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Abstract

We propose a machine learning approach
for semantic recognition and normaliza-
tion of clinical term descriptions. Clin-
ical terms considered here are noisy de-
scriptions in Spanish language written by
health care professionals in our electronic
health record system. These description
terms contain clinical findings, family his-
tory, suspected disease, among other cat-
egories of concepts. Descriptions are
usually very short texts presenting high
lexical variability containing synonymy,
acronyms, abbreviations and typographi-
cal errors. Mapping description terms to
normalized descriptions requires medical
expertise which makes it difficult to de-
velop a rule-based knowledge engineer-
ing approach. In order to build a training
dataset we use those descriptions that have
been previously matched by terminolo-
gists to the hospital thesaurus database.
We generate a set of feature vectors based
on pairs of descriptions involving their in-
dividual and joint characteristics. We pro-
pose an unsupervised learning approach to
discover term equivalence classes includ-
ing synonyms, abbreviations, acronyms
and frequent typographical errors. We
evaluate different combinations of features
to train MaxEnt and XGBoost models.
Our system achieves an F1 score of 89%
on the Hospital Italiano de Buenos Aires
(HIBA) problem list.

1 Introduction

Some electronic health records (EHR) implemen-
tations allow users to introduce free text descrip-
tions to capture clinical problems information en-

abling higher level of expressiveness and flexibil-
ity to physicians. Those descriptions must be en-
coded according to their meaning in order to allow
the information to be consumed by other systems.
Descriptions are grouped into concepts according
to the meaning. The following descriptions corre-
spond to the same concept1:

(1) neoplasia
neoplasia

maligna
malign

de
of

pulmón
lung

’Malignant tumor of lung’

(2) cáncer
cancer

pulmonar
lung-of

’lung cancer’

(3) ca
ca

pulmonar
lung-of

’lung cancer’

(4) cáncer
cancer

de
of

pulmón
lung

desde
since

2009
2009

’cancer of the lung since 2009’

Free text descriptions written by health care
professionals contain typos as in cancer plum-
noar: a variation of description (2). It should be
noted also that description (4) does not represent a
synonym in a strict terminological sense. How-
ever it represents the same concept because the
string desde 2009 (since 2009) does not add rel-
evant information from a problem list perspective
(in the sense of EHR and terminology tradition
(Van Vleck et al., 2008)).

Mapping strings to concepts has been a long
standing problem in BioNLP, string similarity
techniques as well as machine learning approaches
have been applied. Automatic mapping of key
concepts from text in clinical notes to a reference
terminology is an important task to achieve, in or-
der to extract clinical information present in notes
and patient reports. One of the problems of bio-

1In these examples the Spanish description is followed by
the word-for-word English gloss and then the English trans-
lation.
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medical data integration is variation of terms us-
age. Exact string matching often fails to associate
a string with its bio-medical concept (represented
by an ID or accession number in the database) due
to differences of string occurrences. Soft string
matching algorithms are able to find the relevant
concept by considering the string similarity be-
tween candidate strings. However, the accuracy
of soft matching highly depends on the similarity
measure employed. String similarity techniques
have been applied to a variety of problems in
BioNLP, such as UMLS concepts normalization
(Aronson and Lang, 2010; Wellner et al., 2005;
Rudniy et al., 2014), UMLS clinical terms (Kate,
2016), disease normalization (Leaman et al., 2013;
Kang et al., 2013), gene and protein names (Kim
and Park, 2004; Tsuruoka et al., 2007; Tsuruoka
et al., 2008; Fang et al., 2006; Wermter et al.,
2009), to interface terminologies (Rosenbloom et
al., 2006) and different databases (Sun, 2004).

String similarity can be used for named entity
recognition (SNOMED-CT taggers) and reference
resolution (Castaño et al., 2002; Lin and Liang,
2004; C. et al., 2003) alias extraction (Yu and
Agichtein, 2003), acronym-expansion extraction,
e.g. (Pustejovsky et al., 2001).

On a similar view there are a number of works
on automated clinical coding (Friedman et al.,
2004; Pakhomov et al., 2006; Patrick et al., 2006;
Suominen et al., 2008; Stanfill et al., 2010; Perotte
et al., 2014).

