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Introduction

Lexical semantics (the semantics of words) has become an important part of Natural Language
Processing due to its practical application in a number of areas such as machine translation, web &
enterprise search, ontology learning etc.

This fact can be observed by looking at the increasing interest in the field of learning of lexical semantics
e.g. the last Semantic Evaluation Workshop (SemEval-2007) consisted of 18 tasks ranging from the
traditional Word Sense Disambiguation (WSD) task to the most recent of Word Sense Induction (WSI),
web people search, metonymy resolution and others.

Given the wide variety of applications exploiting lexical semantics it is significant to focus on methods
and techniques, which can overcome the ”Knowledge Acquisition Bottleneck” and deal with the cost-
prohibitive, error-prone and labor-intensive processes of creating hand-tagged training data.

The emphasis of this workshop is on unsupervised and minimally supervised methods relevant to
learning of lexical semantics. The goal of this workshop is to provide a venue for researchers to
obtain a better understanding on the issues and challenges that need to be tackled in order to overcome
a number of significant problems within lexical semantics, such as data sparsity, unsupervised and
minimally supervised parameter estimation, efficient and effective use of the web, and applications of
distributional similarity.

We are very happy that the workshop has accepted a set of seven high quality papers tackling the above
problems, and hope that their contribution will have an impact on the field. We are grateful to the
program committee for their effort to thoroughly review the submissions. We would also like to thank
Martha Palmer for presenting her noteworthy work in the workshop.

Suresh Manandhar & Ioannis P. Klapaftis
Co-chairs
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Invited Talk

Knowing a Word(sense) by its company

Martha Palmer
University of Colorado at Boulder, USA

Abstract Supervised word sense disambiguation requires training corpora that have been tagged with
word senses, and these word senses typically come from a pre-existing sense inventory. Space limi-
tations imposed by dictionary publishers have biased the field towards lists of discrete senses for an
individual lexeme. This approach does not capture information about relatedness of individual senses.
How important is this information to knowing which sense distinctions are critical for particular types
of NLP applications? How much does sense relatedness affect automatic word sense disambiguation
performance? Recent psycholinguistic evidence seems to indicate that closely related word senses may
be represented in the mental lexicon much like a single sense, whereas distantly related senses may be
represented more like discrete entities. These results suggest that, for the purposes of WSD, closely re-
lated word senses can be clustered together into a more general sense with little meaning loss. This talk
will describe the relatedness of verb senses and its impact on NLP applications and WSD components
as well as recent psycholinguistic research results.
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Acquiring Applicable Common Sense Knowledge from the Web

Hansen A. Schwartz and Fernando Gomez
School of Electrical Engineering and Computer Science

University of Central Florida
Orlando, FL 32816, USA

{hschwartz, gomez}@cs.ucf.edu

Abstract

In this paper, a framework for acquiring com-
mon sense knowledge from the Web is pre-
sented. Common sense knowledge includes
information about the world that humans use
in their everyday lives. To acquire this knowl-
edge, relationships between nouns are re-
trieved by using search phrases with automat-
ically filled constituents. Through empirical
analysis of the acquired nouns over Word-
Net, probabilities are produced for relation-
ships between a concept and a word rather
than between two words. A specific goal of
our acquisition method is to acquire knowl-
edge that can be successfully applied to NLP
problems. We test the validity of the acquired
knowledge by means of an application to the
problem of word sense disambiguation. Re-
sults show that the knowledge can be used to
improve the accuracy of a state of the art un-
supervised disambiguation system.

1 Introduction

Common sense knowledge (CSK) is the knowledge
we use in everyday life without necessarily being
aware of it. Panton et al. (2006) of the Cyc project,
define common sense as “the knowledge that every
person assumes his neighbors also possess”. Al-
though the term common sense may be understood
as a process such as reasoning, we are referring only
to knowledge. It is CSK that tells us keys are kept in
one’s pocket and keys are used to open a door, but
CSK does not hold that keys are kept in a kitchen
sink or that keys are used to turn on a microwave,
although all are possible.

To show the need for this information more
clearly we provide a couple sentences:

She put the batter in the refrigerator. (1)
He ate the apple in the refrigerator. (2)

In (1), we are dealing with lexical ambiguity. There
is little doubt for us to determine just what the “bat-
ter” is (food/substance used in baking). However, a
computer must determine that it is not someone who
swings a bat in baseball that is being put into a re-
frigerator, although it is entirely possible to do (de-
pending on the size of the refrigerator). This demon-
strates how CSK can be useful in solving word sense
disambiguation. We know it is common for food to
be found in a refrigerator and so we easily resolve
batter as a food/substance rather than a person.

CSK can also help to solve syntactic ambiguity.
The problem of prepositional phrase attachment oc-
curs in sentences similar to (2). In this case, it is
difficult for a computer to determine if “he” is in the
refrigerator eating an apple or if the “apple” which
he ate was in the refrigerator. Like the previous ex-
ample, the knowledge that food is commonly found
in a refrigerator and people are not, leads us to un-
derstand that “in the refrigerator” should be attached
to the noun phrase “the apple” and not as a modifier
of the verb phrase “ate”.

Unfortunately, there are not many sources of CSK
readily available for use in computer algorithms.
Those sets of knowledge that are available, such
as the CYC project (Lenat, 1995) or ConceptNet
(Liu and Singh, 2004) rely on manually provided
or crafted data. Our aim is to develop an auto-
matic approach to acquire CSK1 by turning to the
vast amount of unannotated text that is available on
the Web. In turn, we present a method to automat-
ically retrieve and analyze phrases from the Web.

1data available at: http://eecs.ucf.edu/˜hschwartz/CSK/
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We employ the use of a syntactic parser to accu-
rately match syntactic patterns of phrases acquired
from the Web. The data is analyzed over WordNet
(Miller et al., 1993) in order to induce knowledge
about word senses or concepts rather than words. Fi-
nally, we evaluate whether the knowledge by apply-
ing it to the problem of word sense disambiguation.

2 Background

The particular type of CSK that we experiment with
in this paper is described formally as follows:

A relationship, e1Re2, exists between entities
e1 and e2 if one finds “e1 is R e2.”

Some examples include: “a cup is on a table” and
“food is in a refrigerator”, which would result in re-
lationships: cupontable and foodinrefrigerator. The
next section attempts to make the relationship more
clear, as we provide a brief linguistic background of
prepositions and relationships.

2.1 Prepositions and Relationships
Prepositions state a relationship between two enti-
ties (Quirk et al., 1985). One of the entities is typ-
ically a constituent of the sentence while the other
is the complement to the preposition. For exam-
ple, consider the relationship between ‘furniture’
and ‘house’ in the following sentences:

The furniture is...
...at the house.
...on the house.
...in the house.

‘The furniture’ is the subject of the sentence, while
‘the house’ is a prepositional complement. Notice
that the meaning is different for each sentence de-
pending on the actual preposition (‘at’, ‘on’, or ‘in’),
and thus furniture relates to house in three different
ways. Although each relationship between furniture
and house is possible, only one would be considered
CSK to most people: furnitureinhouse.

We focus on prepositions which indicate a posi-
tive spacial relationship given by Quirk et al. (1985).
There are three types of such relationships: “at a
point”, “on a line or surface”, and “in an area or vol-
ume”. In particular, we concentrate on the 1 to 3
dimensional relationships given in Table 1, denoted
on and in throughout the paper. At, the 0 dimen-
sional relationship, occurred far less frequently. The

dims description prepositions
1 or 2 on surface or line on, onto, atop, upon,

on top of, down on
2 or 3 in area or volume in, into, inside,

within, inside of

Table 1: Spatial dimensions (dims) and corresponding
prepositions.

sentences below exemplify each of the 1 to 3 dimen-
sional relationships:

on surface The keyboard is on the table.
on line The beach is on US 1.
in area The bank is in New York.
in volume The vegetables are in the bowl.

2.2 Related Work
As a prevalent source of lexical knowledge, dictio-
nary definitions may be regarded as common sense.
However, some definitions may be considered expert
knowledge rather than CSK. The scope of definitions
certainly do not provide all necessary information
(such as keys are commonly kept in one’s pocket).
We examine WordNet in particular because the hy-
pernym relation has been developed extensively for
nouns. The noun ontology is used in our work to
help induce relationships involving concepts (senses
of nouns) rather than just among words. This notion
of inducing CSK among concepts, rather than words,
is a key difference between our work and similar re-
search.

The work on VerbOcean is similar to our research
in the use of the Web for acquiring relationships
(Chklovski and Pantel, 2004). They used patterns
of phrases in order to search the Web for semantic
relations among verbs. The knowledge they acquire
falls into the category of CSK, but the specific re-
lationships are different than ours in that they are
among verb word forms and senses are not resolved.

ConceptNet was created based on the OpenMind
Commonsense project (Liu and Singh, 2004). The
project acquired knowledge through an interface on
the Web by having users play games and answer
questions about words. A contribution of Concept-
Net is that it has a wide range of relations. While
WordNet provides connections between concepts
(senses of words), ConceptNet only provides rela-
tionships between word forms.
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web search

parse and match

Word
probabilities:

nounA
[in|on]
nounB

WordNet
Ontology

determine
concept

probabilities

concept
probabilities:

conceptA
[in|on] 
nounB

a chosen
nounB

create 
web queries

search
phrases
for CSK

Figure 1: The overall common sense knowledge acquisition framework under the assumption that one is acquiring
concepts (WordNet synsets) in a relationship with a given nounB (word).

A project in progress for over twenty years, CYC
has been acquiring common sense knowledge about
everyday objects and actions stored in 106 axioms
(Lenat, 1995). The axioms, handcrafted by workers
at CYCcorp, represent knowledge rooted in propo-
sitions. There are three layers of information: the
first two, access and physical, contain meta data,
while the third, logical layer, stores high level im-
plicit meanings. Only a portion of CYC is available
to the public.

Our method for acquiring knowledge is somewhat
similar to that of (Hearst, 1992). Patterns are built
manually. However, we do not use our manually
constructed patterns (referred to as search phrases)
to query the Web. Instead the search phrases are ab-
stract patterns that are used to automatically gener-
ate more specific web queries by filling constituents
based on lists of words.

The SemEval-2007 Task 4 presents a good
overview of work in noun-noun relationships (Girju
et al., 2007). Our work is related in that the rela-
tionships we acquire are between nominals, and in
order to build their corpus Girju et al. queried the
web with patterns like that of Hearst’s work (Hearst,
1992). The SemEval task was to choose or clas-
sify relationships, rather than acquire and apply rela-
tionships. Additionally, the relationship classes they
use are not necessarily within the scope of common
sense knowledge.

Similar to our research, in (Agirre et al., 2001)
knowledge is acquired about WordNet concepts.
They find topics signatures, sets of related words,
based on data from the Web and use them for word
sense disambiguation. However, the type of rela-
tionship between words of a topic signature and the
WordNet concept is not made explicit, and the au-

thors find the topic signatures are not very effective
for word sense disambiguation.

Finally, we note one approach to using the Web
for NLP applications is to acquire knowledge on the
fly. Previous work has approached solutions to word
sense disambiguation by acquiring words or phrases
directly based on the sentences or words being dis-
ambiguated (Martinez et al., 2006; Schwartz and
Gomez, 2008). These methods dynamically acquire
the data at runtime, rather than automatically create
a common sense database of relations that is readily
available. Additionally, in our current approach, we
are able to acquire explicit CSK relationships.

3 Common Sense Acquisition

The two major phases of our framework, “Noun Ac-
quisition” and “Concept Analysis”, are outlined in
Figure 1 and described within this section.

3.1 Noun Acquisition

The first step of our method is to acquire nouns
(as words) from the Web which are in a relation-
ship with other nouns. A Web search is performed
in order to retrieve samples of text matching a web
query created from a search phrase for the relation-
ship. Each sample is syntactically parsed to verify
a match with the corresponding web query, and the
noun(s) filling a missing constituent of the parse are
recorded.

The framework itself is very flexible, and it can
handle the acquisition of words from other parts of
speech. However, to be clear, we focus the explana-
tion on the use of the framework to acquire specific
types of relationships between nouns. Below we de-
scribe the procedures in more detail.
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3.1.1 Creating Web Queries
Web queries are created semi-automatically by

defining these parameters of a search phrase:
nounA the first noun phrase
nounB the second noun phrase
prep preposition, if any, used in the phrase
verb verb, if any, used in the phrase.
Table 2 lists all of the search phrases we use, one of
which we use as an example throughout this section:

place nounA prep nounB

The verb, “place” in this case, is statically defined as
part of the search phrase.

Prepositions were chosen to describe the type of
relationship we were seeking to acquire as described
in the background section. We limited ourselves to
the “on” and “in” relationships since these were the
most common.
on = (on, onto, atop, upon, on top of, down on)
in = (in, into, inside, within, inside of )

When noun parameters are provided, determiners
or possessive pronouns selected from the list below
are included. This provides greater accuracy in our
search results.
det = (the, a/an, this, that, my, your, his, her)

Finally, the undefined parameters are replaced
with a ‘*’. Below is a web query created from our
search phrase where nounB is ‘refrigerator’, prep is
‘in’, det is ‘the’, and nounA is undefined:

place * in the refrigerator

3.1.2 Searching the Web
Given a nounB, The search algorithm can be sum-

marized through the pseudocode below.
for each search phrase

for each prep
for each det

query = create query(search phrase,
prep, det, nounB));

samples = websearch(query);

The searches were carried out through the Google
Search API2, or the Yahoo! Search Web Services3.
Each search phrase, listed in Table 2, was run until
a maximum of 2000 results were returned. Dupli-
cate samples were removed to reduce the effects of
websites replicating the text of one another.

2no longer supported by Google
3http://developer.yahoo.com/search/

relation search phrase voice
nounA is located prep nounB

on, in nounA is found prep nounB passive
nounA is situated prep nounB
nounA is prep nounB
put nounA prep nounB
place nounA prep nounB

on, in lay nounA prep nounB active
set nounA prep nounB
locate nounA prep nounB
position nounA prep nounB
hang nounA prep nounB

on mount nounA prep nounB active
attach nounA prep nounB

Table 2: Search phrases and relationships used for acqui-
sition of CSK.

3.1.3 Parse and Match
The results we want to achieve in this step should

describe a relationship:

nounA is [in | on] nounB

We use Charniak’s parser (Charniak, 2000) on both
the web query and the results returned from the web
in order to ensure accuracy. To demonstrate this pro-
cess, we extend our example, “place * in the refrig-
erator”.

