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Abstract
In this paper we describe word alignment ex-
periments using an approach based on a dis-
junctive combination of alignment evidence. A
wide range of statistical, orthographic and posi-
tional clues can be combined in this way. Their
weights can easily be learned from small amounts
of hand-aligned training data. We can show
that this “evidence-based” approach can be used
to improve the baseline of statistical alignment
and also outperforms a discriminative approach
based on a maximum entropy classifier.

1 Introduction

Automatic word alignment has received a lot of at-
tention mainly due to the intensive research on statis-
tical machine translation. However, parallel corpora
and word alignment are not only useful in that field
but may be applied to various tasks such as computer
aided language learning (see for example [15]) and
bilingual terminology extraction (for example [8, 10]).
The automatic alignment of corresponding words in
translated sentences is a challenging task even for
small translation units as the following Dutch-English
example tries to illustrate.

koffie vind ik lekker

I like coffee

Word alignment approaches have to consider cross-
ing links and multiple links per word in both direc-
tions. Discontinuous units may also be aligned to cor-
responding parts in the other language as shown in
the example above (vind...lekker - like). Various other
issues due to translation divergency make word align-
ment a much more challenging task than, for instance,
sentence alignment. Generative statistical models
for word alignment usually have problems with non-
monotonic alignments and many-to-many links. In
the literature several attempts are described in which
additional features are integrated besides the distri-
bution of surface words to overcome these difficul-
ties. In recent years various discriminative approaches
have been proposed for this task [18, 9, 13, 14, 11, 1].
They require word-aligned training data for estimating
model parameters in contrast to the traditional IBM

alignment models that work on raw parallel (sentence
aligned) corpora [2, 16]. However, previous studies
have shown that only a small number of training ex-
amples (around 100 word-aligned sentence pairs) are
sufficient to train discriminative models that outper-
form the traditional generative models.

In this paper we present another supervised align-
ment approach based on association clues trained on
small amounts of word-aligned data. This approach
differs from previous discriminative ones in the way
the evidence for alignment is combined as we will ex-
plain in the following section.

2 Evidence-based alignment

The evidence-based alignment approach is based on
the techniques proposed by [19]. This approach ap-
plies the notion of link evidence derived from word
alignment clues. An alignment clue C(rk|si, tj) is used
as a probabilistic score indicating a (positive) relation
rk between two items si, tj in their contexts. Link
evidence E(a, rk|si, tj) is then defined as the product
of this score and the likelihood of establishing a link
given the relation indicated by that clue:

E(a, rk|si, tj) = C(rk|si, tj)P (a|rk)

Various types of alignment clues can be found in par-
allel data. Association scores and similarity measures
can be used to assign their values. For example, the
relation of “cognateness” may be indicated by string
similarity measures. Translational equivalence rela-
tions can be indicated by co-occurrence measures. For
the estimation of these scores, no word-aligned train-
ing data is required. However, for the estimation of
the likelihood values we need training data as we will
explain below. They can be seen as weights that corre-
spond to the quality of clues in predicting links prop-
erly. Note that we can also use binary clues. Their
influence on alignment decisions is determined by the
alignment likelihood values only.

So far, this model is not so much different from
previous discriminative alignment approaches in which
weighted features are used in a classification approach
(see, for example, [18], [13]). However, we use our
weighted features as individual pieces of evidence that
are combined in a disjunctive way, i.e. the overall
alignment evidence for two given items is defined as
the union of individual evidence scores:
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E(a|si, tj) = E(a, r1 ∨ r2 ∨ .. ∨ rk|si, tj)

Note that alignment clues are not mutually exclusive
and, therefore, we need to subtract the overlapping
parts when computing the union. Using the addition
rule of probabilities we obtain, for example, for two
clues:

E(a, r1 ∨ r2|si, tj) = E(a, r1|si, tj) + E(a, r2|si, tj)−
E(a, r1 ∧ r2|si, tj)

Hence we combine individual pieces of evidence in a
non-linear way. Figure 1 tries to illustrate such a com-
bination for two given cases.

Fig. 1: Combining alignment evidence. The size of
the circles refers to the strength of the evidence given.

The intuition behind this way of combining features is
to give stronger pieces of evidence a larger influence on
alignment decisions. As illustrated in figure 1 strong
evidence is hard to overrule even by many other weaker
clues. A few solid clues are sufficient just like a reliable
witness in a murder case overrules all kinds of other
weaker pieces of evidence indicating a different sce-
nario. A consequence of our model is that alignment
evidence with a value of 1.0 can not be outranked by
any other combination of evidence. However, this is
not as strange as it sounds if we consider that evi-
dence giving 100% certainty should always be trusted.
These cases should be very exceptional, though.