This work explores traditional soft string match-
ing methods along with n-gram character and
word features in a machine learning approach us-
ing MaxEnt and XGBoost classifiers. An unsu-
pervised learning approach to generate new fea-
tures by detecting synonyms, abbreviations and ty-
pos is presented to improve classification perfor-
mance. The models are compared to a baseline
obtained by a vector space model configuration
based on character n-grams and a TF-IDF weight-
ing scheme, implemented in Apache Lucene.

The remainder of this paper is structured as fol-
lows: in Section 2, we describe the data set we
used. In Section 3, we discuss the similarity met-
rics and similarity features for machine learning
algorithms. In Section 4 we discuss the experi-
mentation and results. Finally in Section 5 we re-
port our conclusions and expected future work.

2 Description Terms Data-set

We build a data-set based on the problem list
of Hospital Italiano de Buenos Aires (HIBA) in-
terface terminology (Lopez Osornio et al., 2007;
Gambarte et al., 2007) which includes adequate
synonym coverage and it is linked to the HIBA
thesaurus. This thesaurus is built upon the Spanish
version of SNOMED-CT, while extending it with
new concepts and additional synonym terms.

Following SNOMED-CT and other thesauri,
terms in the thesaurus are grouped by concepts.
The following terms are associated to the same
concept.

(5) tabaquismo
smoking

(6) abuso
tobacco

de tabaco
consumption

We selected those clinical concepts that had at
least 10 terms and no more than 100 for a given
concept.2 The set is composed of 151,513 terms
and 5,222 concepts. The set of descriptions (D)
was split in a training set (T ) 70%, and an evalua-
tion test set (E) 30%.

Descriptions in T were used to build a new data-
set T1 consisting of pairs of descriptions samples
of the form (d1, d2, value). Positive and negative
samples were constructed in the following way:

• For each pair of descriptions di, dj ∈ T with
i 6= j such that di and dj are associated to the
same concept, we create a sample (di, dj , 1)

• We split the set of descriptions T in corpus
and query sets. We indexed with Apache
Lucene the corpus set of descriptions using
TF-IDF weights on n-gram characters. Using
a description d as a query, a set of relevant
and non-relevant results are retrieved. Rele-
vant results are those descriptions di already
stored as samples of pair of terms describing
the same concept: (d, di, 1). Non-relevant
results are those results dj for which there is
not a sample (d, dj , 1) and therefore a sample
(d, dj , 0) is created.

The training data-set (T1) has 1,173,617 in-
stances with 777,585 negative and 396,032 posi-
tive samples.

2Those concepts that had more than 100 terms were noisy,
and were not considered relevant.
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3 Methods for Computing Term
Normalization

String similarity methods can be either character-
based or token-based. Character-based ap-
proaches typically consist of variations of the
edit-distance metric, like Levenshtein distance or
longest common subsequence. Token-based ap-
proaches include the Jaccard similarity metric and
the cosine similarity based on TF-IDF weight-
ing schema. There are also hybrid token and
character-based approaches. Soft-TFIDF (Cohen
et al., 2003) includes not only exact matches but
also close matches, using a threshold. Another ap-
proach uses n-grams of the target strings instead
of the tokens (Cohen et al., 2003; Moreau et al.,
2008; Köpcke and Rahm, 2010).

Many works have also focused on automatic
methods for combining these string similarity
measures using machine learning (Cohen and
Richman, 2001; Belenko and Mooney, 2003;
Wellner et al., 2005; Moreau et al., 2008).

In this section we explore a hybrid soft-TFIDF
approach based on an n-gram character vector
space model as well as other character-based and
token-based similarity metrics. Next, we mention
some limitations of combining the previous met-
rics due to information redundancy and lack of se-
mantic information which produces false positive
and false negative instances. We propose an usu-
pervised machine learning approach which allows
to capture semantic information.

3.1 Information retrieval and TF-IDF

We use an information retrieval (IR) Soft-TFIDF
approach (Cohen et al., 2003) to match a new de-
scription to those terms already existing in the hos-
pital thesaurus database. First, the set of known
terms in the thesaurus are indexed with Lucene,
where the collection of terms is represented in a
Vector Space Model (VSM) using TF-IDF weights
based on character n-grams. A new description is
used as a query and the set of ranked descriptions
terms with the corresponding scores is retrieved,
being the highest ranked description the candidate
term to associate the query with. The cosine simi-
larity measure is used to obtain similarity scores.