First, we get a parse with * (nounA) represented
as ‘something’.
(VP (VB place)

(NP (NN something))
(PP (IN in) (NP (DT the) (NN refrigerator))))

We now know the constituent(s) which replace ‘(NN
something)’ will be our nounA. For example, in the
following parse ‘batter’ is resolved as nounA.
(S1 (S (NP (PRP He))

(VP (AUX was) (VP (VBN told) (S (VP (TO to)
(VP (VB place)

(NP (DT the) (JJ mixed) (NN batter))
(PP (IN in) (NP (DT the) (NN refrigerator))))]

The head noun of the matching phrase is determined,
which is ‘batter’ in the phrase ‘(DT the) (JJ mixed)
(NN batter)’. Words are only recorded if they are
present as a noun in WordNet. If the noun phrase
contains a compound noun found in WordNet, then
the compound noun is recorded instead.

The parse also helps to eliminate bad results. For
the following sentence, the verb phrase does not

4



match the parse of the web query due to an extra PP,
and therefore we do not pull out “for several hours”
as nounA.
(S1 (S (VP (VP (VB Mix)

(NP (DT the) (NN sugar))
(PRT (RP in))
(PP (TO to) (NP (DT the) (NN dough))))

(CC and)
(VP (VB place)

(PP (IN for) (NP (JJ several) (NNS hours)))
(PP (IN in) (NP (DT the) (NN refrigerator)))))))

One may note that this malformed sentence is com-
municating that ‘dough’ is placed in the refrigerator,
but the method does not handle this.

At the end of the noun acquisition phase, we are
left with frequency counts of nouns being retrieved
from a context matching the syntactic structure of
a web query. This can easily be represented as the
probability of a noun, nA, being returned to a query
for the relationship, R, with noun nB.

pw(nA, R, nB)

This value along with the other steps we have gone
over are stored in a MySQL relational database4.
One could trace a relationship probability between
nouns back to the web results which were matched
to a web query, and even determine the abstract
search phrase which produced the web query.

3.2 Concept Analysis

A focus of this work is on going beyond relation-
ships between words. We would like to acquire
knowledge about specific concepts in WordNet. In
particular, we are trying to induce:

conceptA is [in | on] nounB.

where conceptA is a concept in WordNet (such as a
sense of nounA), and nounB remains simply a word.

For the analysis, we rely on the vast amount of
nouns we are able to acquire in order to create proba-
bilities for relationships of conceptARnounB. To get
a grasp of the idea in general, consider ‘table’ as a
nounB of interest. By examining all possible hyper-
nyms of all senses of each nounA one will find it
is common for abstract entities to be “in a table”
(i.e. data in a table), artifacts to be “on a table” (i.e.

4http://www.mysql.com

cup on a table), and physical things (including living
things) to be “at a table” (i.e. the employees at the
table). The same idea could be applied in reverse if
one acquires knowledge for a set of nounAs. How-
ever, this paper only focuses on acquiring knowl-
edge for the nounB constituent in a search phrase.

To begin with, one should note that concepts in
WordNet are represented as synsets. A synset is
a group of word-senses that have the same mean-
ing. For example, (batter-1, hitter-1, slugger-1,
batsman-1) is a synset with the meaning “(baseball)
a ballplayer who is batting”. We use WordNet ver-
sion 3.0 in order to take advantage of the latest up-
dates and corrections to the noun ontology. Since a
word has multiple senses, we represent the probabil-
ity that a word-sense, nAs, resulted from a query for
a relationship, R with nounB as:

pns(nAs, R, nB) =
pw(lemma(nAs), R, nB)
senses(lemma(nAs))

where senses returns the number of senses of the
word (lemma) within the word-sense nAs. We
can then extend the probability to apply to a synset,
syns, as:

psyn(syns, R, nB) =
∑

nAs∈syns

pns(nAs, R, nB)

Finally, we define a recursive function based on
the idea that a concept subsumes all concepts below
it (hyponyms) in the WordNet ontology:

Pc(cA, R, nB) = psyn(syns(cA), R, nB)

+
∑

h∈hypos(cA)

Pc(h, R, nB)

where cA is a concept/node in WordNet, syns re-
turns the synset which represents the concept, and
hypos returns the set of all direct hyponyms within
the WordNet ontology. For example, (money-3) is
a (currency-1), so Pc(currency-1, R, nB) receives
psyn((money-3), R, nB) among others. This type
of calculation over WordNet follows much like
that of Resnik’s (1999) information-content calcu-
lation. Note that the function no longer recurs
when reaching a concept with no hyponyms and that
Pc(entity-1, R, nB) is always 1 (entity-1 is the root
node). Pc now represents a probability for the rela-
tionship: conceptARnounB.
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nounB #nounAs nounB #nounAs
basket 3300 boat 2787
bookcase 260 bottle 4742
bowl 5252 cabin 720
cabinet 1474 canoe 163
car 5534 ceiling 1187
city 1432 desk 4770
drawer 1638 dresser 698
floor 2850 house 4627
jar 4462 kitchen 2948
pocket 4771 refrigerator 2897
road 5493 room 5023
shelf 2581 ship 1469
sink 296 sofa 509
table 5312 truck 528
van 301 wall 2285

Table 3: List of nouns which fill the nounB constituent
in a search phrase, and the corresponding occurrences of
nounAs acquired for each.

4 Evaluation

Our evaluation focuses on the applicability of the
acquired CSK. We acquired relationships for the 30
nouns listed in Table 3. These nouns represent all
possible words to fill the nounB constituent of a
search phrase. The corresponding #nounAs indi-
cates the number of nounAs that were acquired from
the Web for each nounB. For example, 4771 nounAs
were acquired for ‘pocket’. This means 4771 results
from the web matched the parse of a web query for
‘pocket’ and contained a nounA in WordNet (keep-
ing in mind duplicates Web text were removed).

Delving deeper into our example, below are
the top 20 nounAs found for the relationship
nounAinpocket.

money, hand, cash, firework, something, dol-
lar, ball, hands, key, coin, pedometer, card,
battery, item, phone, penny, music, buck, im-
plant, wallet

As described in the concept analysis section, occur-
rences of each nounA for a given nounB lead to pw

values, which in turn are used to produce Pc values
for concepts in WordNet. The application of CSK
utilizes these probabilities rather than simply lists of
words or even lists of concepts. However, challenges

were encountered during the noun acquisition step
before the probabilities were produced.

Many challenges of the noun acquisition step
were overcome through the use of a parser. For ex-
ample, phrases such as “Palestine is on the road to
becoming...” could be eliminated since the parser
marks the prepositional phrase “to becoming” as be-
ing attached to “the road”. Thus, the parse of the
web sample does not match the parse of the web
query used to acquire it. Other times, noun-noun re-
lationships were common simply because many web
pages seem to copy the text of others. This prob-
lem was handled through the elimination of dupli-
cate text samples from the Web. In the end, only
about one in four results from the Web were actually
used. Numbers in Table 3 reflect the result of these
eliminations.

Some issues of the acquisition step were not di-
rectly addressed in this paper. A domain may tend
to be more prevalent on the Internet and skew the
CSK, such as fireworkinpocket. Another example,
babyinbasket was very common due to biblical ref-
erences. Fictional works and metaphors also pro-
vided uncommon relationships dispersed within the
results. Additionally, the parser makes mistakes. It
was the hope that the concept analysis step would
help to mitigate some noise from these problems.
A final issue was the bottleneck of limited queries
per day by the search engines, which restricted us to
testing on only the 30 nouns listed.

4.1 Disambiguation System
The CSK is not intended to be used by itself for dis-
ambiguation. It would be far from accurate to as-
sume the sense of a noun can be disambiguated sim-
ply by observing its relationship with one other noun
in the sentence. For example, one of the test sen-
tences incorporated the relationship noteinpocket.
Multiple senses of note are likely to be found in a
pocket (i.e. the senses referring to “a brief written
record”, “a short personal letter”, or “a piece of pa-
per money”). In other cases, a relationship may not
be found for any sense of a target word. Therefore,
our knowledge is intended to be used as a reference,
consulted by a disambiguation system.

We integrate our knowledge into a state of the art
“all-words” word sense disambiguation algorithm.
These algorithms are considered unsupervised or
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minimally supervised, because they do not require
specific training data that is designed for instances
of words in the testing data. In other words, these
systems are designed to handle any word they come
across. Our knowledge can supplement such a sys-
tem, because the data can be acquired automatically
for an unlimited number of nouns, assuming limit-
less web query restrictions.

The basis of our disambiguation system is the
publicly available GWSD system (Sinha and Mihal-
cea, 2007). Sinha and Mihalcea report higher re-
sults on the Senseval-2 and Senseval-3 datasets than
any of the participating unsupervised system. Ad-
ditionally, GWSD is compatible with WordNet 3.0
and its output made it easy to integrate our knowl-
edge. Sense predictions from four different graph
metrics are produced, and we are able to incorporate
our knowledge as another prediction within a voting
scheme.

Considering the role of our knowledge as a refer-
ence, in some cases we would like the CSK to sug-
gest multiple senses and in others none. For each
target noun instance in the corpus, we lookup the
Pc(c, R, nB) value, where c is the WordNet concept
that corresponds to a sense of the target noun. We
choose nB by matching the phrase “in|on det nB”
within the sentence. The system suggests all senses
with a Pc value greater than 0.75 of the maximum Pc

value over all senses. If no senses have a Pc value
then no senses are suggested.

During voting, tallies of predictions and sugges-
tions are taken for each sense of a noun. Ties are
broken by choosing the lowest sense number among
all those involved in the tie. Note that this is differ-
ent than choosing the most frequent sense (i.e. the
lowest sense number from all senses), in that only
the top predicted senses are considered. This same
type of voting is used with and without the CSK sug-
gestions.

4.2 Experimental Corpus
A goal of our work was to acquire data which could
be applied to NLP problems. We focus particularly
on the difficult problem of word sense disambigua-
tion. Due to the lack of sense tagged data, we were
unable to find an annotated corpus with instances
of all the nouns in Table 3 as prepositional com-
plements. This was not surprising considering one

of the reasons that minimally supervised approaches
have become more popular is that they do not require
hand-tagged training data (Mihalcea, 2002; Diab,
2004; McCarthy et al., 2004).

We created a corpus from sentences in Wikipedia
which contained the phrase “in|on det lemma”,
where det is a determiner or possessive pronoun,
lemma is a noun from Table 3, and in|on is a prepo-
sition for either relationship described earlier. Be-
low we have provided an example from our corpus
where the knowledge from ‘pocket’ can be applied
to disambiguate ‘key’.

Now Tony’s key to the flat is in the pocket of his
raincoat, so on returning to his flat some time
later he realizes that he cannot get inside.

The corpus5 contained a total of 342 sen-
tences, with one target noun annotated per sen-
tence. The target nouns were selected to poten-
tially fill the nounA constituent in the relationship
nounARnounB, and they were assigned all appro-
priate WordNet 3.0 senses. Considering the fine-
grained nature of WordNet (Ide and Wilks, 2006),
26.3% of the instances were annotated with multi-
ple senses. We also restricted the corpus to only
include polysemous nouns, or nouns which had an
additional sense beyond the senses assigned to it.

Inter-annotator agreement was used to validate
the corpus. Because the corpus was built by an
author of the work, we asked a non-author to re-
annotate the corpus without knowledge of the orig-
inal annotations. This second annotator was told to
choose all appropriate senses just as did the original
annotator. Agreement was calculated as:

agree =

(∑

i∈C

|S1i ∩ S2i|
|S1i ∪ S2i|

)
÷ 342

where S1 and S2 are the two sets of sense annota-
tions, and i is an instance of the corpus, C.

The agreement and other data concerning corpus
annotation can be found in Table 4. As a point of
comparison, the Senseval 3 all-words task had a 75%
agreement on nouns (Snyder and Palmer, 2004). A
second evaluation of agreement was also done. The
non-author annotations were treated as if they came

5available at: http://eecs.ucf.edu/˜hschwartz/CSK/
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insts agree F1h F1rnd F1MFS

on 131 79.9 84.7 28.2 71.0
in 211 80.8 91.9 27.2 67.8

both 342 80.5 89.2 27.6 69.0

Table 4: Experimental corpus data for each relation-
ship (on, in). insts: number of annotated instances;
agree: inter-annotator agreement %; F1 values (precision
= recall): h: human annotation, rnd: random baseline,
MFS: most frequent sense baseline.

without CSK with CSK
F1all F1indeg F1all F1indeg

on 62.6 63.4 64.9 67.2
in 68.7 69.7 71.6 72.5

both 66.4 67.3 69.0 70.5
ties 37 0 66 72

Table 5: F1 values (precision = recall) on our experimen-
tal corpus with and without CSK. F1all: using all 4 graph
metrics; F1indeg: using only the indegree metric; ties:
number of instances where tie votes occurred.

from a disambiguation system in order to get a hu-
man upper-bound of performance. Just as the auto-
matic system handled tie votes, when one word had
multiple sense annotations, the annotation with the
lowest sense number was used. This performance
upper-bound is shown as F1h in Table 4.

4.3 Results

Our disambiguation results are presented in Table
5. We found that, in all cases, including CSK im-
proved results. It turned out that 54.7% of the noun
instances received at least one suggestion from the
CSK, and 24.5% of the instances received multiple
suggestions. It is not clear why the on results were
slightly below that for in. We suspect the on por-
tion of the corpus was slightly more difficult be-
cause the human annotation (F1h) found a similar
phenomenon.

One observation we made when setting up the
test was that the indegree metric alone performed
slightly better than using the votes of all four met-
rics. This was not surprising considering Sinha and
Mihalcea found the indegree metric by itself to per-
form only slightly below a combination of metrics
on the senseval data (Sinha and Mihalcea, 2007).

Therefore, Table 5 also reports the use of the inde-
gree metric by itself or with CSK, F1indeg. In these
cases we saw the greatest improvements of using
CSK, producing an an error reduction of about 4.5%
and outperforming the F1MFS value.

Several additional experiments were performed.
Note that even during ties, the chosen sense was
taken from the predictions and suggestions. When
we instead incorporated an MFS backoff strategy for
ties, our top results for F1indeg with CSK dropped to
70.2. We also ran a precision test with no predictions
made for tie votes, and found a precision of 71.9%
on the 270 instances that did not have a tie for top
votes (this also used the indegree metric with CSK).
All results supported our goal of acquiring CSK that
was applicable to word sense disambiguation.

5 Conclusion

We found our acquired CSK to be useful when incor-
porated into a word sense disambiguation system,
finding an error reduction of around 4.5% for top re-
sults. Relationships between nouns were acquired
from the Web through a unique search method of
filling constituents in a search phrase. Samples re-
turned from the Web were restricted by a require-
ment to match the syntactic parse of a web query.
The resulting data was analyzed over WordNet to
produce probabilities of relationships in the form of
conceptARnounB, where conceptA is a concept in
WordNet rather than an ambiguous noun.

