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Abstract

For languages such as German where
compounds occur frequently and are writ-
ten as single tokens, a wide variety of NLP
applications benefits from recognizing and
splitting compounds. As the traditional
word frequency-based approach to com-
pound splitting has several drawbacks, this
paper introduces a letter sequence label-
ing approach, which can utilize rich word
form features to build discriminative learn-
ing models that are optimized for split-
ting. Experiments show that the proposed
method significantly outperforms state-of-
the-art compound splitters.

1 Introduction

In many languages including German, compounds
are written as single word-tokens without word de-
limiters separating their constituent words. For
example, the German term for ‘place name’ is
Ortsname, which is formed by Ort ‘place’ and
Name ‘name’ together with the linking element
‘s’ between constituents. Given the productive
nature of compounding, treating each compound
as a unique word would dramatically increase the
vocabulary size. Information about the existence
of compounds and about their constituent parts is
thus helpful to many NLP applications such as ma-
chine translation (Koehn and Knight, 2003) and
term extraction (Weller and Heid, 2012).

Compound splitting is the NLP task that auto-
matically breaks compounds into their constituent
words. As the inputs to compound splitters often
include unknown words, which are not necessarily
compounds, splitters usually also need to distin-
guish between compounds and non-compounds.

Many state-of-the-art splitters for German
(Popović et al., 2006; Weller and Heid, 2012)

mainly implement variants of the following two-
step frequency approach first proposed in Koehn
and Knight (2003):

1. Matching the input word with known words,
generating splitting hypotheses, including the
non-splitting hypothesis that predicts the in-
put word to be a non-compound.

2. Choosing the hypothesis with the highest ge-
ometric mean of frequencies of constituents
as the best splitting. If the frequency of the
input word is higher than the geometric mean
of all possible splittings, non-splitting is cho-
sen.

The frequency approach is simple and efficient.
However, frequency criteria are not necessarily
optimal for identifying the best splitting deci-
sions. In practice, this often leads to splitting
compounds at wrong positions, erroneously split-
ting non-compounds, and incorrectly predicting
frequent compounds to be non-compounds. Par-
allel corpora (Koehn and Knight, 2003; Popović
et al., 2006) and linguistic analysis (Fritzinger and
Fraser, 2010) etc. were used to improve the fre-
quency approach, but the above-mentioned issues
remain. Moreover, frequencies encode no infor-
mation about word forms, which hinders knowl-
edge transfer between words with similar forms.
In an extreme yet common case, when one or more
compound constituents are unknown words, the
correct splitting is not even generated in Step 1 of
the frequency approach.

To address the above-mentioned problems, this
paper proposes a letter sequence labeling (LSL)
approach (Section 2) to compound splitting. We
cast the compound splitting problem as a sequence
labeling problem. To predict labels, we train con-
ditional random fields (CRF; Lafferty et al., 2001),
which are directly optimized for splitting. Our
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CRF models can leverage rich features of letter n-
grams (Section 2.3), such as ung (a German nom-
inalization suffix), which are shared among words
and applicable to many unknown compounds and
constituents. Our method is language indepen-
dent, although this paper focuses on German.

Evaluated with the compound data from Ger-
maNet (Hamp and Feldweg, 1997; Henrich and
Hinrichs, 2010) and Parra Escartı́n (2014), experi-
ments in Section 3 show that our approach signifi-
cantly outperforms previously developed splitters.
The contributions of this paper are two-fold:

• A novel letter sequence labeling approach to
compound splitting

• Empirical evaluations of the proposed ap-
proach and developed feature on a large com-
pound list

2 Letter Sequence Labeling (LSL) for
Compound Splitting

2.1 Compound splitting as LSL
Before detailing the sequence labeling approach,
we first describe the representation of splitting out-
put used for this paper.

Splitting output. The splitting output for the
above example Ortsname would be “Orts name”.
In general, we consider the output as string se-
quences obtained by adding whitespaces between
constituent words in the original compound. Link-
ing elements between constituents are attached
to the ones before them. Moreover, no lemma-
tization or morphological analysis is performed.
Compound splitting also considers the recogni-
tion of non-compounds, the output of which is
the word itself. The choice for such representa-
tion is to avoid bias to any morphological theory
or language-specific property. If needed, however,
such output can be mapped to lexemes/lemmas.