However this approach will outcome both false
positive and false negative results such as:

(7) sospecha
suspected

de
(of)

laringitis
alergic

alérgica
laringytis

(query)

(8) sospecha
suspected

de
(of)

faringitis
alergic

alérgica
pharyngitis

(false positive)

Due to the high string similarity score between
sospecha de laringitis alérgica and sospecha de
faringitis alérgica if either of them is not indexed
as a concept, then the returned result is considered
a match and therefore a false positive instance is
obtained.

(9) neoplasia
malignant

maligna
tumor

de
of

pulmón
lung

(query)

(10) cáncer
lung

pulmonar
cancer

(false negative, not retrieved)

A low similarity score between neoplasia
maligna de pulmón and cáncer pulmonar implies
that the target string is not retrieved (i.e. it is not
ranked above the threshold). Since the concept is
just represented by cáncer pulmonar, the string
neoplasia maligna de pulmón is a false negative
instance.

Figure 1 shows overlapping distribution of
scores. The positive match curve represents the
score (cosine similarity) distribution of query
and retrieved string pairs that represent the same
concept. It shows higher average score than
negative match. As threshold score increases,
false negative cases increase and false positive
cases decrease.

Figure 1: IR Score distribution (normalized histograms)

Given a query, it is not known whether relevant
information exists or not in the indexed dataset,
and the term with the highest score is not neces-
sarily a desired result. The performance of match-
ing the query with the highest ranked term can be
measured using precision, recall and F1 metrics.
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In a Soft-TFIDF approach is possible to control
precision/recall trade-off considering a threshold t
as shown in Figure 2. The algorithm returns the
highest ranked term if score ≥ t. Higher values
of t increase precision but recall is decreased.

Figure 2: Precision, recall and F1 measure

Precision(t), recall(t) and F1(t) show measures for the results

returned by the IR system where score ≥ t (when increasing

t, precision(t) increases and recall(t) decreases)

3.2 String similarity metrics

String similarity metrics have been used com-
bined with IR TF-IDF approaches. Using tradi-
tional string similarity and distance metrics like
Damerau-Levenshtein or Longest common sub-
sequence allow to increase to some extent preci-
sion. It is possible to score results using a string
metric or combine together with IR scores using
some rules or formulas and thresholds. Using a
set of scores it is possible to use machine learning
models to classify relevant/non-relevant result.

Even though there are other string metric mea-
sures that can be combined, some of them are very
much related. For example Damerau-Levenshtein
(DamLevdist) distance allows an additional edit
operation respect to Levenshtein (Levdist) dis-
tance, then DamLevdist ≤ Levdist. Also Jac-
card and Sorensen-Dice similarity metrics present
a high correlation. In Table 1 we show pairwise
correlations between Damerau-Levenshtein ratio,
Longest common sub-sequence, Sorensen-Dice,
Jaro-Winkler and Jaccard coefficient metrics.

Due to high correlation between Jaccard and
Sorensen-Dice, we can choose one of them, and
in the same way with Damerau-Levenshtein and
Longest common subsequence to fit a classifica-
tion model using machine learning approach.

Metric DamLev LCS SorDic JarWin Jac
DamLev 1.00 0.96 0.78 0.73 0.77
LCS 1.00 0.84 0.73 0.82
SorDic 1.00 0.65 0.99
JarWin 1.00 0.64
Jac 1.00

Table 1: Correlation (Pearson) between string
metrics
Damerau-Levenshtein ratio (DamLev), Longest common
subsequence (LCS), Sorensen-Dice (SorDic), Jaro-Winkler
(JarWin) and Jaccard (Jac). Damerau-Levenshtein ratio is a
transformation of Damerau-Levenshtein distance d using the
formula M is the maximum lenght of s1 and s2.

By computing the principal components, the
eigenvalues show that using the first k components
the cumulative variance explained is 76% (k = 1),
93% (k = 2), 98% (k = 3), 99% (k = 4). This
means that k new variables (linear combination of
original metrics) explain those proportions of the
total variance and we can also reduce redundant
information.