In our effort to validate the knowledge through ap-
plication, many steps along the way were left open
for future investigations. First, there is a need to ex-
haustively search for CSK of all nouns and to acquire
other forms of CSK. With this improvement CSK
could be tested on a standard corpus, rather than
a corpus focused on select nouns and prepositional
phrases. Looking into acquisition improvements, a
study of the effectiveness of the parse would be ben-
eficial. Finally, the applicability of the knowledge
may be increased through a more complex concept
analysis or utilizing a more advanced voting scheme.
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Abstract

This paper demonstrates one efficient tech-
nique in extracting bilingual word pairs from
non-parallel but comparable corpora. Instead
of using the common approach of taking high
frequency words to build up the initial bilin-
gual lexicon, we show contextually relevant
terms that co-occur with cognate pairs can be
efficiently utilized to build a bilingual dictio-
nary. The result shows that our models using
this technique have significant improvement
over baseline models especially when highest-
ranked translation candidate per word is con-
sidered.

1 Introduction

Bilingual lexicons or dictionaries are invaluable
knowledge resources for language processing tasks.
The compilation of such bilingual lexicons remains
as a substantial issue to linguistic fields. In gen-
eral practice, many linguists and translators spend
huge amounts of money and effort to compile this
type of knowledge resources either manually, semi-
automatically or automatically. Thus, obtaining the
data is expensive.

In this paper, we demonstrate a technique that uti-
lizes contextually relevant terms that co-occur with
cognate pairs to expand an initial bilingual lexi-
con. We use unannotated resources that are freely
available such as English-Spanish Europarl corpus
(Koehn, 2005) and another different set of cognate
pairs as seed words.

We show that this technique is able to achieve
high precision score for bilingual lexicon extracted

from non-parallel but comparable corpora. Our
model using this technique with spelling similarity
approach obtains 85.4 percent precision at 50.0 per-
cent recall. Precision of 79.0 percent at 50.0 percent
recall is recorded when using this technique with
context similarity approach. Furthermore, by using
a string edit-distance vs. precision curve, we also
reveal that the latter model is able to capture words
efficiently compared to a baseline model.

Section 2 is dedicated to mention some of the re-
lated works. In Section 3, the technique that we used
is explained. Section 4 describes our experimental
setup followed by the evaluation results in Section
5. Discussion and conclusion are in Section 6 and 7
respectively.

2 Related Work

Koehn and Knight (2002) describe few potential
clues that may help in extracting bilingual lexi-
con from two monolingual corpora such as identi-
cal words, similar spelling, and similar context fea-
tures. In reporting our work, we treat both identical
word pairs and similar spelling word pairs as cog-
nate pairs.

Koehn and Knight (2002) map 976 identical
word pairs that are found in their two monolin-
gual German-English corpora and report that 88.0
percent of them are correct. They propose to re-
strict the word length, at least of length 6, to in-
crease the accuracy of the collected word pairs.
Koehn and Knight (2002) mention few related works
that use different measurement to compute the sim-
ilarity, such as longest common subsequence ratio
(Melamed, 1995) and string edit distance (Mann
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and Yarowski, 2001). However, Koehn and Knight
(2002) point out that majority of their word pairs
do not show much resemblance at all since they
use German-English language pair. Haghighi et al.
(2008) mention one disadvantage of using edit dis-
tance, that is, precision quickly degrades with higher
recall. Instead, they propose assigning a feature to
each substring of length of three or less for each
word.

For approaches based on contextual features or
context similarity, we assume that for a word that
occurs in a certain context, its translation equivalent
also occurs in equivalent contexts. Contextual fea-
tures are the frequency counts of context words oc-
curring in the surrounding of target word W. A con-
text vector for each W is then constructed, with only
context words found in the seed lexicon. The context
vectors are then translated into the target language
before their similarity is measured.

Fung and Yee (1998) point out that not only the
number of common words in context gives some
similarity clue to a word and its translation, but the
actual ranking of the context word frequencies also
provides important clue to the similarity between a
bilingual word pair. This fact has motivated Fung
and Yee (1998) to use tfidf weighting to compute the
vectors. This idea is similar to Rapp (1999) who
proposed to transform all co-occurrence vectors us-
ing log likelihood ratio instead of just using the
frequency counts of the co-occurrences. These val-
ues are used to define whether the context words are
highly associated with the W or not.

Earlier work relies on a large bilingual dictionary
as their seed lexicon (Rapp, 1999; Fung and Yee,
1998; among others). Koehn and Knight (2002)
present one interesting idea of using extracted cog-
nate pairs from corpus as the seed words in order
to alleviate the need of huge, initial bilingual lex-
icon. Haghighi et al. (2008), amongst a few oth-
ers, propose using canonical correlation analysis to
reduce the dimension. Haghighi et al (2008) only
use a small-sized bilingual lexicon containing 100
word pairs as seed lexicon. They obtain 89.0 percent
precision at 33.0 percent recall for their English-
Spanish induction with best feature set, using top-
ically similar but non-parallel corpora.

3 The Utilizing Technique

Most works in bilingual lexicon extraction use lists
of high frequency words that are obtained from
source and target language corpus to be their source
and target word lists respectively. In our work, we
aim to extract a high precision bilingual lexicon us-
ing different approach. Instead, we use list of con-
textually relevant terms that co-occur with cognate
pairs.

Figure 1: Cognate pair extraction

These cognate pairs can be derived automatically
by mapping or finding identical words occur in two
high frequency list of two monolingual corpora (see
Figure 1). They are used to acquire list of source
word Ws and target word Wt. Ws and Wt are contex-
tually relevant terms that highly co-occur with the
cognate pairs in the same context. Thus, log likeli-
hood measure can be used to identify them.

Next, bilingual word pairs are extracted among
words in these Ws and Wt list using either context
similarity or spelling similarity. Figure 2 shows
some examples of potential bilingual word pairs,
of Ws and Wt, co-occurring with identical cognate
pairs of word ’civil’.

As we are working on English-Spanish language
pair, we extract bilingual lexicon using string edit
distance to identify spelling similarity between Ws

11



and Wt. Figure 3 outlines the algorithm using
spelling similarity in more detail.

Using the same Ws and Wt lists, we extract bilin-
gual lexicon by computing the context similarity be-
tween each {Ws,Wt} pair. To identify the context
similarity, the relation between each {Ws, Wt} pair
can be detected automatically using a vector similar-
ity measure such as cosine measure as in (1). The A
and B are the elements in the context vectors, con-
taining either zero or non-zero seed word values for
Ws and Wt, respectively.

Cosine similarity = cos(θ) =
A×B

||A|| × ||B|| (1)

The cosine measure favors {Ws,Wt} pairs that
share the most number of non-zero seed word val-
ues. However, one disadvantage of this measure is
that the cosine value directly proportional to the ac-
tual Ws and Wt values. Even though Ws and Wt

might not closely correlated with the same set of
seed words, the matching score could be high if Ws

or Wt has high seed word values everywhere. Thus,
we transform the context vectors from real value
into binary vectors before the similarity is computed.
Figure 4 outlines the algorithm using context simi-
larity in more detail.

In the algorithm, after the Ws and Wt lists are ob-
tained, each Ws and Wt units is represented by their
context vector containing log likelihood (LL) values
of contextually relevant words, occurring in the seed
lexicon, that highly co-occur with the Ws and Wt re-
spectively. To get this context vector, for each Ws

and Wt, all sentences in the English or Spanish cor-
pora containing the respective word are extracted to
form a particular sub corpus, e.g. sub corpus soci-
ety is a collection of sentences containing the source
word society.

Using window size of a sentence, the LL value
of term occurring with the word Ws or Wt in their
respective sub corpora is computed. Term that is
highly associated with the Ws or Wt is called con-
textually relevant term. However, we consider each
term with LL value higher than certain threshold
(e.g. threshold ≥ 15.0) to be contextually relevant.
Contextually relevant terms occurring in the seed
lexicon are used to build the context vector for the

Figure 2: Bilingual word pairs are found within context
of cognate word civil

Figure 3: Utilizing technique with spelling similarity
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Figure 4: Utilizing technique with context similarity

Ws or Wt respectively. For example, word participa-
tion and education occurring in the seed lexicon are
contextually relevant terms for source word society.
Thus, they become elements of the context vector.
Then, we transform the context vectors, from real
value into binary, before we compute the similarity
with cosine measure.

4 Experimental Setup

4.1 Data

For source and target monolingual corpus, we de-
rive English and Spanish sentences from parallel Eu-
roparl corpora (Koehn, 2005).

• We split each of them into three parts; year

1996 - 1999, year 2000 - 2003 and year 2004
- 2006.

• We only take the first part, about 400k sen-
tences of Europarl Spanish (year 1996 - 1999)
and 2nd part, also about 400k from Europarl
English (year 2000 - 2003). We refer the partic-
ular part taken from the source language corpus
as S and the other part of the target language
corpus as T.

This approach is quite common in order to ob-
tain non-parallel but comparable (or same domain)
corpus. Examples can be found in Fung and Che-
ung (2004), followed by Haghighi et al. (2008).
For corpus pre-processing, we only use sentence
boundary detection and tokenization on raw text.
We decided that large quantities of raw text requir-
ing minimum processing could also be considered as
minimal since they are inexpensive and not limited.
These should contribute to low or medium density
languages for which annotated resources are limited.
We also clean all tags and filter out stop words from
the corpus.

4.2 Evaluation
We extracted our evaluation lexicon from Word Ref-
erence∗ free online dictionary . For this work, the
word types are not restricted but mostly are con-
tent words. We have two sets of evaluation. In one,
we take high ranked candidate pairs where Ws could
have multiple translations. In the other, we only con-
sider highest-ranked Wt for each Ws. For evalua-
tion purposes, we take only the top 2000 candidate
ranked-pairs from the output. From that list, only
candidate pairs with words found in the evaluation
lexicon are proposed. We use F1-measure to evalu-
ate proposed lexicon against the evaluation lexicon.
The recall is defined as the proportion of the high
ranked candidate pairs. The precision is given as the
number of correct candidate pairs divided by the to-
tal number of proposed candidate pairs.

4.3 Other Setups
The following were also setup and used:

• List of cognate pairs
We obtained 79 identical cognate pairs from the

∗from website http://www.wordreference.com
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top 2000 high frequency lists of our S and T but
we chose 55 of these that have at least 100 con-
textually relevant terms that are highly associ-
ated with each of them.

• Seed lexicon
We also take a set of cognate pairs to be our
seed lexicon. We defined the size of a small
seed lexicon ranges between 100 to 1k word
pairs. Hence, our seed lexicon containing 700
cognate pairs are still considered as a small-
sized seed lexicon. However, instead of acquir-
ing this set of cognate pairs automatically, we
compiled the cognate pairs from a few Learn-
ing Spanish Cognates websites †. This ap-
proach is a simple alternative to replace the
10-20k general dictionaries (Rapp, 1999; Fung
and McKeown, 2004) or automatic seed words
(Koehn and Knight, 2002; Haghighi et al.,
2008). However, this approach can only be
used if the source and target language are fairly
related and both share lexically similar words
that most likely have same meaning. Other-
wise, we have to rely on general bilingual dic-
tionaries.

• Stop list
Previously (Rapp, 1999; Koehn and Knight,
2002; among others) suggested filtering out
commonly occurring words that do not help
in processing natural language data. This idea
sometimes seem as a negative approach to the
natural articles of language, however various
studies have proven that it is sensible to do so.

• Baseline system
We build baseline systems using basic context
similarity and spelling similarity features.

5 Evaluation Results

For the first evaluation, candidate pairs are ranked
after being measured either with cosine for context
similarity or edit distance for spelling similarity. In
this evaluation, we take the first 2000 of {Ws, Wt}
candidate pairs from the proposed lexicon where Ws

may have multiple translations or multiple Wt. See
Table 1.
†such as http://www.colorincolorado.org and

http://www.language-learning-advisor.com

Setting P0.1 P0.25 P0.33 P0.5 Best-F1

ContextSim (CS) 42.9 69.6 60.7 58.7 49.6

SpellingSim (SS) 90.5 74.2 69.9 64.6 50.9

(a) from baseline models

Setting P0.1 P0.25 P0.33 P0.5 Best-F1

E-ContextSim (ECS) 78.3 73.5 71.8 64.0 51.2

E-SpellingSim (ESS) 95.8 75.6 71.8 63.4 51.5

(b) from our proposed models

Table 1: Performance of baseline and our model for top
2000 candidates below certain threshold and ranked

Setting P0.1 P0.25 P0.33 P0.5 Best-F1

ContextSim-Top1 (CST) 58.3 61.2 64.8 55.2 52.6

SpellingSim-Top1 (SST) 84.9 66.4 52.7 34.5 37.0

(a) from baseline models

Setting P0.1 P0.25 P0.33 P0.5 Best-F1

E-ContextSim-Top1 (ECST) 85.0 81.1 79.7 79.0 57.1

E-SpellingSim-Top1 (ESST) 100.0 93.6 91.6 85.4 59.0

(b) from our proposed models

Table 2: Performance of baseline and our model for top
2000 candidates of top 1

Using either context or spelling similarity ap-
proach on S and T (labeled ECS and ESS respec-
tively), our models achieved about 51.2 percent of
best F1 measure. Those are not a significant im-
provement with only 1.0 to 2.0 percent error reduc-
tion over the baseline models (labeled CS and SS).

For the second evaluation, we take the first 2000
of {Ws, Wt} pairs where Ws may only have the high-
est ranked Wt as translation candidates (See Table
2). This time, both of our models (with context
similarity and spelling similarity, labeled ECST and
ESST respectively) yielded almost 60.0 percent of
best F1 measure. It is noted that using ESST alone
recorded a significant improvement of 20.0 percent
in the F1 score compared to SST baseline model.
ESST obtained 85.4 percent precision at 50.0 per-
cent recall. Precision of 79.0 percent at 50.0 percent
recall is recorded when using ECST. However, the
ECST has not recorded a significant difference over
CST baseline model (57.1 and 52.6 percent respec-
tively) in the second evaluation. The overall perfor-
mances, represented by precision scores for different
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Figure 5: String Edit Distance vs. Precision curve

range of recalls, for these four models are illustrated
in Appendix A.

It is important to see the inner performance of the
ECST model with further analysis. We present a
string edit distance value (EDv) vs. precision curve
for ECST and CST in Figure 5 to measure the per-
formance of the ECST model in capturing bilingual
pairs with less similar orthographic features, those
that may not be captured using spelling similarity.

The graph in Figure 5 shows that even though
CST has higher precision score than ECST at EDv
of 2, it is not significant (the difference is less than
5.0 percent) and the spelling is still similar. On the
other hand, precision for proposed lexicon with EDv
above 3 (where the Ws and the proposed translation
equivalent Wt spelling becoming more dissimilar)
using ECST is higher than CST. The most significant
difference of the precision is almost 35.0 percent,
where ECST achieved almost 75.0 percent precision
compared to CST with 40.0 percent precision at EDv
of 4. It is followed by ECST with almost 50.0 per-
cent precision compared to CST with precision less
than 35.0 percent, offering about 15.0 percent preci-
sion improvement at EDv of 5.

