the more sophisticated character to word composi-

3Cross-validation RMSEuser performance is not reported for the other top system (Álvarez-Carmona et al., 2015).
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k Model EXT STA AGR CON OPN
— Average Baseline 0.166 0.223 0.158 0.151 0.146

5

Sulea and Dichiu (2015) 0.136 0.183 0.141 0.131 0.119
C2W2S4PT 0.131 0.171 0.140 0.124 0.109
C2W2S4PT - Multitask STA&AGR 5 0.172 0.140 5 5

C2W2S4PT - Multitask AGR&CON 5 5 0.138 0.124 5

C2W2S4PT - Multitask All 0.136 0.177 0.141 0.128 0.117

10

Mirkin et al. (2015) 0.171 0.223 0.173 0.144 0.146
Nowson et al. (2015) 0.153 0.197 0.154 0.144 0.132
C2W2S4PT 0.130 0.167 0.137 0.122 0.109
C2W2S4PT - Multitask STA&AGR 5 0.168 0.140 5 5

C2W2S4PT - Multitask AGR&CON 5 5 0.138 0.123 5

C2W2S4PT - Multitask All 0.136 0.175 0.140 0.127 0.115

Table 2: RMSEuser across five traits. Bold highlights best performance. 5 indicates N/A.

Model EXT STA AGR CON OPN
Average Baseline 0.163 0.222 0.157 0.150 0.147
SVM Regression 0.148 0.196 0.148 0.140 0.131
Random Forest 0.144 0.192 0.146 0.138 0.132
Bi-GRU-Char 0.150 0.202 0.152 0.143 0.137
Bi-GRU-Word 0.147 0.200 0.146 0.138 0.130
C2W2S4PT 0.142 0.188 0.147 0.136 0.127
C2W2S4PT - Multitask STA&AGR 5 0.189 0.146 5 5

C2W2S4PT - Multitask AGR&CON 5 5 0.146 0.136 5

C2W2S4PT - Multitask All 0.142 0.191 0.146 0.137 0.127

Table 3: RMSEtweet across five traits level. Bold highlights best performance. 5 indicates N/A.

tional model C2W2S4PT. For training, C2W2S4PT inherits the same hyper-parameter configuration as
described in Section 4.3. For Bi-GRU-Char and Bi-GRU-Word, we set the character and word em-
bedding size to 50 and 256 respectively. Due to time constrains, we did not perform hyper-parameter
fine-tuning for the RNN-based models and C2W2S4PT. The RMSEtweet of each effort, measured by
10-fold stratified cross-validation, is shown in Table 3.

C2W2S4PT achieves comparable or better performance with SVM Regression and Random
Forest C2W2S4PT is state of the art in almost every trait with the exception of AGR. This demon-
strates that C2W2S4PT generates at least reasonably comparable performance with SVM Regression
and Random Forest in the feature-engineering-free setting on the tweet level and it does so without
exhaustive hyper-parameter fine-tuning.

C2W2S4PT outperforms the RNN-based models This success can be attributed to the model’s capa-
bility of coping with arbitrary words while not forgetting information due to excessive lengths as can
arise from representing a text as a sequence of characters. Also, given that C2W2S4PT does not need to
maintain a large vocabulary embedding matrix as in Bi-GRU-Word, there are much fewer parameters
for the model to learn (Ling et al., 2015), making it less prone to overfitting.

Multitask learning provides little benefits to performance Surprisingly, the model jointly trained on
the weakest correlated pair, namely AGR&CON, achieves even better results than the one trained on the
strongest correlated pair (STA&AGR). In fact, despite the noise introduced by training on non-correlated
personality traits, there is little impact on the performance of the multitask-learning models and the
model jointly trained on all 5 personality traits generates equally competitive performance.

26



4.5 Visualisation
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Figure 2: Scatter plot of sentence representa-
tions processed by PCA.

To further investigate into the learned representa-
tions and features, we choose the C2W2S4PT model
trained on a single personality trait and visualise the
sentences with the help of PCA (Tipping and Bishop,
1999). We also experimented with t-SNE (Van der
Maaten and Hinton, 2008) but it did not produce an
interpretable plot. 100 tweets have been randomly se-
lected (50 tweets each from either end of the EXT
spectrum) with their representations constructed by
the model. Figure 2 shows the scatter plot of the rep-
resentations of the sentences reduced to a 2D space by
PCA for the trait of Extraversion (EXT), selected as
it is the most commonly studied and well understood
trait. The figure shows clusters of both positive and
negative Extraversion, though the former intersect the
latter. For discussion we consider three examples as
highlighted in Figure 2:
• POS7: “@username: Feeling like you’re not

good enough is probably the worst thing to feel.”
• NEG3: “Being good ain’t enough lately.”
• POS20: “o.O Lovely.”

The first two examples (POS7 and NEG3) are drawn from largely distinct areas of the distribution. In
essence the semantics of the short texts are the same. However, they both show linguistic attributes com-
monly understood to relate to Extraversion (Gill and Oberlander, 2002): POS7 is longer and, with the use
of the second person pronoun, is more inclusive of others; NEG3 on the other hand is shorter and self-
focused, aspects indicative of Introversion. The third sentence, POS20, is a statement from an Extravert
which appears to map to an Introvert space. Indeed, while short, the use of “Eastern” style, non-rotated
emoticons (such as o.O) has also been shown to relate to Introversion on social media (Schwartz et al.,
2013). This is perhaps not the venue to consider the implications of this further, although one explana-
tion might be that the model has uncovered a flexibility often associated with Ambiverts (Grant, 2013).
However, it is important to consider that the model is indeed capturing well-understood dimensions of
language yet with no feature engineering.

5 Discussion and Future Work

Overall, the results in the paper support our methodology: C2W2S4PT not only provides state-of-the-art
results on the user level, but also performs reasonably well when adapted to the short text level compared
to other widely used models in the feature-engineering-free setting. However, interpretation of the per-
formance of the multitask experiments is less straightforward. At text level (as per Table 3) the results are
almost identical whether modelling traits individually, all together, or with differing prior relationships.
Perhaps it is the case that simple linear correlations do not adequately explain the relationships between
traits when mediated via language use. It could also be that our model captures a more complex, non-
linear relationship or some notion of latent variables. It is clear that this requires further investigation,
though this will likely require an additional dataset, as with only 150 authors, the distribution of scores
is somewhat limited. One advantage of our approach which requires validation is that lack of feature
engineering should support language independence. Preliminary tests on the Spanish data from the PAN
2015 Author Profiling dataset show promising results. To further examine this property of the proposed
model, we plan to adopt TwiSty (Verhoeven et al., 2016), a recently introduced corpus consisting of
6 languages and labelled with MBTI type indicators (Myers and Myers, 2010). However, due to time
constraints, we leave this exercise for future work.
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