Limitations to this approach are present both in
false positive and false negative cases. It is a quan-
titative improvement but cases like those presented
in examples (7-10) above, require a more sophis-
ticated approach. Such approach must consider
which modifications in a clinical term changes its
meaning.

3.3 A machine learning approach to string
matching

As it has been already observed in many other
works, abbreviations, acronyms, synonyms and ty-
pos are sources of variation that generate terms
with the same meaning. Table shows some exam-
ples from the Spanish dataset:3

Many pairs of description terms are very sim-
ilar but they have different meaning as described
by the following non-synonym pairs where only a
character difference in a long string entails a dif-
ferent meaning:

(11) a. sospecha de laringitis alérgica
b. sospecha de faringitis alérgica

(12) a. duelo por fallecimiento de madre
b. duelo por fallecimiento de padre

(13) a. sospecha de hi potiroidismo
b. sospecha de hi pertiroidismo

(14) a. artr itis de tobillo
b. artr osis de tobillo

3We do not include the translations from now on because
the relevant information is the string similarity.
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Alternative forms ’meaning’
sd, sme, sind, sindr sindrome
izq, izqdo, iz izquierdo
mmii miembros inferiores
grado 2, 2do grado, segundo grado
2 grado, gr II, G2, GII
hta hipertensión arterial
ira insuficiencia renal aguda
oma otitis media aguda
AF, antec fliar, atc familiar antecedente familiar
fratura fractura
trauatismo traumatismo
dematitis dermatitis
litisis litiasis
Reynaud/Raynoud Raynaud
Hodkin, Hodking Hodgkin
dolores de cabeza dolor de cabeza
fallecimiento , muerte deceso
de hı́gado hepático
biológico natural
cáncer neoplasia maligna

Table 2: Examples of equivalent strings.

We use a machine learning approach to learn
whether a pair of descriptions is a match or not.
We create a family of features to train classifica-
tion algorithms. Hyper-parameters were adjusted
using 5-fold cross-validation. Models are based on
different combinations of feature sets explained in
next subsection.

3.4 Features

Features are organized in sets S1, ..., S10 and then
different set combinations are used to generate the
corresponding models. In Table 3 d1 and d2 are
the description strings that are compared, where d1

vectors represent queries and d2 a retrieved string.
The training corpus was used to adjust the cor-
responding d2 vectors, using both word unigrams
and character bi-grams.4

Feature set S1 represents string metrics to
obtain differences in string characteristics be-
tween a pair of description terms. Features in
S2, S3, S4, S5 are traditional representations in
vector space model of d1 and d2 based on uni-
gram word and bi-gram character representation
with TF-IDF, binary occurrence and term fre-
quency weights. In S6 and S7 we consider dif-
ferences in descriptions (d12 and d21), and S9, S10

considers context (c) also.
We define w(d) as the set of words in d, and

d12, d21 and c as follows

d12 = w(d1) \ w(d2)

d21 = w(d2) \ w(d1)

4Features d12 and d21 are explained below.

Set Feature
S1 L1 = length(d1)

L2 = length(d2)
m = min(L1, L2)
M = max(L1, L2)
ratiolength = m

M
differencelength = |M −m|
Levenshteinratio(L1, L2)
Jaccard(L1, L2)

S2 Vector of unigram word occurrence in d1

Vector of unigram word occurrence in d2

S3 Vector of unigram word TF-IDF in d1

Vector of unigram word TF-IDF in d2

S4 Vector of bigram character frequency in d1

Vector of bigram character frequency in d2

S5 Vector of bigram character TF-IDF in d1

Vector of bigram character TF-IDF in d2

S6 Vector of unigram word occurrence in d12

Vector of unigram word occurrence in d21

S7 Vector of bigram character frequency in d12

Vector of bigram character frequency in d21

S8 Vector of unigram word occurrence in d12

Vector of unigram word occurrence in d21

Vector of unigram word occurrence in c
S9 Vector of bigram character frequency in d12