Sequence labeling. With the above-mentioned
representation, compound splitting can be viewed
as a sequence of predictions of what positional
role each letter plays in a word/string. Specifi-
cally, we label each letter with the BMES tag-set.
For multi-letter strings, label B indicates “the first
letter of a string”, label E indicates “the last letter
of a string”, and label M indicates “a letter in the
middle of a string”. The rare cases of single-letter
strings are labeled as S. The label sequence for the
example Ortsname would be: B-M-M-E-B-M-M-
E. The splitting output strings can be constructed

by extracting either single letters that are labeled
as S or the consecutive letters such that (1) the first
letter is labeled as B; (2) the last letter is labeled as
E; (3) all the others in between are labeled as M.

We call the above formulation of compound
splitting letter sequence labeling. It falls into the
broader category of sequence labeling, which is
widely used in various NLP tasks, such as POS
tagging (Hovy et al., 2014) and Chinese word seg-
mentation (Ma and Hinrichs, 2015). As many
state-of-the-art NLP systems, we build conditional
random fields models to conduct sequence label-
ing, which are detailed in the next subsections.

2.2 Conditional random fields (CRFs)
Conditional random fields (Lafferty et al., 2001)
are a discriminative learning framework, which is
capable of utilizing a vast amount of arbitrary, in-
teractive features to achieve high accuracy. The
probability assigned to a label sequence for a par-
ticular letter sequence of length T by a CRF is
given by the following equation:

pθ(Y|X) =
1

Zθ(X)
exp

{
T∑
t=1

K∑
k=1

θkfk(yt−1, yt, xt)

}
(1)

In the above formula, X is the sequence of let-
ters in the input compound (or non-compound),
Y is the label sequence for the letters in the input
and Z(X) is a normalization term. Inside the for-
mula, θk is the corresponding weight for the fea-
ture function fk, where K is the total number of
features and k is the index. The letters in the word
being labeled is indexed by t: each individual xt
and yt represent the current letter and label, while
yt−1 represents the label of the previous letter.

For the experiments in this paper, we use the
open-sourced CRF implementation Wapiti, as de-
scribed in Lavergne et al. (2010).

2.3 Feature templates
A feature function fk(yi−1, yi, xi) for the letters xi
under consideration is an indicator function that
can describe previous and current labels, as well
as a complete letter sequence in the input word.
For example, one feature function can have value 1
only when the previous label is E, the current label
is B and the previous three letters are rts. Its value
is 0 otherwise. This function describes a possible
feature for labeling the letter n in Ortsname.

In our models, we mainly consider functions of
context features, which include n-grams that ap-
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pear in the local window of h characters that cen-
ters at letter xi. In this paper, we use 1 ≤ n ≤ 5
for n-grams and h = 7 for window size, as we
found that smaller windows or only low order n-
grams lead to inferior results. The contexts are au-
tomatically generated from the input words using
feature templates by enumerating the correspond-
ing n-grams, the index of which is relative to the
current letter (i.e. xi). Table 1 shows the templates
for the context features used in this work.

Type Context features
unigram xi−3, xi−2, xi−1, xi, xi+1, xi+2, xi+3

bigram xi−3xi−2, xi−2xi−1, ..., xi+2xi+3

trigram xi−3xi−2xi−1, ..., xi+1xi+2xi+3

4-gram xi−3xi−2xi−1xi, ..., xixi+1xi+2xi+3

5-gram xi−3xi−2xi−1xixi+1, ...

Table 1: Context feature templates.

Besides context features, we also consider tran-
sition features for current letter xi, each of which
describes the current letter itself in conjunction
with a possible transition between the previous
and the current labels, i.e. (xi, yi−1, yi) tuples.

3 Experiments

3.1 Gold-standard data
The training of CRFs requires gold-standard la-
bels that are generated from the gold-standard
splittings (non-splittings) of compounds (non-
compounds). We use GermaNet (GN) for this pur-
pose, as it has a large amount of available, high-
quality annotated compounds (Henrich and Hin-
richs, 2011). We have extracted a total of 51,667
unique compounds from GermaNet 9.0. The com-
pounds have 2 to 5 constituents, with an average
of 2.1 constituents per compound. The remain-
ing words are, nevertheless, not necessarily non-
compounds, as not all the compounds are anno-
tated in GN. So we extract 31,076 words as non-
compounds, by choosing words that have less than
10 letters and are not known compounds. The
heuristic here is that compounds tend to be longer
than simplex words. The resulting non-compound
list still contains some compounds, which adver-
sly affects modeling.