One difficulty arises in our approach: We need to es-
timate the overlapping parts of our collected evidence.
For simplicity, we assume that all relation types are
independent of each other (but not mutually exclu-
sive) and, therefore, we can define the joint probability
score of the overlapping part as E(a, r1 ∧ r2|si, tj) =
E(a, r1|si, tj)E(a, r2|si, tj). The combination of inde-
pendent evidence is illustrated in figure 2.
Altogether this model is similar to noisy OR-gates fre-
quently used in belief networks in which causes are
modeled to act independently of others to produce a
determined effect [17]. Certainly, the independence
assumption is violated in most cases. However, we
will see in our experiments that this simplification still
works well for alignment purposes. Note, that complex
features can easily be constructed in order to reduce
the impact of this violation on alignment performance.

2.1 Parameter estimation

As we have said earlier, the only parameters that need
to be estimated from word-aligned training data are
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Fig. 2: The combination of two independent align-
ment clues.

the alignment likelihoods used as weights for individ-
ual clues. Due to our independence assumption, we
can do this by evaluating each individual clue on the
training data. For this, we need to find out to what
extent the indicated relations can be used to establish
links in our data. Hence, we use each observed clue
as a binary classifier and simply count the number of
correctly predicted links using that clue (as usual a
value above 0.5 is used to predict a positive example).
This means that we use the precision of each individ-
ual clue on some training data to estimate alignment
likelihoods. Intuitively, this seems to fit our approach
in which we prefer high precision features as described
earlier.

Thus, training is extremely simple. The most ex-
pensive computation is actually the extraction of fea-
tures used as alignment clues (see section 3.1 for de-
tails). The overhead of training is tiny and can be done
in linear time. Note that this model only covers the
classification of individual items. For the actual word
alignment we need to apply a search algorithm that
optimizes the alignment of all words according to the
evidence found for individual pairs. This will briefly
be discussed in the following section.

2.2 Link dependencies & alignment
search

The problem of alignment search has been discussed in
related studies on discriminative word alignment. The
problem is that the dependency between links has to
be considered when creating word alignments. Several
approaches have been proposed that either include link
dependencies directly in the underlying model [14, 1]
or that include contextual features that implicitly add
these dependencies [18]. Depending on the model opti-
mal alignments can be found [18, 9, 1] or greedy search
heuristics are applied [11, 14].

We will use the second approach and model link de-
pendencies in terms of contextual features. We believe
that this gives us more flexibility when defining contex-
tual dependencies and also keeps the model very sim-
ple with regards to training. For the alignment search
problem we could still apply a model that allows opti-
mal decoding, for example, the approach proposed in
[18]. However, we will stick to a simple greedy search
heuristics, similar to the “refined” heuristics defined in
[16], that is known to produce good results for example
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for the symmetrization of directional statistical word
alignment. The advantages of this approach is that
it is fast and easy to apply, it allows n:m alignments,
and it makes our results comparable to the statistical
alignments that include symmetrization.

3 Experiments

For our experiments we will use well-known data sets
that have been used before for word alignment exper-
iments. Most related work on supervised alignment
models reports results on the French-English data set
from the shared task at WPT03 [12] derived from
the parallel Canadian Hansards corpus. This data
set caused a lot of discussion especially because of
the flaws in evaluation measures used for word align-
ment experiments [5]. Therefore, we will apply this set
for training purposes only (447 aligned sentences with
4,038 sure (S) links and 13,400 (P ) possible links) and
stick to another set for evaluation [4]. This set includes
English-French word alignment data for 100 sentences
from the Europarl corpus [6] with a much smaller num-
ber of possible links (437 compared to 1,009 sure links)
which hopefully leads to more reliable results.

Some of the alignment clues require large parallel
corpora for estimating reliable feature values (for ex-
ample co-occurrence measures). For training we use
the Canadian Hansards as provided for the WPT03
workshop and for evaluation these values are taken
from the Europarl corpus.

For evaluation we use the standard measures used
in related research:

Prec(A,P ) =
|P ∩A|
|A|

Rec(A,S) =
|S ∩A|
|S|

AER(A,P, S) = 1− |P ∩A|+ |S ∩A||S|+ |A|
F (A,P, S, α) = 1/

(
α

Prec(A,P )
+

(1− α)
Rec(A,S)

)
For the F-measure we give balanced values and also
unbalanced F-values with α = 0.4. The latter is sup-
posed to show a better correlation with BLEU scores.
However, we did not perform any tests with statistical
MT using our alignment techniques to verify this for
the data we have used.