Vector of bigram character frequency in d21

Vector of bigram character frequency in c
S10 Vector of group of words in d12

Vector of group of words in d21

Vector of group of words in c

Table 3: Feature-sets.

c = w(d1) ∩ w(d2)

For example:

d1 = fractura de rodilla izquierda,
d2 = fractura de rodilla izq then
w(d1) = {fractura, de, rodilla, izquierda},
w(d2) = {fractura, de, rodilla, izq},
d12 = {izquierda}
d21 = {izq} and c = {fractura, de, rodilla}

3.5 Unsupervised Learning of Synonyms,
Abbreviations and Typos

In this section we present an approach to detect
word synonyms, abbreviations, acronyms and
frequent typographical errors. We explain how
the set of features S10 was generated.

Unsupervised algorithms were studied widely
in the literature to detect relationships between
words in order to improve results of NLP tasks
such us chunking or named entity recognition.
Clustering to detect word equivalence classes
from unlabeled corpus were studied in (Kneser
and Ney, 1993) and (Turian et al., 2010).

We introduce a procedure to generate sets
of semantically equivalent strings from term
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descriptions using a graph algorithm.

Given a set of positive description pair match-
ings such as

(15) d1: sospecha de infección urinaria
d2: probable infección urinaria

(16) d1: urticaria en cara
d2: urticaria en rostro

(17) d1: duelo por fallecimiento de padre
d2: duelo por muerte de padre

(18) d1: duelo por deceso de padre
d2: duelo por muerte de padre

The following semantically equivalent pairs can be
inferred using word differences between pairs of
descriptions:
{sospecha, probable}, {cara, rostro}
{fallecimiento, muerte} and {deceso, muerte}

Therefore it is possible to replace, for example,
the terms sospecha and probable by a concept
representing this class with some label. Using the
concept class label instead of a term as a feature in
a vector space model we can deal with synonymy
problems.

Since this approach only infers direct associa-
tions, we cannot detect the pair {deceso, muerte}
using this approach.

Semantically equivalent pairs can be extended
to larger sets (semantically equivalence classes),
building an undirected weighted graph, consider-
ing terms as vertices and equivalent pairs as edges.
Connected components in the graph can be de-
tected and terms can be clustered in some cases.

An undirected weighted graph G = (V,E,W )
is generated creating an edge (d12, d21, w) ∈ E
for each pair of descriptions d1, d2 such that
| d12 |=| d21 |= 1. For example, the pair of
descriptions duelo por fallecimiento de padre
and duelo por muerte de padre generates the
fallecimiento and muerte connection. In the same
way, deceso and muerte are connected. The
weight associated with each edge is the frequency
of the corresponding pair in T1.

The graph constructed under this approach
is composed of different connected components.
Figure 3 shows some connected components in
the final graph once all edges are generated us-

ing T1 and considering only edges with minimum
frequency of 20 (lower frequency thresholds are
very sensible to noisy data while higher values re-
sults in loss of information). Vertices in the same
connected component are potentially equivalent.
The connected components of G can be computed
in linear time using either depth-first search or
breadth-first search approach.

Since some terms can be ambiguous, they can
be connected to some non-equivalent terms, like
od which can be connected to ojo derecho (right
eye) and oido derecho (right ear). In those cases,
the connected component containing an ambigu-
ous term, includes more than one concept. In a
vector space model, in some cases disambiguation
can be obtained from the context. For example in
otitis od the od term refers to oido, while in con-
juntivitis od refers to ojo. It would still be desir-
able to partition the connected component break-
ing edges like ojo derecho and oido derecho.

We used the label propagation algorithm de-
scribed in (Raghavan et al., 2007). It is a clus-
tering algorithm intended to be applied in social
communities detection in large-scale networks and
biochemical networks among other domains. This

Figure 3: Word graph connected components ex-
ample
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clustering algorithm computes clusters based on
the network structure and -unlike other approaches
like k-means or DBSCAN- there is no requirement
to specify the number of clusters or the neighbour-
hood size as parameters. The algorithm initial-
izes each node with a unique identifier, and iter-
atively assigns to each node the label that most of
its neighboors currently have. We run this label
propagation algorithm to obtain a clustering anal-
ysis on large connected components that contained
different word meanings.