6 Discussion

As we are working on English-Spanish language
pair, we could have focused on spelling similar-
ity feature only. Performance of the model using
this feature usually record higher accuracy other-
wise they may not be commonly occurring in a cor-
pus. Our models with this particular feature have

recorded higher F1 scores especially when consid-
ering only the highest-ranked candidates.

We also experiment with context similarity ap-
proach. We would like to see how far this approach
helps to add to the candidate scores from our corpus
S and T. The other reason is sometimes a correct tar-
get is not always a cognate even though a cognate
for it is available. Our ECST model has not recorded
significant improvement over CST baseline model in
the F1-measure. However, we were able to show that
by utilizing contextually relevant terms, ECST gath-
ers more correct candidate pairs especially when it
comes to words with dissimilar spelling. This means
that ECST is able to add more to the candidate scores
compared to CST. Thus, more correct translation
pairs can be expected with a good combination of
ECST and ESST.

The following are the advantages of our utilizing
technique:

• Reduced errors, hence able to improve preci-
sion scores.

• Extraction is more efficient in the contextual
boundaries (see Appendix B for examples).

• Context similarity approach within our tech-
nique has a potential to add more to the can-
didate scores.

Yet, our attempt using cognate pairs as seed words is
more appropriate for language pairs that share large
number of cognates or similar spelling words with
same meaning. Otherwise, one may have to rely on
bilingual dictionaries.

There may be some possible supporting strate-
gies, which we could use to help improve further
the precision score within the utilizing technique.
For example, dimension reduction using canonical
correlation analysis (CCA), resemblance detection,
measure of dispersion, reference corpus and further
noise reduction. However, we do not include a re-
ranking method, as we are using collection of cog-
nate pairs instead of a general bilingual dictionary.
Since our corpus S and T is in similar domain, we
might still not have seen the potential of this tech-
nique in its entirety. One may want to test the tech-
nique with different type of corpora for future works.
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Nevertheless, we are still concerned that many
spurious translation equivalents were proposed be-
cause the words actually have higher correlation
with the input source word compared to the real
target word. Otherwise, the translation equivalents
may not be in the boundaries or in the corpus from
which translation equivalents are to be extracted.
Haghighi et al (2008) have reported that the most
common errors detected in their analysis on top 100
errors were from semantically related words, which
had strong context feature correlations. Thus, the
issue remains. We leave all these for further discus-
sion in future works.

7 Conclusion

We present a bilingual lexicon extraction technique
that utilizes contextually relevant terms that co-
occur with cognate pairs to expand an initial bilin-
gual lexicon. We show that this utilizing technique
is able to achieve high precision score for bilingual
lexicon extracted from non-parallel but comparable
corpora. We demonstrate this technique using unan-
notated resources that are freely available.

Our model using this technique with spelling sim-
ilarity obtains 85.4 percent precision at 50.0 percent
recall. Precision of 79.0 percent at 50.0 percent re-
call is recorded when using this technique with con-
text similarity approach. We also reveal that the
latter model with context similarity is able to cap-
ture words efficiently compared to a baseline model.
Thus, we show contextually relevant terms that co-
occur with cognate pairs can be efficiently utilized
to build a bilingual dictionary.
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Abstract

Various techniques have been developed to au-
tomatically induce semantic dictionaries from
text corpora and from the Web. Our research
combines corpus-based semantic lexicon in-
duction with statistics acquired from the Web
to improve the accuracy of automatically ac-
quired domain-specific dictionaries. We use
a weakly supervised bootstrapping algorithm
to induce a semantic lexicon from a text cor-
pus, and then issue Web queries to generate
co-occurrence statistics between each lexicon
entry and semantically related terms. The Web
statistics provide a source of independent ev-
idence to confirm, or disconfirm, that a word
belongs to the intended semantic category. We
evaluate this approach on 7 semantic cate-
gories representing two domains. Our results
show that the Web statistics dramatically im-
prove the ranking of lexicon entries, and can
also be used to filter incorrect entries.

1 Introduction

Semantic resources are extremely valuable for many
natural language processing (NLP) tasks, as evi-
denced by the wide popularity of WordNet (Miller,
1990) and a multitude of efforts to create similar
“WordNets” for additional languages (e.g. (Atserias
et al., 1997; Vossen, 1998; Stamou et al., 2002)).
Semantic resources can take many forms, but one of
the most basic types is a dictionary that associates
a word (or word sense) with one or more semantic
categories (hypernyms). For example,truck might
be identified as aVEHICLE, anddogmight be identi-
fied as anANIMAL . Automated methods for generat-

ing such dictionaries have been developed under the
rubrics of lexical acquisition, hyponym learning, se-
mantic class induction, and Web-based information
extraction. These techniques can be used to rapidly
create semantic lexicons for new domains and lan-
guages, and to automatically increase the coverage
of existing resources.

Techniques for semantic lexicon induction can be
subdivided into two groups: corpus-based methods
and Web-based methods. Although the Web can be
viewed as a (gigantic) corpus, these two approaches
tend to have different goals. Corpus-based methods
are typically designed to induce domain-specific se-
mantic lexicons from a collection of domain-specific
texts. In contrast, Web-based methods are typically
designed to induce broad-coverage resources, simi-
lar to WordNet. Ideally, one would hope that broad-
coverage resources would be sufficient for any do-
main, but this is often not the case. Many domains
use specialized vocabularies and jargon that are not
adequately represented in broad-coverage resources
(e.g., medicine, genomics, etc.). Furthermore, even
relatively general text genres, such as news, con-
tain subdomains that require extensive knowledge
of specific semantic categories. For example, our
work uses a corpus of news articles about terror-
ism that includes many arcane weapon terms (e.g.,
M-79, AR-15, an-fo, andgelignite). Similarly, our
disease-related documents mention obscure diseases
(e.g.,psittacosis) and contain many informal terms,
abbreviations, and spelling variants that do not even
occur in most medical dictionaries. For example,yf
refers to yellow fever,tularaemia is an alternative
spelling fortularemia, andnv-cjd is frequently used
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to refer tonew variant Creutzfeldt Jacob Disease.
The Web is such a vast repository of knowledge

that specialized terminology for nearly any domain
probably exists in some niche or cranny, but find-
ing the appropriate corner of the Web to tap into is a
challenge. You have to know where to look to find
specialized knowledge. In contrast, corpus-based
methods can learn specialized terminology directly
from a domain-specific corpus, but accuracy can be
a problem because most corpora are relatively small.

In this paper, we seek to exploit the best of both
worlds by combining a weakly supervised corpus-
based method for semantic lexicon induction with
statistics obtained from the Web. First, we use
a bootstrapping algorithm, Basilisk (Thelen and
Riloff, 2002), to automatically induce a semantic
lexicon from a domain-specific corpus. This pro-
duces a set of words that are hypothesized to be-
long to the targeted semantic category. Second, we
use the Web as a source of corroborating evidence
to confirm, or disconfirm, whether each term truly
belongs to the semantic category. For each candi-
date word, we search the Web for pages that con-
tain both the word and a semantically related term.
We expect that true semantic category members will
co-occur with semantically similar words more of-
ten than non-members.

This paper is organized as follows. Section 2 dis-
cusses prior work on weakly supervised methods for
semantic lexicon induction. Section 3 overviews
our approach: we briefly describe the weakly su-
pervised bootstrapping algorithm that we use for
corpus-based semantic lexicon induction, and then
present our procedure for gathering corroborating
evidence from the Web. Section 4 presents exper-
imental results on seven semantic categories repre-
senting two domains: Latin American terrorism and
disease-related documents. Section 5 summarizes
our results and discusses future work.

2 Related Work

Our research focuses on semantic lexicon induc-
tion, where the goal is to create a list of words
that belong to a desired semantic class. A sub-
stantial amount of previous work has been done on
weakly supervised and unsupervised creation of se-
mantic lexicons. Weakly supervised corpus-based

methods have utilized noun co-occurrence statis-
tics (Riloff and Shepherd, 1997; Roark and Char-
niak, 1998), syntactic information (Widdows and
Dorow, 2002; Phillips and Riloff, 2002; Pantel and
Ravichandran, 2004; Tanev and Magnini, 2006),
and lexico-syntactic contextual patterns (e.g.,“re-
sides in<location>” or “moved to<location>” )
(Riloff and Jones, 1999; Thelen and Riloff, 2002).
Due to the need for POS tagging and/or parsing,
these types of methods have been evaluated only
on fixed corpora1, although (Pantel et al., 2004)
demonstrated how to scale up their algorithms for
the Web. The goal of our work is to improve upon
corpus-based bootstrapping algorithms by using co-
occurrence statistics obtained from the Web to re-
rank and filter the hypothesized category members.

Techniques for semantic class learning have also
been developed specifically for the Web. Sev-
eral Web-based semantic class learners build upon
Hearst’s early work (Hearst, 1992) with hyponym
patterns. Hearst exploited patterns that explicitly
identify a hyponym relation between a semantic
class and a word (e.g.,“such authors as<X>” ) to
automatically acquire new hyponyms. (Paşca, 2004)
applied hyponym patterns to the Web and learned se-
mantic class instances and groups by acquiring con-
texts around the patterns. Later, (Pasca, 2007) cre-
ated context vectors for a group of seed instances by
searching Web query logs, and used them to learn
similar instances. The KnowItAll system (Etzioni
et al., 2005) also uses hyponym patterns to extract
class instances from the Web and evaluates them fur-
ther by computing mutual information scores based
on Web queries. (Kozareva et al., 2008) proposed
the use of a doubly-anchored hyponym pattern and
a graph to represent the links between hyponym oc-
currences in these patterns.

Our work builds upon Turney’s work on seman-
tic orientation (Turney, 2002) and synonym learning
(Turney, 2001), in which he used a PMI-IR algo-
rithm to measure the similarity of words and phrases
based on Web queries. We use a similar PMI (point-
wise mutual information) metric for the purposes of
semantic class verification.

There has also been work on fully unsupervised

1Meta-bootstrapping (Riloff and Jones, 1999) was evaluated
on Web pages, but used a precompiled corpus of downloaded
Web pages.
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semantic clustering (e.g., (Lin, 1998; Lin and Pan-
tel, 2002; Davidov and Rappoport, 2006; Davidov et
al., 2007)), however clustering methods may or may
not produce the types and granularities of seman-
tic classes desired by a user. Another related line
of work is automated ontology construction, which
aims to create lexical hierarchies based on semantic
classes (e.g., (Caraballo, 1999; Cimiano and Volker,
2005; Mann, 2002)).

3 Semantic Lexicon Induction with
Web-based Corroboration

Our approach combines a weakly supervised learn-
ing algorithm for corpus-based semantic lexicon in-
duction with a follow-on procedure that gathers cor-
roborating statistical evidence from the Web. In
this section, we describe both of these components.
First, we give a brief overview of the Basilisk boot-
strapping algorithm that we use for corpus-based se-
mantic lexicon induction. Second, we present our
new strategies for acquiring and utilizing corrobo-
rating statistical evidence from the Web.

3.1 Corpus-based Semantic Lexicon Induction
via Bootstrapping

For corpus-based semantic lexicon induction, we
use a weakly supervised bootstrapping algorithm
called Basilisk (Thelen and Riloff, 2002). As in-
put, Basilisk requires a small set ofseed wordsfor
each semantic category, and a collection of (unanno-
tated) texts. Basilisk iteratively generates new words
that are hypothesized to belong to the same seman-
tic class as the seeds. Here we give an overview of
Basilisk’s algorithm and refer the reader to (Thelen
and Riloff, 2002) for more details.

The key idea behind Basilisk is to use pattern con-
texts around a word to identify its semantic class.
Basilisk’s bootstrapping process has two main steps:
Pattern Pool Creation and Candidate Word Selec-
tion. First, Basilisk applies the AutoSlog pattern
generator (Riloff, 1996) to create a set of lexico-
syntactic patterns that, collectively, can extract every
noun phrase in the corpus. Basilisk then ranks the
patterns according to how often they extract the seed
words, under the assumption that patterns which ex-
tract known category members are likely to extract
other category members as well. The highest-ranked

patterns are placed in apattern pool.
Second, Basilisk gathers every noun phrase that is

extracted by at least one pattern in the pattern pool,
and designates each head noun as acandidatefor the
semantic category. The candidates are then scored
and ranked. For each candidate, Basilisk collects all
of the patterns that extracted that word, computes the
logarithm of the number of seeds extracted by each
of those patterns, and finally computes the average
of these log values as the score for the candidate.
Intuitively, a candidate word receives a high score
if it was extracted by patterns that, on average, also
extract many known category members.

The N highest ranked candidates are automati-
cally added to the list ofseed words, taking a leap
of faith that they are true members of the semantic
category. The bootstrapping process then repeats,
using the larger set of seed words as known category
members in the next iteration.

Basilisk learns many good category members,
but its accuracy varies a lot across semantic cate-
gories (Thelen and Riloff, 2002). One problem with
Basilisk, and bootstrapping algorithms in general, is
that accuracy tends to deteriorate as bootstrapping
progresses. Basilisk generates candidates by iden-
tifying the contexts in which they occur and words
unrelated to the desired category can sometimes also
occur in those contexts. Some patterns consistently
extract members of several semantic classes; for ex-
ample,“attack on <NP>” will extract both people
(“attack on the president”) and buildings (“attack
on the U.S. embassy”). Idiomatic expressions and
parsing errors can also lead to undesirable words be-
ing learned. Incorrect words tend to accumulate as
bootstrapping progresses, which can lead to gradu-
ally deteriorating performance.

(Thelen and Riloff, 2002) tried to address this
problem by learning multiple semantic categories si-
multaneously. This helps to keep the bootstrapping
focused by flagging words that are potentially prob-
lematic because they are strongly associated with a
competing category. This improved Basilisk’s accu-
racy, but by a relatively small amount, and this ap-
proach depends on the often unrealistic assumption
that a word cannot belong to more than one seman-
tic category. In our work, we use the single-category
version of Basilisk that learns each semantic cate-
gory independently so that we do not need to make
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this assumption.

3.2 Web-based Semantic Class Corroboration

The novel aspect of our work is that we introduce a
new mechanism to independently verify each candi-
date word’s category membership using the Web as
an external knowledge source. We gather statistics
from the Web to provide evidence for (or against)
the semantic class of a word in a manner completely
independent of Basilisk’s criteria. Our approach
is based on thedistributional hypothesis(Harris,
1954), which says that words that occur in the same
contexts tend to have similar meanings. We seek to
corroborate a word’s semantic class through statis-
tics that measure how often the word co-occurs with
semantically related words.

For each candidate word produced by Basilisk, we
construct a Web query that pairs the word with a se-
mantically related word. Our goal is not just to find
Web pages that contain both terms, but to find Web
pages that contain both terms in close proximity to
one another. We consider two terms to be collo-
cated if they occur within ten words of each other
on the same Web page, which corresponds to the
functionality of the NEAR operator used by the Al-
taVista search engine2. Turney (Turney, 2001; Tur-
ney, 2002) reported that the NEAR operator outper-
formed simple page co-occurrence for his purposes;
our early experiments informally showed the same
for this work.