For comparison we use the IBM model 4 align-
ments and the intersection and grow-diag-final-and
symmetrizaton heuristics as implemented in the Moses
toolkit [7]. We also compare our results with a discrim-
inative alignment approach using the same alignment
search algorithm, the same features and a global maxi-
mum entropy classifier [3] trained on the same training
data (using default settings of the megam toolkit).

3.1 Alignment features

A wide variety of features can be used to collect align-
ment evidence. We use, among others, similar features

as described in [18]. In particular, we use the Dice
coefficient for measuring co-occurrence, the longest
common subsequence ratio (LCSR) for string similar-
ity, and other orthographic features such as identical
string matching, prefix matching and suffix matching.
We use the positional distance measures as described
in [18] but turn them into similarity measures. We
also model contextual dependencies by including Dice
values for the next and the previous words. We use
rank similarity derived from word type frequency ta-
bles and we use POS labels for the current words and
their contexts. Furthermore, we also use evidence de-
rived from the IBM models for statistical alignment.
We use lexical probabilities, the directional alignment
predictions of Model 4 and the links from the inter-
section heuristics of Model 4 alignments (produced by
Moses/GIZA++; henceforth referred to as Moses fea-
tures). As expected, these features are very powerful
as we will see in our experimental results. A small
sample from a feature file extracted from a sentence
aligned parallel corpus is shown in figure 3.

possim 1 mosessrc2trg 1 mosestrg2src 1 pos_NN_VER:pper 1
possim 0.75 pos_NN_PRP 1 lcsr 0.05
possim 0.5 pos_NN_DET:ART 1
possim 0.25 pos_NN_NOM 1 lcsr 0.0714285714285714
possim 0.75 pos_IN_VER:pper 1
possim 1 mosessrc2trg 1 mosestrg2src 1 pos_IN_PRP 1
possim 0.75 pos_IN_DET:ART 1
possim 0.5 lcsr 0.142857142857143 pos_IN_NOM 1
possim 0.5 pos_DT_VER:pper 1 lcsr 0.142857142857143
....

Fig. 3: A short example of link features extracted for
each possible word combination in aligned sentences.
possim = relative position similarity, lcsr = string
similarity measure, pos * = POS label pairs

As we can see, some features are in fact binary (as
discussed earlier) even though we use them in the same
way as the real-valued features. For example, statis-
tical alignment features derived from GIZA++/Moses
(mosessrc2trg, mosestrg2src) are set to 1 if the corre-
sponding word pair has been linked in the statistical
Viterbi alignment. Other feature types are used as
templates and will be instantiated by various values.
For example, the POS label feature template adds a
feature to each word pair made out of the labels at-
tached to the corresponding words. Again, these fea-
tures are used as binary flags as we can see in the
example in figure 3.

Note that complex features can easily be created.
We consider several combinations, for example the
product of Dice scores and positional similarity scores.
Contextual features can also be combined with any
other feature. Complex features are especially useful
in cases where the independence assumption is heavily
violated. They are also useful to improve linear classi-
fication in cases where the correlation between certain
features is non-linear.

3.2 Results

Our results are summarized in table 1.
As we can see, we cannot outperform the strong base-
lines without the features derived from statistical word
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baselines Rec Prec F0.5 F0.4 AER
intersection 72.1 95.2 82.0 79.8 17.5
grow-diag-final 84.5 78.7 81.5 82.1 18.8

best setting without Moses features
MaxEnt 71.5 73.0 72.2 72.1 27.7
Clues 68.9 70.1 69.5 69.3 30.5

best setting with all features
MaxEnt 82.3 84.4 83.3 83.1 16.6
Clues 82.6 85.4 84.0 83.7 15.9

Table 1: Overview of results: Statistical
word alignment derived from GIZA++/Moses
(intersection/grow-diag-final), discriminative word
alignment using a maximum entropy classifier
(MaxEnt), and the evidence-based alignment (Clues).
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Fig. 4: A comparison of F0.5 scores obtained with set-
tings that include statistical word alignment features.

