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Abstract

This paper describes the system details
and results of the participation of the
team from the University of Melbourne
in the SeeDev binary event extraction of
BioNLP-Shared Task 2016. This task
addresses the extraction of genetic and
molecular mechanisms that regulate plant
seed development from the natural lan-
guage text of the published literature. In
our submission, we developed a system1

using a support vector machine classifier
with linear kernel powered by a rich set of
features. Our system achieved an F1-score
of 36.4%.

1 Introduction

One of the biggest research challenges faced
by the agricultural industry is to understand the
molecular network underlying the regulation of
seed development. Different tissues involving
complex genetics and various environmental fac-
tors are responsible for the healthy development
of a seed. A large body of research literature is
available containing this knowledge. The SeeDev
binary relation extraction subtask of the BioNLP
Shared Task 2016 (Chaix et al., 2016) focuses on
extracting relations or events that involve two bio-
logical entities as expressed in full-text publication
articles. The task represents an important contri-
bution to the broader problem of biomedical rela-
tion extraction.

Similar to previous BioNLP shared tasks in
2009 and 2011 (Kim et al., 2009; Kim et al.,
2011), this task focuses on molecular informa-
tion extraction. The task organisers provided para-
graphs from manually selected full text publica-
tions on seed development of Arabidopsis thaliana

1Source: https://github.com/unimelbbionlp/BioNLPST2016/

annotated with mentions of biological entities like
proteins and genes, and binary relations like Ex-
ists In Genotype and Occurs In Genotype. The
participants are asked to extract binary relations
between entities in a given paragraph.

Several approaches have been proposed to ex-
tract biological events from text (Ohta et al.,
2011; Liu et al., 2013). Broadly, these ap-
proaches can be categorized into two main groups,
namely rule-based and machine learning (ML)
based approaches. Rule-based approaches con-
sist of a set of rules that are manually defined
or semi-automatically inferred from the training
data (Abacha and Zweigenbaum, 2011). To ex-
tract events from text, first event triggers are de-
tected using a dictionary, then the defined rules are
applied over rich representations such as depen-
dency parse trees, to extract the event arguments.
On the other hand, ML-based approaches (Miwa
et al., 2010) are characterized by learning algo-
rithms such as classification to extract event argu-
ments. Further, they employ various features com-
puted from the textual or syntactic properties of
the input text.

This article explains our SeeDev binary relation
extraction system in detail. We describe the rich
feature set and classifier setup employed by our
system that helped achieve the second best F1-
score of 36.4% in the shared task.

2 Approach

The seedev task involves extraction of 22 different
binary events over 16 entity types. Entity mentions
within a sentence and the events between them are
provided in the gold standard annotations. In the
rest of the article, we refer to an event with two
entity arguments as simply a binary relation.

We treat relation identification as a supervised
classification problem and created 22 separate
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classifiers denoted as C1, C2, . . . , C22, specific to
relations r1, r2, . . . , r22, respectively. This de-
sign choice was motivated by two important as-
pects, namely vocabulary and relation type signa-
ture. We describe them below:

Vocabulary According to the annotation guide-
lines document, it is clear that different re-
lations are expressed using different vocabu-
lary. For example, “encode” is in the vo-
cabulary of “Transcribes Or Translates To” and
“phosphorylate” is in the vocabulary of “Regula-
tion Of Molecule Activity”. We hypothesize that
treating the vocabulary as a set of trigger words
for its corresponding relation would be beneficial.
Therefore, we built 22 separate classifiers for each
relation type, with vocabulary as a relation spe-
cific feature. Given an entity pair (ea, eb), we test
it with the classifier Ci to detect if the relation ri

holds between ea and eb.

Relation type signature Relations are associ-
ated with entity type argument signatures, which
specify the list of allowed entity types for each
argument position. For example, the event “Pro-
tein Complex Composition” requires the first en-
tity argument to be one of these four entity types
{“Protein”, “Protein Family”, “Protein Complex”,
“Protein Domain”} and the second argument to
be “Protein Complex”. Alternately, relation argu-
ment signatures can be used as a filter that spec-
ifies the list of invalid relations between an entity
pair. We can use this knowledge to prune the train-
ing sets of classifier Ci of invalid entity pairs. Re-
lation type signatures overlap but are not identi-
cal. Therefore, training set of Ci is different from
training set of Cj , j 6= i.

2.1 Training

The steps involved in training the aforementioned
classifiers are described below.