We want our technique to remain weakly super-
vised, so we do not want to require additional hu-
man input or effort beyond what is already required
for Basilisk. With this in mind, we investigated two
types of collocation relations as possible indicators
of semantic class membership:

Hypernym Collocation: We compute co-
occurrence statistics between the candidate word
and the name of the targeted semantic class (i.e.,
the word’s hypothesized hypernym). For example,
given the candidate wordjeep and the semantic
category VEHICLE, we would issue the Web query
“ jeep NEAR vehicle”. Our intuition is that such
queries would identify definition-type Web hits.
For example, the query “cowNEAR animal” might
retrieve snippets such as“A cow is an animal found

2http://www.altavista.com

on dairy farms” or “An animal such as a cow
has...”.

Seed Collocation: We compute co-occurrence
statistics between the candidate word and each seed
word that was given to Basilisk as input. For ex-
ample, given the candidate wordjeepand the seed
word truck, we would issue the Web query “jeep
NEAR truck”. Here the intuition is that members of
the same semantic category tend to occur near one
another - in lists, for example.

As a statistical measure of co-occurrence, we
compute a variation of Pointwise Mutual Informa-
tion (PMI), which is defined as:

PMI(x, y) = log( p(x,y)
p(x)∗p(y) )

wherep(x, y) is the probability thatx andy are col-
located (near each other) on a Web page,p(x) is the
probability thatx occurs on a Web page, andp(y) is
the probability thaty occurs on a Web page.

p(x) is calculated ascount(x)
N , wherecount(x) is

the number of hits returned by AltaVista, searching
for x by itself, andN is the total number of docu-
ments on the World Wide Web at the time the query
is made. Similarly, p(x, y) is count(x NEAR y)

N .
Given this, the PMI equation can be rewritten as:

log(N) + log( count(x NEAR y)
count(x)∗count(y) )

N is not known, but it is the same for every
query (assuming the queries were made at roughly
the same time). We will use these scores solely to
compare the relative goodness of candidates, so we
can omitN from the equation because it will not
change the relative ordering of the scores. Thus, our
PMI score3 for a candidate word and related term
(hypernym or seed) is:

log( count(x NEAR y)
count(x)∗count(y) )

Finally, we created three different scoring func-
tions that use PMI values in different ways to cap-
ture different types of co-occurrence information:

Hypernym Score: PMI based on collocation be-
tween the hypernym term and candidate word.

3In the rare cases when a term had a zero hit count, we as-
signed -99999 as the PMI score, which effectively ranks it atthe
bottom.
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Average of Seeds Score: The mean of the PMI
scores computed for the candidate and each
seed word:

1
|seeds|

|seeds|∑

i=1

PMI(candidate, seedi)

Max of Seeds Score: The maximum (highest) of
the PMI scores computed for the candidate and
each seed word.

The rationale for the Average of Seeds Score is
that the seeds are all members of the semantic cat-
egory, so we might expect other members to occur
near many of them. Averaging over all of the seeds
can diffuse unusually high or low collocation counts
that might result from an anomalous seed. The ra-
tionale for the Max of Seeds Score is that a word
may naturally co-occur with some category mem-
bers more often than others. For example, one would
expect dog to co-occur withcat much more fre-
quently than withfrog. A high Max of Seeds Score
indicates that there is at least one seed word that fre-
quently co-occurs with the candidate.

Since Web queries are relatively expensive, it is
worth taking stock of how many queries are nec-
essary. LetN be the number of candidate words
produced by Basilisk, andS be the number of
seed words given to Basilisk as input. To com-
pute the Hypernym Score for a candidate, we need
3 queries:count(hypernym), count(candidate),
and count(hypernym NEAR candidate). The
first query is the same for all candidates, so forN
candidate words we need2N + 1 queries in total.
To compute the Average or Max of Seeds Score for
a candidate, we needS queries forcount(seedi), S
queries forcount(seedi NEAR candidate), and 1
query for count(candidate). So for N candidate
words we needN ∗ (2S + 1) queries.S is typically
small for weakly supervised algorithms (S=10 in our
experiments), which means that this Web-based cor-
roboration process requiresO(N) queries to process
a semantic lexicon of sizeN .

4 Evaluation

4.1 Data Sets

We ran experiments on two corpora: 1700 MUC-4
terrorism articles (MUC-4 Proceedings, 1992) and
a combination of 6000 disease-related documents,

consisting of 2000 ProMed disease outbreak re-
ports (ProMed-mail, 2006) and 4000 disease-related
PubMed abstracts (PubMed, 2009). For the terror-
ism domain, we created lexicons for four semantic
categories: BUILDING , HUMAN , LOCATION, and
WEAPON. For the disease domain, we created lexi-
cons for three semantic categories: ANIMAL 4, DIS-
EASE, and SYMPTOM. For each category, we gave
Basilisk 10 seed words as input. The seeds were
chosen by applying a shallow parser to each corpus,
extracting the head nouns of all the NPs, and sort-
ing the nouns by frequency. A human then walked
down the sorted list and identified the 10 most fre-
quent nouns that belong to each semantic category5.
This strategy ensures that the bootstrapping process
is given seed words that occur in the corpus with
high frequency. The seed words are shown in Ta-
ble 1.

BUILDING : embassy office headquarters church
offices house home residence hospital airport

HUMAN : people guerrillas members troops
Cristiani rebels president terrorists soldiers leaders

LOCATION: country ElSalvador Salvador
United States area Colombia city countries
department Nicaragua

WEAPON: weapons bomb bombs explosives arms
missiles dynamite rifles materiel bullets

ANIMAL : bird mosquito cow horse pig chicken
sheep dog deer fish

DISEASE: SARS BSEanthrax influenzaWNV

FMD encephalitis malaria pneumonia flu
SYMPTOM: fever diarrhea vomiting rash paralysis

weakness necrosis chills headaches hemorrhage

Table 1: Seed Words

To evaluate our results, we used the gold standard
answer key that Thelen & Riloff created to evaluate
Basilisk on the MUC4 corpus (Thelen and Riloff,
2002); they manually labeled every head noun in the
corpus with its semantic class. For the ProMed /
PubMed disease corpus, we created our own answer
key. For all of the lexicon entries hypothesized by
Basilisk, a human annotator (not any of the authors)

4ANIMAL was chosen because many of the ProMed disease
outbreak stories concerned outbreaks among animal popula-
tions.

5The disease domain seed words were chosen from a larger
set of ProMed documents, which included the 2000 used for
lexicon induction.
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BUILDING HUMAN LOCATION WEAPON

N Ba Hy Av Mx Ba Hy Av Mx Ba Hy Av Mx Ba Hy Av Mx

25 .40 .56 .52 .56 .40 .72 .80 .84 .68 .88 .88 1.0 .56 .84 1.0 1.0
50 .44 .56 .46 .40 .56 .80 .88 .86 .80 .86 .84 .98 .52 .74 .76 .90
75 .44 .45 .41 .39 .65 .84 .85 .85 .80 .88 .80 .99 .52 .63 .65 .79

100 .42 .41 .38 .36 .69 .81 .80 .87 .81 .85 .78 .95 .55 .55 .56 .63

300 .22 .82 .75 .26

ANIMAL DISEASE SYMPTOM

N Ba Hy Av Mx Ba Hy Av Mx Ba Hy Av Mx

25 .48 .88 .92 .92 .64 .84 .80 .84 .64 .84 .92 .80
50 .58 .82 .84 .80 .72 .84 .60 .82 .62 .76 .90 .74
75 .55 .68 .67 .69 .69 .83 .59 .81 .61 .68 .79 .71

100 .45 .55 .54 .57 .69 .78 .58 .80 .59 .71 .77 .64

300 .20 .62 .38

Table 2: Ranking results for 7 semantic categories, showingaccuracies for the top-rankedN words.
(Ba=Basilisk,Hy=Hypernym Re-ranking,Av=Average of Seeds Re-ranking,Mx=Max of Seeds Re-ranking

labeled each word as either correct or incorrect for
the hypothesized semantic class. A word is consid-
ered to be correct if any sense of the word is seman-
tically correct.

4.2 Ranking Results

We ran Basilisk for 60 iterations, learning 5 new
words in each bootstrapping cycle, which produced
a lexicon of 300 words for each semantic category.
The columns labeledBa in Table 2 show the accu-
racy results for Basilisk.6 As we explained in Sec-
tion 3.1, accuracy tends to decrease as bootstrapping
progresses, so we computed accuracy scores for the
top-ranked 100 words, in increments of 25, and also
for the entire lexicon of 300 words.

Overall, we see that Basilisk learns many cor-
rect words for each semantic category, and the top-
ranked terms are generally more accurate than the
lower-ranked terms. For the top 100 words, accu-
racies are generally in the 50-70% range, except for
LOCATION which achieves about 80% accuracy. For
the HUMAN category, Basilisk obtained 82% accu-
racy over all 300 words, but the top-ranked words
actually produced lower accuracy.

Basilisk’s ranking is clearly not as good as it could
be because there are correct terms co-mingled with
incorrect terms throughout the ranked lists. This has

6These results are not comparable to the Basilisk results re-
ported by (Thelen and Riloff, 2002) because our implementa-
tion only does single-category learning while the results in that
paper are based on simultaneously learning multiple categories.

two ramifications. First, if we want a human to man-
ually review each lexicon before adding the words
to an external resource, then the rankings may not
be very helpful (i.e., the human will need to review
all of the words), and (2) incorrect terms generated
during the early stages of bootstrapping may be hin-
dering the learning process because they introduce
noise during bootstrapping. The HUMAN category
seems to have recovered from early mistakes, but
the lower accuracies for some other categories may
be the result of this problem. The purpose of our
Web-based corroboration process is to automatically
re-evaluate the lexicons produced by Basilisk, using
Web-based statistics to create more separation be-
tween the good entries and the bad ones.

Our first set of experiments uses the Web-based
co-occurrence statistics to re-rank the lexicon en-
tries. The Hy, Av, and Mx columns in Ta-
ble 2 show the re-ranking results using each of the
Hypernym, Average of Seeds, and Maximum of
Seeds scoring functions. In all cases, Web-based
re-ranking outperforms Basilisk’s original rank-
ings. Every semantic category except for BUILDING

yielded accuracies of 80-100% among the top can-
didates. For each row, the highest accuracy for each
semantic category is shown in boldface (as are any
tied for highest).

Overall, the Max of Seeds Scores were best, per-
forming better than or as well as the other scoring
functions on 5 of the 7 categories. It was only out-
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BUILDING HUMAN LOCATION WEAPON ANIMAL DISEASE SYMPTOM

consulate guerrilla SanSalvador shotguns bird-to-bird meningo-encephalitis nausea
pharmacies extremists Las Hojas carbines cervids bse).austria diarrhoea
aiport sympathizers Tejutepeque armaments goats inhalational myalgias
zacamil assassins Ayutuxtepeque revolvers ewes anthraxdisease chlorosis
airports patrols Copinol detonators ruminants otitis media myalgia
parishes militiamen Cuscatancingo pistols swine airport malaria salivation
Masariegos battalion Jiboa car bombs calf taeniorhynchus dysentery
chancery Ellacuria Chinameca calibers lambs hyopneumonia cramping
residences rebel Zacamil M-16 wolsington monkeypox dizziness
police station policemen Chalantenango grenades piglets kala-azar inappetance

Table 3: Top 10 words ranked by Max of Seeds Scores.

performed once by the Hypernym Scores (BUILD -
ING) and once by the Average of Seeds Scores
(SYMPTOM).

The strong performance of the Max of Seeds
scores suggests that one seed is often an especially
good collocation indicator for category membership
– though it may not be the same seed word for all of
the lexicon words. The relatively poor performance
of the Average of Seeds scores may be attributable
to the same principle; perhaps even if one seed is
especially strong, averaging over the less-effective
seeds’ scores dilutes the results. Averaging is also
susceptible to damage from words that receive the
special-case score of -99999 when a hit count is zero
(see Section 3.2).

Table 3 shows the 10 top-ranked candidates for
each semantic category based on the Max of Seeds
scores. The table illustrates that this scoring func-
tion does a good job of identifying semantically cor-
rect words, although of course there are some mis-
takes. Mistakes can happen due to parsing errors
(e.g.,bird-to-bird is an adjective and not a noun, as
in bird-to-bird transmission), and some are due to
issues associated with Web querying. For exam-
ple, the nonsense term“bse).austria” was ranked
highly because Altavista split this term into 2 sep-
arate words because of the punctuation, andbseby
itself is indeed a disease term (bovine spongiform
encephalitis).

4.3 Filtering Results

Table 2 revealed that the 300-word lexicons pro-
duced by Basilisk vary widely in the number of true
category words that they contain. The least dense
category is ANIMAL , with only 61 correct words,

and the most dense is HUMAN with 247 correct
words. Interestingly, the densest categories are not
always the easiest to rank. For example, the HU-
MAN category is the densest category but Basilisk’s
ranking of the human terms was poor.

θ Category Acc Cor/Tot

-22

WEAPON .88 46/52
LOCATION .98 59/60
HUMAN .80 8/10

BUILDING .83 5/6
ANIMAL .91 30/33
DISEASE .82 64/78

SYMPTOM .65 64/99

-23

WEAPON .79 59/75
LOCATION .96 82/85
HUMAN .85 23/27

BUILDING .71 12/17
ANIMAL .87 40/46
DISEASE .78 82/105

SYMPTOM .62 86/139

-24

WEAPON .63 63/100
LOCATION .93 111/120
HUMAN .87 54/62

BUILDING .45 17/38
ANIMAL .75 47/63
DISEASE .74 94/127

SYMPTOM .60 100/166

Table 4: Filtering results using the Max of Seeds Scores.

The ultimate goal behind a better ranking mech-
anism is to completely automate the process of se-
mantic lexicon induction. If we can produce high-
quality rankings, then we can discard the lower
ranked words and keep only the highest ranked
words for our semantic dictionary. However, this
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presupposes that we know where to draw the line be-
tween the good and bad entries, and Table 2 shows
that this boundary varies across categories. For HU-
MANS, the top 100 words are 87% accurate, and in
fact we get 82% accuracy over all 300 words. But
for ANIMALS we achieve 80% accuracy only for the
top 50 words. It is paramount for semantic dictio-
naries to have high integrity, so accuracy must be
high if we want to use the resulting lexicons without
manual review.

As an alternative to ranking, another way that we
could use the Web-based corroboration statistics is
to automatically filter words that do not receive a
high score. The key question is whether the values
of the scores are consistent enough across categories
to set a single threshold that will work well across
the different categories.