We also employ the Parra Escartı́n (2014;
henceforth PE) data to allow a fair comparison
of our approach with existing compound splitters.
The PE dataset has altogether 342 compound to-
kens and 3,009 non-compounds. PE’s compounds

have 2 to 5 constituents, with an average amount
of 2.3 constituents.

3.2 Evaluation metrics
In our experiments, we use evaluation metrics pro-
posed in Koehn and Knight (2003), which are
widely used in the compound splitting literature.
Each compound splitting result falls into one of
the following categories: correct split: words
that should be split (i.e. compounds) and are cor-
rectly split; correct non-split: words that should
not be split (i.e. non-compounds) and are not
split; wrong non-split: words that should be split
but are not split; wrong faulty split: words that
should be split and are split, but at wrong posi-
tion(s); wrong split: words that should not be
split but are split. As in Koehn and Knight (2003),
the following scores are calculated from the above
counts to summarize the results that only concern
compounds:

• precision: (correct split) / (correct split +
wrong faulty split + wrong split)
• recall: (correct split) / (correct split + wrong

faulty split + wrong non-split)
• accuracy: (correct) / (correct + wrong)

3.3 Experiments on GermaNet data
In the experiments of this subsection, a random set
of 70% of the GN data is used for training the LSL
model and another 10% is used as a development
set for choosing hyper parameters of the model.
The remaining 20% is the test set, which is put
aside during training and only used for evaluation.

Model Precision Recall Accurracy
uni- & bigrams 0.873 0.833 0.857
+ trigrams 0.937 0.920 0.925
+ 4-grams 0.952 0.940 0.942
+ 5-grams 0.955 0.941 0.943

Table 2: Results of models with different context
features on GermaNet. Best results in bold face.

Since our models predict splittings solely based
on the information about the input word, different
tokens of the same word type appearing in var-
ious sentences would result in exactly the same
prediction. Therefore the learning and evaluation
with the GN data is based on types rather than to-
kens. As shown in Table 2, the model performance
improves steadily by adding higher-order letter n-
gram features.
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Models Correct Wrong Scores
split non non faulty split precision recall accuracy

Popović et al. (2006) 248 3009 84 10 0 0.961 0.725 0.972
Weller and Heid (2012) 259 3008 82 1 1 0.992 0.757 0.975
Letter sequence labeling (this work) 319 2964 14 10 44 0.855 0.930 0.980

Table 3: Comparison with the state-of-the-art. Best results are marked in bold face.

The best overall accuracy of 0.943 is achieved
by the model that uses features of n-grams up to
order 5. No further improvement is gained by even
higher order n-grams in our experiments, as the
model would overfit to the training data. The high
accuracy on the GN data is a reliable indicator for
performance in real-life scenario, due to its rigid
non-overlapping division of large training and test
sets.

3.4 Experiments on Parra Escartı́n’s data
When comparing our method with frequency-
based ones, it would be ideal if each method was
trained and tested (on disjoint partitions of) the
same benchmark data, which provides both gold-
standard splitting and frequency information. Un-
fortunately, GermaNet provides no frequency in-
formation and most large-scale word frequency
lists have no gold-standard splits, which makes
neither suitable benchmarks. Another practical
difficulty is that many splitters are not publicly
available. We plan to complement the GN data
with frequency information extracted from large
corpora to construct such benchmark data in the
future. For the present work, we evaluate our
model on the test data that other methods have
been evaluated on. For this purpose, we use the
PE data, as two state-of-the-art splitters, namely
Popović et al. (2006) and Weller and Heid (2012)1,
have been evaluated on it.

We train the best model from the last subsection
using modified GN data, which has longer non-
compounds up to 15 letters in length and excludes
words that also appear in the PE data. The model
is evaluated on the PE data using the same metrics
as described in Section 3.2, except that the evalu-
ation is by token rather than by type, to be com-
patible with the original PE results. Table 3 shows
the results, which are analyzed in the remainder of
this section.