As a final example, combining different terms
from the final set of equivalence classes, we ob-
tain a unique representation of the following 72
possible ways to express duelo por fallecimiento
de padre biológico debido a cáncer renal:

Duelo por

{
fallecimiento

muerte
deceso

}
de padre

{
biológico

natural

}
{

debido a
a causa de

}{ cáncer
ca

neoplasia maligna

}{
de riñón

renal

}

4 Experiments and Results
Our experiments were conducted by using scikit-
learn machine learning library (Pedregosa et al.,
2011) with liblinear (Fan et al., 2008) solver
for MaxEnt, considering L2 regularization. Hy-
perparameter C was determined by 5-fold cross-
validation considering F1 measure. We trained
XGBoost model, with binary logistic objective
and F1 score as evaluation metric, by using XG-
Boost library described in (Chen and He, 2015).
Connected components in graph and label prop-
agation algorithm for graph clustering were con-
ducted by using igraph library.

In order to generate word equivalence classes
for S10 we found 278,555 concepts in the the-
saurus with at least two associated descriptions
which generate 5,956,368 potential pairs of de-
scriptions connected to the same concept. Filter-
ing pairs of descriptions such that both shares the
same words except one, we obtain 505,447 word
associations. By taking the connected components
of G we get 505, 447 edges and 805 groups. Fi-
nally, clustering connected components for which
more than one meaning are represented, we obtain
4,711 words in 957 group of words.

We compare the predictive power to classify a
pair of descriptions as a positive match by calcu-
lating the F1 measure on different models. Also,

we compare the ability to rank the retrieved results
using the classification model probability as scor-
ing by calculating P@1, R@1 and the mean recip-
rocal rank (MRR).

By using IR score with some fixed threshold
we define a classifier algorithm with its respective
precision and recall (as threshold increases, recall
decreases and precision increase). Figure 4 shows
IR score precision-recall curve against string met-
rics features based fitted models. Table 4 shows
MaxEnt and XGBoost F1 score for string features
based models.

Figure 4: Precision-recall curves (String metrics
features)

IR comparison vs MaxEnt and XGBoost models based on
string metrics features.

Featureset Source MaxEnt XGBoost
String metrics (S1) d1, d2 0.67 0.70

Table 4: MaxEnt and XGBoost F1-score over string met-
rics

By considering F1 measure on string metrics
(S1) and vector space model representation of de-
scriptions (S2, S3, S4, S5), XGBoost showed a
considerable improvement on bi-gram character
features based (see Table 5) either on frequency
(S4) or TF-IDF (S5) weight schemas, outperform-
ing MaxEnt.

Source Weight MaxEnt XGBoost
(S4) d1, d2 freq. 0.57 0.76
(S5) d1, d2 tf-idf 0.56 0.74
(S7) d12, d21 freq. 0.58 0.76
(S9) d12, d21, c freq. 0.72 0.77

Table 5: MaxEnt and XGBoost F1-score over bigram char-
acter features S4, S5, S7, S9

Each XGBoost bi-gram character features based
model (dashed lines with markers) outperforms
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the word features based models (solid lines). Pre-
cision values are given across all recall levels (Fig-
ure 5).

Figure 5: Precision-recall curves (XGBoost)

Markers are present on word and bi-gram features curves. IR
curve has no markers. Word features are represented by

solid lines while bi-gram character features are represented
in dashed lines. Marker type indicates a specific source, for
example S6 and S7 triangle correspond to d12, d21 source.

s

Figure 6: Precision-recall curves (MaxEnt)

Markers are present on word and bi-gram features curves. IR
curve has no markers. Word features are represented by

solid lines while bi-gram character features are represented
in dashed lines. Marker type indicates a specific source, for
example S6 and S7 triangle correspond to d12, d21 source.

We can see in Figure 6 that word features based
models improves performance over bi-gram char-
acter feature based models using MaxEnt (each
source is represented by a marker type, e.g. a tri-
angle for the source d12, d21). S8 and S9 features
outperform the others features on MaxEnt. Results
on word features are detailed in Table 6.