alignment. However, adding these features makes it
possible to improve alignment results according to
AER and F-scores. We can also observe that the Max-
Ent classifier is better in handling the dependencies
between non-Moses features. The scores are in gen-
eral slightly above the corresponding clue-based scores.
However, including the strong Moses features, our ap-
proach outperforms the maximum entropy classifier
and yields the overall best result. As expected, our
approach seems to handle the combination of strong
evidence and weak clues well. It learns to trust these
strong clues and still includes additional evidence from
other alignment clues. Figure 4 illustrates this by plot-
ting the results (F0.5 scores) for settings that include
Moses features for both, the MaxEnt classifier ap-
proach and the evidence-based approach. The settings
are sorted by the F-scores obtained by the MaxEnt
classifier approach (solid line) along the x-axis. Cor-
responding F-scores obtained by the evidence-based
approach using the same feature set and alignment
search algorithm are plotted as points in the graph.
As we can see in most cases, our simple evidence-based
approach yields similar or better results than the Max-
Ent approach. We can also see that both discrimina-
tive approaches improve the baseline scores obtained
by the generative statistical word alignment after sym-
metrization (dashed and dotted lines in the graph).
The best result is obtained with the following features:
Dice for the current word pair and the previous one,
positional similarity, POS labels, rank similarity, lex-

ical probabilities and link predictions of the two IBM
4 Viterbi alignments. Surprisingly, the orthographic
features (LCSR etc) do not perform well at all. Some
example weights learned from the training data using
the alignment prediction precision are shown in table
2.

feature prediction precision
dice 0.8120830711139080
prevdice 0.8228682170542640
possim 0.2656349270994540
ranksim 0.4259383603034980
lexe2f 0.9634980007738940
lexf2e 0.9348459880846750
lexe2f*lexf2e 0.9900965585540980
mosessrc2trg 0.9601313748745550
mosestrg2src 0.9514683153013910
pos VBZ VER:pres 0.7395577395577400
pos NNS NOM 0.5319049836981840
pos ) PUN 0.7142857142857140
pos VV ADJ 0.0393013100436681
pos NNS VER:pper 0.0593607305936073

Table 2: Examples of weights learned from prediction
precision of individual clues.

We can see that features derived from statistical
word alignment have a high precision and, therefore,
the evidence-based alignment approach trusts them a
lot. This includes the lexical probabilities taken from
the translation model as estimated by Moses. Espe-
cially their product is very accurate which is maybe
not so surprising considering that this score will be
very low for most word pairs and, therefore, only a few
links will be predicted by this feature. Co-occurrence
measures score also very high. Note that the Dice
score of the previous words (prevdice) also seems to
be very useful for alignment prediction. On the other
hand, positional similarity (possim) is a rather weak
clue according to the precision computed. However,
it is still very useful to make alignment decisions in
cases where other evidence is missing or not discrim-
inative enough. Frequency rank similarity (ranksim)
is also surprisingly strong. This is probably due to
the similarity between English and French especially
in terms of inflectional complexity. Finally, we can see
examples of the weights estimated for binary features
such as POS label pairs. Here, we use a threshold of
a minimum of five occurrences to obtain reliable esti-
mates. We can see that some of them are very useful
in predicting links whereas others are very low. Prob-
ably, negative clues could be useful as well, for exam-
ple, using POS labels that indicate a preference for
not linking the corresponding items. However, for this
the alignment model has to be adjusted to account for
such clues as well.

Finally, we also include the plot of alignment error
rates for settings that include Moses features (see fig-
ure 5).

We can see that the curve follows the same trend
as we have seen for the F-scores in figure 4. Most
of the evidence-based alignment results are below the
corresponding runs with a linear classifier. Again, we
also outperform the generative alignment approach,

31



 0.15

 0.16

 0.17

 0.18

 0.19

 0.2

 0.21

 0.22

settings sorted by AER(MaxEnt)

MaxEnt
evidence-based

Moses grow-diag-final-and
Moses intersection

Fig. 5: A comparison of AER scores obtained with set-
tings that include statistical word alignment features.

however, only when using features derived from these
alignments.

4 Conclusions

In this paper we describe our experiments with
evidence-based word alignment. Features (alignment
clues) in this approach are combined in a non-linear
way in contrast to related discriminative word align-
ment approaches that usually apply linear classifica-
tion techniques in the underlying model. We have
shown that this kind of combination can be beneficial
when comparing to a straightforward linear classifica-
tion approach especially when high precision features
are applied. Another advantage is the simplicity of
training feature weights using individual link predic-
tion precision. However, this requires the assumption
that each feature can be used as an independent base
classifier. This assumption is often violated which can
be seen in the degrading performance of the evidence-
based approach when applying it in connection with
weaker clues. However, the approach seems to work
well in terms of picking up strong clues and learns to
trust them appropriately. It remains to be investigated
to what extend this approach can be used to improve
subsequent applications such as machine translation
or bilingual terminology extraction. Furthermore, it
should be embedded in a proper structural prediction
framework in which output space dependencies (be-
tween predicted links in a sentence pair) are modeled
explicitly. This will boost the performance even fur-
ther as it has been shown for other discriminative word
alignment approaches.
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