1. Extract all pairs of candidates (ea, eb) that co-
occur within a sentence from training doc-
uments to form a triple t = (ea, eb, label).
If ea and eb are known to be related by the
type rc, from the relation annotations, we set
label = rc. If they are not related, we set
label =NR. NR is a special label to denote no
relation.

2. Add the triple t = (ea, eb, label) to the train-
ing set of Ci, if (ea, eb) satisifies the type sig-
nature for relation ri, i ∈ [1, 22].

We now have classifier specific training sets,
which are sets of triples t = (ea, eb, label). To
train the classifier, we regard these triples as train-
ing examples of class type label and a feature vec-
tor constructed for the entity pair (ea, eb), as ex-
plained in section 2.4.

2.2 Testing

During the test phase, we generate candidate entity
pairs from sentences in the test documents. We
look up into the relation argument signatures to
identify the list of possible relation types for this
entity pair. For each such relation type ri, we test
the candidate with the classifier Ci. The entity pair
(ea, eb) is considered to have the relation type ri if
the predicted label from the classifier Ci is ri. A
consequence of the above approach is that we may
predict multiple relation types for a single entity
pair in a sentence. This is a limitation of our sys-
tem, as it is unlikely for a sentence to express mul-
tiple relationships between an entity pair.

2.3 Classifier details

The classifiers Ci, i ∈ [1, 22] are trained as multi-
class classifiers. Note that the training set of each
classifier Ci may include examples of the form
(ea, eb, label), label = rj and j 6= i, for the rea-
son that (ea, eb) satisfies the type signature for ri.
Therefore, at test time a classifier Ci may classify
an entity pair (ea, eb) as rj , j 6= i. But we note
that ri is the dominant class for the classifier Ci

and other relation types rj are often under repre-
sented during its training. Therefore, we discard
predictions rj from Ci when j 6= i. For the entity
pair (ea, eb) to be included in the final set of pre-
dicted relations with the type ri, we require that
the classifier Ci label it as ri.

We experimented with classifiers from
Scikit (Pedregosa et al., 2011). For each re-
lation type, we selected a classifier type between
linear kernel SVMs and Multinomial Naive
Bayes. This choice was based on performance
over development data. We combine the devel-
opment dataset with training dataset and use it all
for training. No parameter tuning was performed.

2.4 Feature Engineering

We developed a set of common lexical, syntac-
tic and dependency parse based features. Relation
specific features were also developed. For part of
speech tagging and dependency parsing of the text,
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we used the toolset from Stanford CoreNLP (Man-
ning et al., 2014). These features are described in
detail below.

1. Stop word removal: For some relations
(“Has Sequence Identical To”, “Is Function-
ally Equivalent To”,“Regulates Accumula-
tion” and “Regulates Expression” ) we found
that it is beneficial to remove stop words from
the sentence.

2. Bag of words: Include all words in the sen-
tence as features, prefixed with “pre”,“mid”
or “post” based on their location with refer-
ence to entity mentions in the sentence.

3. Part of Speech (POS): Concatenated se-
quence of POS tags were extracted separately
for words before, after and in the middle of
entity mentions in the sentence.

4. Entity features: Entity descriptions and entity
types were extracted as features.

5. Dependency path features: We compute the
shortest path between the entities in the de-
pendency graph of the sentence and then find
the neighboring nodes of the entity mentions
along the shortest path. The text (lemma) and
POS tags of these neighbors are included as
features.

6. Trigger words: For each relation, we desig-
nate a few special terms as trigger words and
flag their presence as a feature. Trigger words
were mainly arrived at by examining the an-
notation guidelines of the task and a few rep-
resentative examples.

7. Patterns: A common pattern in text docu-
ments is to specify equivalent representations
using parenthesis. We find if the two entities
are expressed in such a way and include it as a
special feature for the relations “Is Function-
ally Equivalent To” and “Regulates Develop-
ment Phase”.

3 Evaluation

The SeeDev-Binary task objective is to extract all
related entity pairs at the document level. The met-
rics are the standard Precision (P), Recall(R) and
F1-score ( 2PR

P+R ).

3.1 Dataset
The SeeDev-Binary (Chaix et al., 2016) task pro-
vides a corpus of 20 full articles on seed develop-
ment of Arabidopsis thaliana, that have been man-
ually selected by domain experts. This corpus con-

sists of a total of 7, 082 entities and 3, 575 binary
relations and is partitioned into training, develop-
ment and test datasets. Gold standard entity and
relation annotations are provided for training and
development data and for test data only entity an-
notations have been released. The given set of 16
entity types are categorized into 7 different entity
groups and 22 different relation types are defined.
Pre-defined event signatures constrain the types of
entity arguments for each relation.