Splitting compounds. Accuracy and precision
1Parra Escartı́n (2014) evaluated Weller and Heid (2012)

‘as is’, using a model pre-trained on unknown data, which
might have overlaps with the test data.

consider both non-compounds and compounds
and are influenced by the ratio of the two, which
is 8.8:1 for the PE data. It means that both met-
rics are mostly influenced by how well the systems
distinguish compounds from non-compounds. By
contrast, recall depends solely on compounds and
is thus the best indicator for splitting performance.
The recall of our model is significantly higher than
that of previous methods, which shows that it gen-
eralizes well to splitting unknown compounds.

Recognizing non-compounds. The relatively
low precision of our model is mainly caused by
the high wrong split count. We found that al-
most half of these “non-compounds” that our
model “wrongly” splits are compounds, as the
PE annotation skips all adjectival and verbal com-
pounds and also ignores certain nominal com-
pounds. The remaining of wrong split errors can
be reduced by using higher quality training cases
of non-compounds, as the current gold-standard
non-compounds were chosen by the word length
heuristic, which introduced noise in learning.

4 Discussion and Related Work

Work on compound splitting emerged in the con-
text of machine translation (Alfonseca et al.,
2008b; Stymne, 2008; El-Kahlout and Yvon,
2010) and speech recognition (Larson et al.,
2000) for German, Turkish (Bisazza and Federico,
2009), Finnish (Virpioja et al., 2007) and other
languages (Alfonseca et al., 2008a; Stymne and
Holmqvist, 2008). Most works, including discrim-
inative learning methods (Alfonseca et al., 2008a;
Dyer, 2009), follow the frequency approach. A
few exceptions include, for example, Macherey et
al. (2011) and Geyken and Hanneforth (2005), the
latter of which builds finite-state morphological
analyzer for German, where compound splitting is
also covered. In contrast to most previous work,
this paper models compound splitting on the lower
level of letters, which can better generalize to un-
known compounds and constituents. Moreover, it
is possible to integrate word-level knowledge into
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the proposed sequence labeling model, by adding
features such as “the current letter starts a letter
sequence that matches a known word in the lexi-
con”.

The basic idea of letter or phoneme sequence-
based analysis goes back to early structural lin-
guistics work. Harris (1955) studies the distribu-
tion of distinct phoneme unigrams and bigrams be-
fore or after a particular phoneme, i.e. predeces-
sor/successor variety. The change of these vari-
ety scores in an utterance is used to determine the
word boundaries. That idea has been adopted and
further developed in the context of word segmen-
tation of child-directed speech (Çöltekin and Ner-
bonne, 2014), where all the intra-utterance word
boundaries are absent. Another instance of such
sentence-wise word segmentation is Chinese word
segmentation (Peng et al., 2004), where it is a stan-
dard solution to conduct CRF-based sequence la-
beling, using ngrams of orthographic units as fea-
tures. To some extent, compound splitting can
be seen as a special case of the above two word
segmentation tasks. In particular, our method is
clearly inspired by that of Chinese word segmen-
tation, such as Peng et al. (2004). Although it
might seem obvious to model compound split-
ting as letter sequence labeling in hindsight, it is
not really so in foresight. Both the dominance
of word frequency-based approach and the extra
challenges in morphology makes is less natural to
think in terms of letter operation and labeling.

5 Conclusion and Future Work
Conclusion. This paper has introduced a novel,
effective way of utilizing manually split com-
pounds, which are now available for many lan-
guages, to boost the performance of automatic
compound splitting. The proposed approach is
language independent, as it only uses letter n-
gram features that are automatically generated
from word forms. Such features capture mor-
phological and orthographic regularities without
explicitly encoding linguistic knowledge. More-
over, our approach requires no external NLP mod-
ules such as lemmatizers, morphological analyzers
or POS taggers, which prevents error propagation
and makes it easy to be used in other NLP systems.
The proposed approach significantly outperforms
existing methods.

Future work. We would like to conduct ex-
trinsic evaluations on tasks such as machine trans-
lation to investigate how compound splitting im-

pacts the performance of NLP applications. It is
interesting to study how new features and alterna-
tive sets of labels for letters would influence the
results and to test our approach on other languages
such as Dutch and Swedish.
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and Markus Sadeniemi. 2007. Morphology-aware
statistical machine translation based on morphs in-
duced in an unsupervised manner. Machine Trans-
lation Summit XI, 2007:491–498.

Marion Weller and Ulrich Heid. 2012. Analyzing and
Aligning German Compound Nouns. In Proceed-
ings of LREC, pages 2–7.

81