Table 4 shows the results of using the Max of
Seeds Scores as a filtering mechanism: given a
thresholdθ, all words that have a score< θ are dis-
carded. For each threshold valueθ and semantic cat-
egory, we computed the accuracy (Acc) of the lex-
icon after all words with a score< θ have been re-
moved. TheCor/Tot column shows the number of
correct category members and the number of total
words that passed the threshold.

We experimented with a variety of threshold val-
ues and found thatθ=-22 performed best. Table 4
shows that this threshold produces a relatively high-
precision filtering mechanism, with 6 of the 7 cat-
egories achieving lexicon accuracies≥ 80%. As
expected, theCor/Tot column shows that the num-
ber of words varies widely across categories. Au-
tomatic filtering represents a trade-off: a relatively
high-precision lexicon can be created, but some cor-
rect words will be lost. The threshold can be ad-
justed to increase the number of learned words, but
with a corresponding drop in precision. Depending
upon a user’s needs, a high threshold may be desir-
able to identify only the most confident lexicon en-
tries, or a lower threshold may be desirable to retain
most of the correct entries while reliably removing
some of the incorrect ones.

5 Conclusions

We have demonstrated that co-occurrence statis-
tics gathered from the Web can dramatically im-

prove the ranking of lexicon entries produced by
a weakly-supervised corpus-based bootstrapping al-
gorithm, without requiring any additional supervi-
sion. We found that computing Web-based co-
occurrence statistics across a set of seed words and
then using the highest score was the most success-
ful approach. Co-occurrence with a hypernym term
also performed well for some categories, and could
be easily combined with the Max of Seeds approach
by choosing the highest value among the seeds as
well as the hypernym.

In future work, we would like to incorporate this
Web-based re-ranking procedure into the bootstrap-
ping algorithm itself to dynamically “clean up” the
learned words before they are cycled back into the
bootstrapping process. Basilisk could consult the
Web-based statistics to select the best 5 words to
generate before the next bootstrapping cycle begins.
This integrated approach has the potential to sub-
stantially improve Basilisk’s performance because
it would improve the precision of the induced lex-
icon entries during the earliest stages of bootstrap-
ping when the learning process is most fragile.
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Abstract 

In this paper we present two approaches to 
automatically extract cross-lingual predi-
cate clusters, based on bilingual parallel 
corpora and cross-lingual information ex-
traction. We demonstrate how these clus-
ters can be used to improve the NIST 
Automatic Content Extraction (ACE) event 
extraction task1. We propose a new induc-
tive learning framework to automatically 
augment background data for low-
confidence events and then conduct global 
inference. Without using any additional 
data or accessing the baseline algorithms 
this approach obtained significant im-
provement over a state-of-the-art bilingual 
(English and Chinese) event extraction sys-
tem. 

1 Introduction 

Event extraction, the ‘classical’ information extrac-
tion (IE) task, has progressed from Message Un-
derstanding Conference (MUC)-style single 
template extraction to the more comprehensive 
multi-lingual Automatic Content Extraction (ACE) 
extraction including more fine-grained types. This 
extension has made event extraction more widely 
applicable in many NLP tasks including cross-
lingual document retrieval (Hakkani-Tur et al., 
2007) and question answering (Schiffman et al., 
2007). Various supervised learning approaches 

                                                           
1 http://www.nist.gov/speech/tests/ace/ 

have been explored for ACE multi-lingual event 
extraction (e.g. Grishman et al., 2005; Ahn, 2006; 
Hardy et al., 2006; Tan et al., 2008; Chen and Ji, 
2009). All of these previous literatures showed that 
one main bottleneck of event extraction lies in low 
recall. It’s a challenging task to recognize the dif-
ferent forms in which an event may be expressed, 
given the limited amount of training data. The goal 
of this paper is to improve the performance of a 
bilingual (English and Chinese) state-of-the-art 
event extraction system without accessing its inter-
nal algorithms or annotating additional data. 

As for a separate research theme, extensive 
techniques have been used to produce word clus-
ters or paraphrases from large unlabeled corpora 
(Brown et al., 1990; Pereira et al., 1993; Lee and 
Pereira, 1999, Barzilay and McKeown, 2001; Lin 
and Pantel, 2001; Ibrahim et al., 2003; Pang et al., 
2003). For example, (Bannard and Callison-Burch, 
2005) and (Callison-Burch, 2008) described a 
method to extract paraphrases from largely avail-
able bilingual corpora. The resulting clusters con-
tain words with similar semantic information and 
therefore can be useful to augment a small amount 
of annotated data. We will automatically extract 
cross-lingual predicate clusters using two different 
approaches based on bilingual parallel corpora and 
cross-lingual IE respectively; and then use the de-
rived clusters to improve event extraction. 

We propose a new learning method called in-
ductive learning to exploit the derived predicate 
clusters. For each test document, a background 
document is constructed by gradually replacing the 
low-confidence events with the predicates in the 
same cluster. Then we conduct cross-document 
inference technique as described in (Ji and Grish-
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man, 2008) to improve the performance of event 
extraction. This inductive learning approach 
matches the procedure of human knowledge acqui-
sition and foreign language education: analyze in-
formation from specific examples and then 
discover a pattern or draw a conclusion; attempt 
synonyms to convey/learn the meaning of an intri-
cate word.  

The rest of this paper is structured as follows. 
Section 2 describes the terminology used in this 
paper. Section 3 presents the overall system archi-
tecture and the baseline system. Section 4 then de-
scribes in detail the approaches of extracting cross-
lingual predicate clusters. Section 5 describes the 
motivations of using cross-lingual clusters to im-
prove event extraction. Section 6 presents an over-
view of the inductive learning algorithm. Section 7 
presents the experimental results. Section 8 com-
pares our approach with related work and Section 9 
then concludes the paper and sketches our future 
work. 

2 Terminology 

The event extraction task we are addressing is that 
of ACE evaluations. ACE defines the following 
terminology: 

 
entity: an object or a set of objects in one of the 
semantic categories of interest 
mention: a reference to an entity (typically, a 
noun phrase) 
event trigger: the main word which most clearly 
expresses an event occurrence 
event arguments: the mentions that are in-
volved in an event (participants) 
event mention: a phrase or sentence within 
which an event is described, including trigger 
and arguments 
 
The 2005 ACE evaluation had 8 types of events, 

with 33 subtypes; for the purpose of this paper, we 
will treat these simply as 33 distinct event types. 
For example, for a sentence “Barry Diller on 
Wednesday quit as chief of Vivendi Universal En-
tertainment”, the event extractor should detect all 
the following information: a “Personnel_End-
Position” event mention, with “quit” as the trigger 
word, “chief” as an argument with a role of  “posi-
tion”, “Barry Diller” as the person who quit the 
position, “Vivendi Universal Entertainment” as the 

organization, and the time during which the event 
happened is “Wednesday”. 

3 Approach Overview 

3.1 System Pipeline 

Figure 1 depicts the general procedure of our ap-
proach. The set of test event mentions is improved 
by exploiting cross-lingual predicate clusters.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. System Overview 
 
The following section 3.2 will give more details 

about the baseline bilingual event tagger. Then we 
will present the predicate cluster acquisition algo-
rithm in section 4 and the method of exploiting 
clusters for event extraction in section 6. 
3.2 A Baseline Bilingual Event Extraction 

System 
We use a state-of-the-art bi-lingual event extrac-
tion system (Grishman et al., 2005; Chen and Ji, 
2009) as our baseline. The system combines pat-
tern matching with a set of Maximum Entropy 
classifiers: to distinguish events from non-events; 
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to classify events by type and subtype; to distin-
guish arguments from non-arguments; to classify 
arguments by argument role; and given a trigger, 
an event type, and a set of arguments, to determine 
whether there is a reportable event mention. In ad-
dition, the Chinese system incorporates some lan-
guage-specific features to address the problem of 
word segmentation (Chen and Ji, 2009). 

4 Cross-lingual Predicate Cluster Acqui-
sition 

We start from two different approaches to extract 
cross-lingual predicate clusters, based on parallel 
corpora and cross-lingual IE techniques respec-
tively. 
4.1 Acquisition from Bilingual Parallel Cor-

pora 
In the first approach, we take use of the 852 Chi-
nese event trigger words in ACE05 training cor-
pora as our ‘anchor set’. For each Chinese trigger, 
we search its automatically aligned English words 
from a Chinese-English parallel corpus including 
50,000 sentence pairs (part of Global Autonomous 
Language Exploitation Y3 Machine Translation 
training corpora) to construct an English predicate 
cluster. The word alignment was obtained by run-
ning Giza++ (Och and Ney, 2003). In each cluster 
we record the frequency of each unique English 
word. Then we conduct the same procedure in the 
other direction to construct Chinese predicate clus-
ters anchored by English triggers. 

State-of-the-art Chinese-English word alignment 
error rate is about 40% (Deng and Byrne, 2005). 
Therefore the resulting cross-lingual clusters in-
clude a lot of word alignment errors. In order to 
address this problem, we filter the clusters by only 
keeping those predicates including the original 
predicate forms in ACE training data or Eng-
lish/Chinese Propbank (Palmer et al., 2005; Xue 
and Palmer, 2009).  
4.2 Acquisition from Cross-lingual IE 
Based on the intuition that Machine Translation 
(MT) may translate a Chinese trigger word into 
different English words in different contexts, we 
employ the second approach using cross-lingual IE 
techniques (Hakkani-Tur et al., 2007) on TDT5 
Chinese corpus to generate more clusters.  We ap-
ply the following two cross-lingual IE pipelines: 
 

Chinese IE_MT: Apply Chinese IE on the Chinese 
texts to get a set of Chinese triggers ch-trigger-set1, 
and then use word alignments to translate (project) 
ch-trigger-set1 into a set of English triggers en-
trigger-set1; 

 
MT_English IE: Translate Chinese texts into Eng-
lish, and then apply English IE on the translated 
texts to get a set of English triggers en-trigger-set2. 

 
For any Chinese trigger ch-trigger in ch-trigger-

set1, if its corresponding translation en-trigger in 
en-trigger-set1 is the same as that in en-trigger-
set2, then we add en-trigger into the cluster an-
chored by ch-trigger.  

  We apply the English and Chinese IE systems 
as described in (Grishman et al., 2005; Chen and Ji, 
2009). Both cross-lingual IE pipelines need ma-
chine translation to translate Chinese documents 
(for English IE) or project the extraction results 
from Chinese IE into English. We use the RWTH 
Aachen Chinese-to-English statistical phrase-based 
machine translation system (Zens and Ney, 2004) 
for these purposes.  
4.3 Derived Cross-lingual Predicate Clusters 
Applying the above two approaches we obtained 
438 English predicate clusters and 543 Chinese 
predicate clusters. 

For example, for a trigger “伤(injure)”, we can 
get the following two predicate clusters with their 
frequency in the parallel corpora:  

 
伤  {injured:99 injuries:96 injury:76 
 wounded:38 wounding:28 injuring:14 wounds:7 
killed:4 died:2 mutilated:1 casualties:1 chop:1 kill-
ing:1 shot:1}.  
 
injured  {受伤:1624 重伤:102 伤:99 轻伤:29 伤
势:23 炸:12 打伤:10 爆炸:6 伤害:3 死亡:2 冲突:1
亡:1 烫伤:1 损失:1 出席:1 登陆:1 致残:1 自残:1 } 
 
We can see that the predicates in the same clus-

ter are not restrictedly synonyms, but they were 
generated as alternative translations for the same 
word and therefore represent similar meanings. 
More importantly, these triggers vary from very 
common ones such as ‘injured’ to rare words such 
as ‘mutilate’. This indicates how these clusters can 
aid extracting low-confidence events: when decid-
ing whether a word ‘mutilate’ indicates a “Life-
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Injure” event in a certain context, we can replace it 
with other predicates in the same cluster and may 
provide us more reliable overall evidence. 

Figure 2 presents the distribution of clusters 
which include more than one predicate.  

 

 
 

Figure 2. Cluster Size Distribution 
 
We can see that most clusters include 2-9 predi-

cates in both English and Chinese. However on 
average English clusters include more predicates. 
In addition, there are many more singletons in 
Chinese (232) than in English (101). This indicates 
that Chinese event triggers are more ambiguous. 

5 Motivation of Using Cross-lingual Clus-
ters for Event Extraction 

After extracting cross-lingual predicate clusters, 
we can combine the evidence from all the predi-
cates in each cluster to adjust the probabilities of 
event labeling. In the following we present some 
examples in both languages to demonstrate this 
motivation. 

5.1 Improve Rare Trigger Labeling  

Due to the limited training data, many trigger 
words only appear a few times as a particular type 
of event. This data sparse problem directly leads to 
the low recall of trigger labeling. But exploiting 
the evidence from other predicates in the same 
cluster may boost the confidence score of the can-
didate event. We present two examples as follows. 
 
 
 

(1) English Example 1 
 

For example, “blown up” doesn’t appear in the 
training data as a “Conflict-Attack” event, and so it 
cannot be identified in the following test sentence. 
However, if we replace it with other predicates in 
the same cluster, the system can easily identify 
‘Conflict-Attack’ events in the new sentences with 
high confidence values: 
 

(a) Test Sentence:  
Identified as  “Conflict-Attack” Event with Confi-
dence=0: 
 
He told AFP that Israeli intelligence had been deal-
ing with at least 40 tip-offs of impending attacks 
when the Haifa bus was blown up. 
 
(b) Cross-lingual Cluster 
炸毁  { blown up:4 bombing:3 blew:2 destroying:1 
destroyed:1 } 
 
(c) Replaced Sentences 
Identified as “Conflict-Attack” Event with Confi-
dence=0.799: 
 
He told AFP that Israeli intelligence had been deal-
ing with at least 40 tip-offs of impending attacks 
when the Haifa bus was destroyed. 

… 
 

(2) Chinese Example 1 
 
Chinese predicate clusters anchored by English 
words can also provide external evidence for event 
identification. For example, the trigger word “假释 
(release/parole)” appears rarely in the Chinese 
training data but in most cases it can be replaced 
by a more frequent trigger “释放(release)” to rep-
resent the same meaning. Therefore by combining 
the evidence from “释放” we can enhance the con-
fidence value of identifying “假释” as a  “Justice-
Release_Parole” event. For example, 

 
(a) Test Sentence:  
Identified as “Justice-Release_Parole” Event with 
Confidence=0: 
 
这名嫌犯因为侵害案件假释出狱却又犯下了重
罪. 。 (This suspect was released because of the vio-
lation case but committed a felony again.) 
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(b) Cross-lingual Cluster 
releasing  {假释:4 释放:1 } 
 
(c) Replaced Sentences 
Identified as “Justice-Release_Parole” Event with 
Confidence=0.964: 
 
这名嫌犯因为侵害案件释放出狱却又犯下了重罪. 

… 
 

5.2 Improve Frequent Trigger Labeling  

On the other hand, some common words are highly 
ambiguous in particular contexts. But the other 
less-ambiguous predicates in the clusters can help 
classify event types more accurately. 
 