3.2 Results

In the development mode, we used the training
dataset for training the relation specific classifiers
and predicted the relations over the development
dataset. Finally, we trained our classifiers with the
full training and development data together. With
this system, the predicted relations over the test
dataset was submitted to the task. Performance re-
sults over the test dataset was made available by
the task organizers at the conclusion of the event.
These results are detailed in Table 3.2.

4 Discussion

We note that the final relation extraction per-
formance is quite low (36.4%), suggesting that
SeeDev-Binary event extraction is a challenging
problem. Further, for many event types our sys-
tem was unable to identify any relation mentions.
It is not clear as to why our methods are not ef-
fective for these relation types, but it is likely that
scarcity of training data is the problem. We ob-
served that our system performed poorly on rela-
tion types that have < 100 training samples and
has generally succeeded on the rest. It is likely that
for these sparsely represented relation types, alter-
nate techniques such as rule based methods might
be more successful.

We attempted a few alternate techniques and de-
scribe the findings from these approaches below.

4.1 Alternate approaches

1. Two stage approach: We attempted building
a first stage general filter that identifies event
pairs as “related” or “not related”. For this,
we grouped all candidate pairs with any of
the 22 given relation types into the “positive”
class and the rest into the “negative” class in a
SVM classifier. In the second stage, we built
a multiclass classifier that was to further tune
the label of an entity pair from “related” to
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Event
type

Clasifier
used

Metrics on Development data Metrics on Test data
F1 Recall Prec. F1 Recall Prec.

Binds To SVM 0.269 0.291 0.250 0.262 0.250 0.276
Composes Primary Structure NB 0.482 0.466 0.500 NA 0 0
Composes Protein Complex NB NA 0 0 0.500 0.667 0.400
Exists At Stage NB NA 0 0 NA 0 0
Exists In Genotype SVM 0.248 0.222 0.281 0.354 0.315 0.404
Has Sequence Identical To SVM 0.336 0.800 0.213 NA 0 0
Interacts With SVM 0.245 0.218 0.280 0.286 0.241 0.351
Is Functionally Equivalent To SVM 0.238 0.256 0.222 NA 0 0
Is Involved In Process SVM NA 0 0 NA 0 0
Is Localized In SVM 0.431 0.468 0.400 0.388 0.435 0.351
Is Member Of Family SVM 0.389 0.545 0.303 0.417 0.523 0.346
Is Protein Domain Of SVM 0.111 0.068 0.285 0.295 0.419 0.228
Occurs During NB NA 0 0 NA 0 0
Occurs In Genotype SVM NA 0 0 NA 0 0
Regulates Accumulation SVM 0.444 0.344 0.625 0.316 0.188 1
Regulates Development Phase SVM 0.380 0.338 0.434 0.376 0.442 0.327
Regulates Expression SVM 0.486 0.477 0.495 0.386 0.471 0.327
Regulates Process NB 0.420 0.513 0.355 0.400 0.394 0.406
Regulates Tissue Development NB NA 0 0 NA 0 0
Regulates Molecule Activity NB NA 0 0 NA 0 0
Transcribes Or Translates To NB 0.100 0.076 0.142 NA 0 0
Is Linked To SVM NA 0 0 NA 0 0
All Relations - 0.354 0.360 0.348 0.364 0.386 0.34

Table 1: Results for relation extraction. NB is Multinomial Naive Bayes. Prec is Precision.

one of the 22 relation types. We observed
poor performance for the first stage filter and
a drop in overall performance.

2. Binary classifiers: We attempted training the
classifiers Ci, i ∈ [1, 22] as binary classi-
fiers, by modifying the triples (ea, eb, rj) to
(ea, eb, +) if j == i and (ea, eb,−) if j 6= i.
At test time, positive predictions from Ci

were inferred as relations ri. We observed
that this approach of combining many sub-
classes into one negative class reduced preci-
sion and hence overall performance.

3. Co-occurrence: A simple approach to rela-
tion extraction is to consider all event pairs
that occur within a sentence as related. We
tried using this cooccurrence strategy for re-
lation types for which SVM or Naive Bayes
classifiers did not work effectively. We aban-
doned this strategy as we observed that the
overall F1 score reduced over the develop-
ment dataset, even as the recall at the relation
level improved.