With respect to the set of features consider-
ing word difference between pairs of descriptions
(S6, S7), XGBoost also performs the task bet-
ter when consider bi-gram character features (S7)

Source Weight MaxEnt XGBoost
(S2) d1, d2 binary 0.59 0.59
(S3) d1, d2 tf-idf 0.59 0.58
(S6) d12, d21 binary 0.63 0.62
(S8) d12, d21, c binary 0.76 0.62

Table 6: MaxEnt and XGBoost F1-score over unigram
word features S2, S3, S4, S6, S8

as shown in Table 5, while MaxEnt works bet-
ter on word features (S6) as shown in Table 6.
When context vector is present along with word
difference representation (S6 vs S8 and S7 vs
S9), MaxEnt showed a considerable improvement
in S8 respect to S6 (see Table 6) but XGBoost
achieves a slightly improvement in S9 compared
to S7 (see Table 5, S6 vs S8 and S7 vs S9). Word
difference vector representation worked better in
MaxEnt, than combining string metric and tradi-
tional word or n-gram based representation of de-
scriptions, while XGBoost achieves similar per-
formance when consider that combination.

When word equivalence classes features based
models are considered (S10), MaxEnt and XG-
Boost achieves similar performance (see Table 7).

Featureset Source MaxEnt XGBoost
(S10) d1, d2 0.69 0.69

Table 7: MaxEnt and XGBoost F1-score over word equiv-
alence class features

By combining (S1, S8, S10) features Max-
Ent achieves an F1 score of 0.87, while XGBoost
achieves an F1 score of 0.86 by combining (S1,
S9, S10) as showed in Table 8 and Figure 7 im-
proving the previous models.

Figure 7: Precision-recall curves

MaxEnt vs XGBoost comparison. Circle markers represent
string based features (S1) models, diamond d12, d21, c

based models. Models combining string, d12, d21, c and S10
features are represented by curves with star markers.

8



Model Prec Rec F1
IR 0.73 0.76 0.74
MaxEnt (S1, S8, S10) 0.80 0.95 0.87
XGBoost (S1, S9, S10) 0.77 0.96 0.86

Table 8: MaxEnt and XGBoost F1-score over feature sets
combination

To evaluate these models performance on
ranked results, we compute the P@1, R@1 and
mean reciprocal rank (MRR) metrics showed in
Table 9.

Model P@1 R@1 F1 MRR
IR 0.73 0.76 0.74 0.84
MaxEnt (S1, S8, S10) 0.87 0.91 0.89 0.94
XGBoost (S1, S9, S10) 0.87 0.91 0.89 0.94

Table 9: MaxEnt and XGBoost F1-score over feature sets
combination

5 Conclusions and future work

We presented a hybrid Soft-TFIDF and machine
learning approach to bio-medical terms normal-
ization. This technique can be used in different
problems such as automatic coding of descrip-
tions and reference resolution in general. Our
approach neither requires any additional resource
like acronyms/abbreviations, alias and synonyms
lists nor a spell checker because that ability is ac-
quired from examples by defining a scoring func-
tion learned from data. As a result, our approach
shows very good F1 score and mean reciprocal
rank results. Even though the data set was in Span-
ish, we did not use any specific resource for that
language, therefore our approach can be replicated
in any language.

Creation of new features based on differences
between descriptions and its context, in addition to
the more traditional features, allow machine learn-
ing models to improve detection of pairs of seman-
tically equivalent descriptions with low syntactic
similarity and discard non semantically equivalent
ones with high syntactic similarity by learning se-
mantic equivalence from pairs of descriptions ex-
amples. As result, the false negative and false pos-
itive rates were reduced.

By generating a clustering of words to find syn-
onyms, specially from indirect associations be-
tween words from descriptions across different
concepts from direct associations, the semantic
feature space generated improved the performance
of machine learning models increasing F1 mea-
sure.

Finally, MaxEnt and XGBoost models showed
to be effective for the task with some minor differ-
ences in the set of features returning best results.

Our work was based on the performance of the
text search engine results. Then, this approach can
not consider results that were not retrieved by the
search engine. To overcome this limitation it is
possible to use a query expansion approach. Al-
ternatively, words in the terms can be transformed
to a canonical form, both at index and query time.
We also plan to expand this work to other bio-
medical domains such as procedures or drugs.
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