(1) English Example 2 
 
For example, in the following sentence the “Per-
sonnel-End_Position” event is missing because 
“step” doesn’t indicate any ACE events in the 
training data. However, after replacing “step” with 
other prediates such as “quit”, the system can iden-
tify the event more easily: 
 

(a) Test Sentence:  
Identified as “Personnel-End_Position” Event 
with Confidence=0: 
 
Barry Diller on Wednesday step from chief of Vivendi 
Universal Entertainment, the entertainment unit of 
French giant Vivendi Universal. 
 
(b) Cross-lingual Cluster 
下台  { resign:6 step:5 quit:3} 
 
(c) Replaced Sentences 
Classified as “Personnel-End_Position” Event 
with Confidence=0.564: 
 
Barry Diller on Wednesday quit from chief of Vivendi 
Universal Entertainment, the entertainment unit of 
French giant Vivendi Universal. 
… 
 

(2) Chinese Example 2 
 
Some single-character Chinese predicates can rep-
resent many different event types in different con-
texts. For example, the word “打” appears in 27 
different predicate clusters, representing the mean-

ing of hit/call/strike/form/take/draw etc. Therefore 
we can take use of other less ambiguous predicates 
in these clusters to adjust the likelihood of event 
classification.  

For example, in the following test sentence, the 
word “打” indicates two different event types. If 
we replace these words with other predicates, we 
can classify them into different event types more 
accurately based on the evidence from replaced 
predicates and contexts. 
 

(a) Test Sentence:  
Event Classification for trigger word “打”: 
 
就在几天前船长紧急打 (“call”, Phone-Write event 
with confidence 0) 电报求救，表示轮机长蔡明志
已经在 10 天前被大陆渔工打 (“attacked/killed”, 
Conflict-Attack event with confidence 0.528)死，自
己也被殴打(“attacked”, Conflict-Attack event with 
confidence 0.946)，连人带船胁持到大陆。(Several 
days ago the Captain called  urgent telegraphs to ask 
for help, expressing that the boat pilot Cai Mingzhi 
was already killed by mainland fishermen and he 
himself was assaulted and duressed to the mainland.) 

 
 

(b) Cross-lingual Cluster 
 
call  {打电话:6 电话:6 打:1 拨打:1 } 
 
attack {袭击:564 进攻:110 攻击:114 打击:24 反
击:15 爆炸:15 突袭:15 击:8 偷:6 围攻:6 身亡:5 行
凶:4 战争:3 死亡:3 丧生:2 谋杀:2 死:2 轰炸:2 侵
略:2 入侵:2 设立:1 出兵:1 推翻:1 打死:1 劫持:1 
打:1 遇害:1 咬:1 } 
 
(c) Replaced Sentences 
Event Classification for trigger word “打” with 
higher confidence: 
 
就在几天前船长紧急拨打  (“call”, Phone-Write 
event with confidence 0.938) 电报求救，表示轮机
长 蔡 明 志 已 经 在 10 天 前 被 大 陆 渔 工 杀
(“attacked/killed”, Conflict-Attack event with confi-
dence 0.583)死，自己也被袭击(“attacked”, Con-
flict-Attack event with confidence 0.987)，连人带船
胁持到大陆。 
… 
 
Based on the above motivations we propose to 

incorporate cross-lingual predicate clusters to re-
fine event identification and classification. In order 
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to exploit these clusters effectively, we shall gen-
erate additional background data and conduct 
global confidence. The sections below will present 
the detailed algorithms. 

6 Inductive Learning 

We design a framework of inductive learning to 
incorporate the derived predicate clusters. The 
general idea of inductive learning is to analyze in-
formation from all kinds of specific examples until 
we can draw a conclusion. Since the main goal of 
our approach is to improve the recall of event ex-
traction, we shall focus on those events generated 
by the baseline tagger with low confidence. For 
those events we automatically generate back-
ground documents using the predicate clusters (de-
tails in section 6.1) and then conduct global 
inference between each test document and its 
background documents (section 6.2).  
6.1 Background Document Generation 
For each event mention in a test document, the 
baseline event tagger produces the following local  
confidence value: 

 
• LConf(trigger, etype): The probability of a 

string trigger indicating an event mention with 
type etype in a context sentence S; 

 
If LConf(trigger, etype) is lower than a threshold, 

and it belongs to a predicate cluster C,  we create 
an additional background document BD by: 

 
• For each predicatei ∈ C, we replace trigger 

with predicatei in S to generate new sentence 
S’, and add S’ into BD.    

6.2 Global Inference 
For each background document BD, we apply the 
baseline event extraction and get a set of back-
ground events. We then apply the cross-document 
inference techniques as described in (Ji and 
Grishman, 2008) to improve trigger and argument 
labeling performance by favoring interpretation 
consistency across the test events and background 
events. 

This approach is based on the premise that many 
events will be reported multiple times from differ-
ent sources in different forms. This naturally oc-
curs in the test document and the background 

document because they include triggers from the 
same predicate cluster. 

By aggregating events across each pair of test 
document TD and background document BD, we 
conduct the following statistical global inference: 

 
• to remove triggers and arguments with low 

confidence in TD and BD; 
• to adjust trigger and argument identification 

and classification to achieve consistency across 
TD and BD. 

 
In this way we can propagate highly consistent 

and frequent triggers and arguments with high 
global confidence to override other, lower confi-
dence, extraction results.  

7 Experimental Results 

7.1 Data and Scoring Metric 
We used ACE2005 English and Chinese training 
corpora to evaluate our approach. Table 1 shows 
the number of documents used for training, devel-
opment and blind testing. 
 

Language Training 
Set 

Development 
Set 

Test Set

English 525 33 66 
Chinese 500 10 40 

 
Table 1. Number of Documents 

 
We define the following standards to determine 

the correctness of an event mention: 
 

• A trigger is correctly identified if its position 
in the document matches a reference trigger. 

• A trigger is correctly identified and classified 
if its event type and position in the document 
match a reference trigger. 

• An argument is correctly identified if its event 
type and position in the document match any 
of the reference argument mentions. 

• An argument is correctly identified and classi-
fied if its event type, position in the document, 
and role match any of the reference argument 
mentions. 
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Trigger  
Identification 

+Classification 

Argument  
Identification 

Argument  
Identification 

+Classification 

             Performance 
 

Language/System 
P R F P R F 

Argument 
Classification 

Accuracy 
P R F 

Baseline 67.8 53.5 59.8 49.3 31.4 38.3 88.2 43.5 27.7 33.9 
English After Using  

Cross-lingual 
Predicate Clusters 

69.2 59.4 63.9 51.7 32.7 40.1 89.6 46.3 29.3 35.9

Baseline 58.1 47.2 52.1 46.2 33.7 39.0 95.0 43.9 32.0 37.0 
Chinese After Using  

Cross-lingual  
Predicate Clusters 

60.2 52.6 56.1 46.8 36.7 41.1 95.6 44.7 35.1 39.3

 
Table 2. Overall Performance on Blind Test Set (%) 

 
7.2 Confidence Metric Thresholding 
Before blind testing we select the thresholds for the 
trigger confidence LConf(trigger, etype) as defined 
in section 6.1 by optimizing the F-measure score of 
on the development set. Figure 3 shows the effect 
on precision and recall of varying the threshold for 
inductive learning using cross-lingual predicate 
clusters. 
 

 
 

Figure 3. Trigger Labeling Performance with 
Inductive Learning Confidence Thresholding on 

English Development Set 
 
We can see that the best performance on the de-

velopment set can be obtained by selecting thresh-
old 0.6, achieving 9.4% better recall with a little 
loss in precision (0.26%) compared to the baseline 
(with threshold=0) . Then we apply this threshold 

value directly for blind test. This optimizing pro-
cedure is repeated for Chinese as well. 
7.3 Overall Performance 
Table 2 shows the overall Precision (P), Recall (R) 
and F-Measure (F) scores for the blind test set.  

For both English and Chinese, the inductive 
learning approach using cross-lingual predicate 
clusters provided significant improvement over the 
baseline event extraction system (about 4% abso-
lute improvement on trigger labeling and 2%-2.3% 
on argument labeling). The most significant gain 
was provided for the recall of trigger labeling – 
5.9% absolute improvement for English and 5.4% 
absolute improvement for Chinese. 

Surprisingly this approach didn’t cause any loss 
in precision. In fact small gains were obtained on 
precision for both languages. This indicates that 
cross-lingual predicate clusters are effective at ad-
justing the confidence values so that the events 
were not over-generated. The refined event trigger 
labeling also directly yields better performance in 
argument labeling. 

We conducted the Wilcoxon Matched-Pairs 
Signed-Ranks Test on a document basis. The re-
sults show that for both languages the improve-
ment using cross-lingual predicate clusters is 
significant at a 99.7% confidence level for trigger 
labeling and a 96.4% confidence level for argu-
ment labeling. 
7.4 Discussion 
For comparison we attempted a self-training ap-
proach: adding high-confidence events in the test 
set back as additional training data and re-train the 
event tagger. This produced 1.7% worse F-measure 
score for the English development set. It further 
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proves that using the test set itself is not enough, 
we need to explore new predicates to serve as 
background evidence. 

In addition we also applied a bootstrapping ap-
proach using relevant unlabeled data and obtained 
limited improvement – about 1.6% F-measure gain 
for English. As Ji and Grishman (2006) pointed out, 
both self-training and bootstrapping methods re-
quire good data selection scheme. But not for any 
test set we can easily find relevant unlabeled data. 
Therefore the approach presented in this paper is 
less expensive – we can automatically generate 
background data while introducing new evidence. 

An alternative way of incorporating the cross-
lingual predicate clusters would follow (Miller et 
al., 2004), namely encoding the cluster member-
ship as an additional feature in the supervised-
learning procedure of the baseline event tagger. 
However in the situation where we cannot directly 
change the algorithms of the baseline system, our 
approach of inductive learning is more flexible. 

8 Related Work 

Our approach of extracting predicate clusters is 
related to some prior work on paraphrase or word 
cluster discovery, either from mono-lingual paral-
lel corpora (e.g. Barzilay and McKeown, 2001; Lin 
and Pantel, 2001; Ibrahim et al., 2003; Pang et al., 
2003) or cross-lingual parallel corpora (e.g. Ban-
nard and Callison-Burch, 2005; Callison-Burch, 
2008). Shinyama and Sekine (2003) presented an 
approach of extracting paraphrases using names, 
dates and numbers as anchors. Hasegawa et al. 
(2004) described a paraphrase discovery approach 
based on clustering concurrent name pairs.  

Several recent studies have stressed the benefits 
of using paraphrases or word clusters to improve 
IE components. For example, (Miller et al., 2004) 
proved that word clusters can significantly improve 
English name tagging. The idea of using predicates 
in the same cluster for candidate trigger replace-
ment is similar to Ge et al.(1998) who used local 
context replacement for pronoun resolution. To the 
best of our knowledge, our work presented the first 
experiment of using cross-lingual predicate para-
phrases for the ACE event extraction task.  

9 Conclusion and Future Work 

In this paper we described two approaches to ex-
tract cross-lingual predicate clusters, and designed 

a new inductive learning framework to effectively 
incorporate these clusters for event extraction. 
Without using any additional data or changing the 
baseline algorithms, we demonstrated that this 
method can significantly enhance the performance 
of a state-of-the-art bilingual event tagger. 

We have noticed that the current filtering 
scheme based on Propbank may be too restricted to 
keep enough informative predicates. In the future 
we will attempt incorporating POS tagging results 
and frequency information.  

In addition we will extend this framework to ex-
tract cross-lingual relation and name clusters to 
improve other IE tasks such as name tagging, rela-
tion extraction, event coreference and event trans-
lation. We are also interested in automatically 
discovering new event types (non-ACE event types) 
or more fine-grained subtypes/attributes for exist-
ing ACE event types from the derived predicate 
clusters. 
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Abstract

Word Sense Induction (WSI) is the task of
identifying the different senses (uses) of a tar-
get word in a given text. This paper focuses
on the unsupervised estimation of the free pa-
rameters of a graph-based WSI method, and
explores the use of eight Graph Connectiv-
ity Measures (GCM) that assess the degree of
connectivity in a graph. Given a target word
and a set of parameters, GCM evaluate the
connectivity of the produced clusters, which
correspond to subgraphs of the initial (unclus-
tered) graph. Each parameter setting is as-
signed a score according to one of the GCM
and the highest scoring setting is then selected.
Our evaluation on the nouns of SemEval-2007
WSI task (SWSI) shows that: (1) all GCM es-
timate a set of parameters which significantly
outperform the worst performing parameter
setting in both SWSI evaluation schemes, (2)
all GCM estimate a set of parameters which
outperform the Most Frequent Sense (MFS)
baseline by a statistically significant amount
in the supervised evaluation scheme, and (3)
two of the measures estimate a set of parame-
ters that performs closely to a set of parame-
ters estimated in supervised manner.

1 Introduction

Using word senses instead of word forms is essential
in many applications such as information retrieval
(IR) and machine translation (MT) (Pantel and Lin,
2002). Word senses are a prerequisite for word sense
disambiguation (WSD) algorithms. However, they
are usually represented as a fixed-list of definitions
of a manually constructed lexical database. The

fixed-list of senses paradigm has several disadvan-
tages. Firstly, lexical databases often contain general
definitions and miss many domain specific senses
(Agirre et al., 2001). Secondly, they suffer from the
lack of explicit semantic and topical relations be-
tween concepts (Agirre et al., 2001). Thirdly, they
often do not reflect the exact content of the context
in which the target word appears (Veronis, 2004).
WSI aims to overcome these limitations of hand-
constructed lexicons.

Most WSI systems are based on the vector-space
model that represents each context of a target word
as a vector of features (e.g. frequency of cooccur-
ring words). Vectors are clustered and the resulting
clusters are taken to represent the induced senses.
Recently, graph-based methods have been employed
to WSI (Dorow and Widdows, 2003; Veronis, 2004;
Agirre and Soroa, 2007b).

Typically, graph-based approaches represent each
word co-occurring with the target word, within a
pre-specified window, as a vertex. Two vertices
are connected via an edge if they co-occur in one
or more contexts of the target word. This co-
occurrence graph is then clustered employing differ-
ent graph clustering algorithms to induce the senses.
Each cluster (induced sense) consists of words ex-
pected to be topically related to the particular sense.
As a result, graph-based approaches assume that
each context word is related to one and only one
sense of the target one.

Recently, Klapaftis and Manandhar (2008) argued
that this assumption might not be always valid, since
a context word may be related to more than one
senses of the target one. As a result, they pro-
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posed the use of a graph-based model for WSI, in
which each vertex of the graph corresponds to a
collocation (word-pair) that co-occurs with the tar-
get word, while edges are drawn based on the co-
occurrence frequency of their associated colloca-
tions. Clustering of this collocational graph would
produce clusters, which consist of a set of collo-
cations. The intuition is that the produced clusters
will be less sense-conflating than those produced
by other graph-based approaches, since collocations
provide strong and consistent clues to the senses of
a target word (Yarowsky, 1995).