4. Kernel methods: We experimented with the
shortest dependency path kernel (Bunescu
and Mooney, 2005) and the subset tree ker-
nels (Moschitti, 2006) for classification with
SVMs. However their performance was quite
low (F1 score < 0.20). It is likely that small
training set sizes and multiple entity pairs
in most sentences affect the performance of
these kernel methods.

5. Dominant class types : In our system we
adopted the strategy of only accepting pre-
dictions of the dominant class type from each
classifier. That is, we filter out predictions of
type rj from classifier Ci when j 6= i. This
strategy proved very effective when tested
over the development dataset. Without this
filtering step, we found that our system gets
a high recall as expected (0.896) but also too
many false positives resulting in low preci-
sion (0.027) and F-score (0.053).
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True
relation type

Predicted relation type
NR BT CP EG HS IW IF IL IM IP RA RD RE RP TO

NR NA 21 5 46 43 15 32 33 67 5 6 26 54 157 6
BT 14 7 0 0 0 3 0 0 0 0 0 0 0 0 0
CP 7 0 7 0 1 0 0 0 0 0 0 0 0 0 0
EG 63 0 0 18 0 0 0 0 0 0 0 0 0 0 0
HS 1 0 1 0 16 0 3 0 0 0 0 0 0 0 0
IW 23 0 0 0 0 7 0 0 1 0 0 0 0 0 0
IF 14 0 1 0 14 0 10 0 1 0 0 0 0 0 0
IL 25 0 0 0 0 0 0 22 0 0 0 0 0 0 0
IM 25 0 0 0 1 0 0 0 30 0 0 0 0 0 0
IP 27 0 0 0 0 0 0 0 0 2 0 0 0 0 0
RA 19 0 0 0 0 0 0 0 0 0 10 0 0 0 0
RD 39 0 0 0 0 0 0 0 0 0 0 20 0 0 0
RE 57 0 0 0 0 0 0 0 0 0 0 0 53 0 0
RP 86 0 0 0 0 0 0 0 0 0 0 0 0 92 0
TO 12 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 2: Confusion matrix for evaluation over development data using our multiclass classifiers. Rows
and columns represent the relations Not Related(NR), Binds To(BT) , Composes Primary Structure(CP)
, Exists In Genotype(EG) , Has Sequence Identical To(HS) , Interacts With(IW) , Is Functionally Equiv-
alent To(IF) , Is Localized In(IL) , Is Member Of Family(IM) , Is Protein Domain Of(IP) , Regulates
Accumulation(RA) , Regulates Development Phase(RD) , Regulates Expression(RE) , Regulates Pro-
cess(RP) and Transcribes Or Translates To(TO).

4.2 Error analysis

In Table 4.2 we show the confusion matrix for 16
classifiers of our system, when evaluated over the
development dataset. The remaining 6 classifiers
were left out as they have 0 predictions and are dis-
cussed separately in Section 4.2.1. The entries of
the confusion matrix CM [i, j] are the number of
test examples whose true type is i and its predicted
label is j. From the confusion matrix we see that
the primary source of errors is in predicting a re-
lation where there is none or vice versa. Amongst
the related entity pairs, the classifier for “Has Se-
quence Identical To” makes the most errors when
the input examples are of type “Is Functionally
Equivalent To”. Adding more discriminatory fea-
tures or keywords to discriminate between these
two classes is likely to improve performance. Bet-
ter handling of unrelated entity pairs is likely to be
achieved with more syntactic or dependency parse
related features, that specifically target the entity
mentions in the sentence.

4.2.1 Unsuccessful classifiers
In Table 3.2, the F-score for some of the relation
types has been recorded as not available(“NA”)
as our classifiers failed to predict any relations.

Studying the confusion matrix at the classifier
level confirms that the classifier did not have
enough evidence to detect a relation in many cases.
Also, for most of these unsuccessful relation types
we observed that the primary class type is under-
represented in their training set. For example, the
training sets for the classifier for “Exists At Stage”
has 3X more examples of type “Regulates Devel-
opment Phase” than examples of type “Exists At
Stage”. Better ways of handling class imbalance
may improve performance.

5 Conclusion

SeeDev-Binary event extraction was shown to
be an important but challenging problem in the
BioNLP-Shared Task 2016. This task is also un-
usual as it calls for the extraction of multiple re-
lation types amongst multiple entity types, often
cooccurring in a single sentence. In this paper,
we describe our system, which was ranked second
with an F1 score of 0.364 in the official results
of the task. Our solution was based on a series
of supervised classifiers and a rich feature set that
contributes to effective relation extraction.
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