The collocational graph-based approach as well
as the majority of state-of-the-art WSI systems es-
timate their parameters either empirically or by em-
ploying supervised techniques. The SemEval-2007
WSI task (SWSI) participating systems UOY and
UBC-AS used labeled data for parameter estimation
(Agirre and Soroa, 2007a), while the authors of I2R,
UPV SI and UMND2 have empirically chosen val-
ues for their parameters. This issue imposes limits
on the unsupervised nature of these algorithms, as
well as on their performance on different datasets.

More specifically, when applying an unsupervised
WSI system on different datasets, one cannot be sure
that the same set of parameters is appropriate for all
datasets (Karakos et al., 2007). In most cases, a new
parameter tuning might be necessary. Unsupervised
estimation of free parameters may enhance the unsu-
pervised nature of systems, making them applicable
to any dataset, even if there are no tagged data avail-
able.

In this paper, we focus on estimating the free
parameters of the collocational graph-based WSI
method (Klapaftis and Manandhar, 2008) using
eight graph connectivity measures (GCM). Given a
parameter setting and the associated induced cluster-
ing solution, each induced cluster corresponds to a
subgraph of the original unclustered graph. A graph
connectivity measure GCMi scores each cluster by
evaluating the degree of connectivity of its corre-
sponding subgraph. Each clustering solution is then
assigned the average of the scores of its clusters. Fi-
nally, the highest scoring solution is selected.

Our evaluation on the nouns of SWSI shows
that GCM improve the worst performing parame-
ter setting by large margins in both SWSI evaluation
schemes, although they are below the best perform-

ing parameter setting. Moreover, the evaluation in
a WSD setting shows that all GCM estimate a set
of parameters which are above the Most Frequent
Sense (MFS) baseline by a statistically significant
amount. Finally our results show that two of the
measures, i.e. average degree and weighted average
degree, estimate a set of parameters that performs
closely to a set of parameters estimated in a super-
vised manner. All of these findings, suggest that
GCM are able to identify useful differences regard-
ing the quality of the induced clusters for different
parameter combinations, in effect being useful for
unsupervised parameter estimation.

2 Collocational graphs for WSI

Let bc, be the base corpus, which consists of para-
graphs containing the target word tw. The aim is
to induce the senses of tw given bc as the only in-
put. Let rc be a large reference corpus. In Klapaftis
and Manandhar (2008) the British National Corpus1

is used as a reference corpus. The WSI algorithm
consists of the following stages.

Corpus pre-processing The target of this stage is
to filter the paragraphs of the base corpus, in order to
keep the words which are topically (and possibly se-
mantically) related to the target one. Initially, tw is
removed from bc and both bc and rc are PoS-tagged.
In the next step, only nouns are kept in the para-
graphs of bc, since they are characterised by higher
discriminative ability than verbs, adverbs or adjec-
tives which may appear in a variety of different con-
texts. At the end of this pre-processing step, each
paragraph of bc and rc is a list of lemmatized nouns
(Klapaftis and Manandhar, 2008).

In the next step, the paragraphs of bc are fil-
tered by removing common nouns which are noisy;
contextually not related to tw. Given a contex-
tual word cw that occurs in the paragraphs of bc, a
log-likelihood ratio (G2) test is employed (Dunning,
1993), which checks if the distribution of cw in bc
is similar to the distribution of cw in rc; p(cw|bc) =
p(cw|rc) (null hypothesis). If this is true, G2 has a
small value. If this value is less than a pre-specified
threshold (parameter p1) the noun is removed from
bc.

1The British National Corpus (BNC) (2001, version 2). Dis-
tributed by Oxford University Computing Services.
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Target: cnn nbc Target: nbc news
nbc tv nbc tv
cnn tv soap opera
cnn radio nbc show
news newscast news newscast
radio television nbc newshour
cnn headline cnn headline
nbc politics radio tv
breaking news breaking news

Table 1: Collocations connected to cnn nbc and nbc news

This process identifies nouns that are more indica-
tive in bc than in rc and vice versa. However, in this
setting we are not interested in nouns which have
a distinctive frequency in rc. As a result, each cw
which has a relative frequency in bc less than in rc
is filtered out. At the end of this stage, each para-
graph of bc is a list of nouns which are assumed to
be contextually related to the target word tw.

Creating the initial collocational graph The tar-
get of this stage is to determine the related nouns,
which will form the collocations, and the weight of
each collocation. Klapaftis and Manandhar (2008)
consider collocations of size 2, i.e. pairs of nouns.

For each paragraph of bc of size n, collocations
are identified by generating all the possible

(
cn

2

)

combinations. The frequency of a collocation c is
the number of paragraphs in the whole SWSI corpus
(27132 paragraphs), in which c occurs.

Each collocation is assigned a weight, measuring
the relative frequency of two nouns co-occurring.
Let freqij denote the number of paragraphs in
which nouns i and j cooccur, and freqj denote the
number of paragraphs, where noun j occurs. The
conditional probability p(i|j) is defined in equation
1, and p(j|i) is computed in a similar way. The
weight of collocation cij is the average of these con-
ditional probabilities wcij = p(i|j) + p(j|i).

p(i|j) =
freqij

freqj
(1)

Finally, Klapaftis and Manandhar (2008) only ex-
tract collocations which have frequency (parame-
ter p2) and weight (parameter p3) higher than pre-
specified thresholds. This filtering appears to com-
pensate for inaccuracies in G2, as well as for low-
frequency distant collocations that are ambiguous.
Each weighted collocation is represented as a ver-

tex. Two vertices share an edge, if they co-occur in
one or more paragraphs of bc.

Populating and weighing the collocational graph
The constructed graph, G, is sparse, since the pre-
vious stage attempted to identify rare events, i.e.
co-occurring collocations. To address this problem,
Klapaftis and Manandhar (2008) apply a smooth-
ing technique, similar to the one in Cimiano et
al. (2005), extending the principle that a word is
characterised by the company it keeps (Firth, 1957)
to collocations. The target is to discover new edges
between vertices and to assign weights to all edges.

Each vertex i (collocation ci) is associated to
a vector V Ci containing its neighbouring vertices
(collocations). Table 1 shows an example of two
vertices, cnn nbc and nbc news, which are discon-
nected in G of the target word network. The example
was taken from Klapaftis and Manandhar (2008).

In the next step, the similarity between all vertex
vectors V Ci and V Cj is calculated using the Jaccard
coefficient, i.e. JC(V Ci, V Cj) = |V Ci∩V Cj |

|V Ci∪V Cj | . Two
collocations ci and cj are mutually similar if ci is the
most similar collocation to cj and vice versa.

Given that collocations ci and cj are mutually
similar, an occurrence of a collocation ck with one
of ci, cj is also counted as an occurrence with the
other collocation. For example in Table 1, if cnn nbc
and nbc news are mutually similar, then the zero-
frequency event between nbc news and cnn tv is
set equal to the joint frequency between cnn nbc
and cnn tv. Marginal frequencies of collocations
are updated and the overall result is consequently a
smoothing of relative frequencies.

The weight applied to each edge connecting ver-
tices i and j (collocations ci and cj ) is the maximum
of their conditional probabilities: p(i|j) = freqij

freqj
,

where freqi is the number of paragraphs collocation
ci occurs. p(j|i) is defined similarly.

Inducing senses and tagging In this final stage,
the collocational graph is clustered to produced the
senses (clusters) of the target word. The clustering
method employed is Chinese Whispers (CW) (Bie-
mann, 2006). CW is linear to the number of graph
edges, while it offers the advantage that it does not
require any input parameters, producing the clusters
of a graph automatically.
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Figure 1: An example undirected weighted graph.

Initially, CW assigns all vertices to different
classes. Each vertex i is processed for a number of
iterations and inherits the strongest class in its lo-
cal neighbourhood (LN) in an update step. LN is
defined as the set of vertices which share an edge
with i. In each iteration for vertex i: each class, cl,
receives a score equal to the sum of the weights of
edges (i, j), where j has been assigned to class cl.
The maximum score determines the strongest class.
In case of multiple strongest classes, one is chosen
randomly. Classes are updated immediately, mean-
ing that a vertex can inherit from its LN classes that
were introduced in the same iteration.

Once CW has produced the clusters of a target
word, each of the instances of tw is tagged with
one of the induced clusters. This process is simi-
lar to Word Sense Disambiguation (WSD) with the
difference that the sense repository has been auto-
matically produced. Particularly, given an instance
of tw in paragraph pi: each induced cluster cl is as-
signed a score equal to the number of its collocations
(i.e. pairs of words) occurring in pi. We observe that
the tagging method exploits the one sense per collo-
cation property (Yarowsky, 1995), which means that
WSD based on collocations is probably finer than
WSD based on simple words, since ambiguity is re-
duced (Klapaftis and Manandhar, 2008).

3 Unsupervised parameter tuning

In this section we investigate unsupervised ways to
address the issue of choosing parameter values. To
this end, we employ a variety of GCM, which mea-
sure the relative importance of each vertex and as-
sess the overall connectivity of the corresponding
graph. These measures are average degree, cluster
coefficient, graph entropy and edge density (Navigli
and Lapata, 2007; Zesch and Gurevych, 2007).

GCM quantify the degree of connectivity of the
produced clusters (subgraphs), which represent the

senses (uses) of the target word for a given cluster-
ing solution (parameter setting). Higher values of
GCM indicate subgraphs (clusters) of higher con-
nectivity. Given a parameter setting, the induced
clustering solution and a graph connectivity measure
GCMi, each induced cluster is assigned the result-
ing score of applying GCMi on the corresponding
subgraph of the initial unclustered graph. Each clus-
tering solution is assigned the average of the scores
of its clusters (table 6), and the highest scoring one
is selected.

For each measure, we have developed two ver-
sions, i.e. one which considers the edge weights in
the subgraph, and a second which does not. In the
following description the terms graph and subgraph
are interchangeable.

Let G = (V,E) be an undirected graph (in-
duced sense), where V is a set of vertices and E =
{(u, v) : u, v ∈ V } a set of edges connecting vertex
pairs. Each edge is weighted by a positive weight,
W : wuv → [0,∞). Figure 1 shows a small example
to explain the computation of GCM. The graph con-
sists of 8 vertices, |V | = 8, and 10 edges, |E| = 10.
Edge weights appear on edges, e.g. wab = 1

4 .

Average Degree The degree (deg) of a vertex u is
the number of edges connected to u:

deg(u) = |{(u, v) ∈ E : v ∈ V }| (2)

The average degree (AvgDeg) of a graph can be
computed as:

AvgDeg(G(V,E)) =
1
|V |

∑

u∈V

deg(u) (3)

The first row of table 2 shows the vertex degrees
of the example graph (figure 1) and AvgDeg(G) =
20
8 = 2.5.

Edge weights can be integrated into the degree
computation. Let mew be the maximum edge
weight in the graph:

mew = max
(u,v)∈E

wuv (4)

Average Weighted Degree The weighted de-
gree(w deg) of a vertex is defined as:

w deg(u) =
1
|V |

∑

(u,v)∈E

wuv

mew
(5)
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a b c d e f g h

deg(u) 2 2 3 4 3 3 2 1

wdeg(u) 5
4

1 5
2

9
4

7
4

3
2

3
2

1
4

Tu 1 1 1 1 1 2 1 0

cc(u) 1 1 1
3

1
6

1
3

2
3

1 0

WTu
3
4

1 1
4

1
4

1
2

3
2

1
4

0

wcc(u) 3
4

1 1
12

1
24

1
6

1
2

1
4

0

p(u) 1
10

1
10

3
20

1
5

3
20

3
20

1
10

1
20

en(u) ∗ 100 33 33 41 46 41 41 33 22

wp(u) 1
16

1
20

1
8

9
80

7
80

3
40

3
40

1
80

we(u) ∗ 100 25 22 38 35 31 28 28 8

Table 2: Computations of graph connectivity measures
and relevant quantities on the example graph (figure 1).

Average weighted degree (AvgWDeg), similarly to
AvgDeg, is averaged over all vertices of the graph.
In the graph of figure 1, mew = 1. The second row
of table 2 shows the weighted degrees of all vertices.
AvgWDeg(G) = 48

36 ' 1.33.

Average Cluster Coefficient The cluster coeffi-
cient (cc) of a vertex, u, is defined as:

cc(u) =
Tu

2−1ku(ku − 1)
(6)

Tu =
∑

(u,v)∈E

∑

(v,x)∈E
x 6=u

1 (7)

Tu is the number of edges between the ku neigh-
bours of u. Obviously ku = deg(u). 2−1ku(ku− 1)
would be the number of edges between the neigh-
bours of u if the graph they define was fully con-
nected. Average cluster coefficient (AvgCC) is aver-
aged over all vertices of the graph.

The computations of Tu and cc(u) on the example
graph are shown in the third and fourth rows of table
2. Consequently, AvgCC(G) = 9

16 = 0.5625.

Average Weighted Cluster Coefficient Let WTu

be the sum of edge weights between the neighbours
of u over mew. Weighted cluster coefficient (wcc)
can be computed as:

wcc(u) =
WTu

2−1ku(ku − 1)
(8)

WTu =
1

mew

∑

(u,v)∈E

∑

(v,x)∈E
x 6=u

wvx (9)

Average weighted cluster coefficient (AvgWCC) is
averaged over all vertices of the graph. The com-
putations of WTu and wcc(u) on the example graph
(figure 1) are shown in the fifth and sixth rows of
table 2 and AvgWCC(G) = 67

8∗24 ' 0.349.

Graph Entropy Entropy measures the amount of
information (alternatively the uncertainty) in a ran-
dom variable. For a graph, high entropy indicates
that many vertices are equally important and low en-
tropy that only few vertices are relevant (Navigli and
Lapata, 2007). The entropy (en) of a vertex u can be
defined as:

en(u) = −p(u) log2 p(u) (10)

The probability of a vertex, p(u), is determined by
the degree distribution:

p(u) =
{

deg(u)
2|E|

}

u∈V

(11)

Graph entropy (GE) is computed by summing all
vertex entropies and normalising by log2 |V |. The
seventh and eighth row of table 2 show the compu-
tations of p(u) and en(u) on the example graph, re-
spectively. Thus, GE ' 0.97.

Weighted Graph Entropy Similarly to previous
graph connectivity measures, the weighted entropy
(wen) of a vertex u is defined as:

we(u) = −wp(u) log2 wp(u) (12)

where: wp(u) =
{

w deg(u)
2 ∗mew ∗ |E|

}

u∈V

Weighted graph entropy (GE) is computed by sum-
ming all vertex weighted entropies and normalising
by log2 |V |. The last two rows of table 2 show the
computations of wp(u) and we(u) on the example
graph. Consequently, WGE ' 0.73.

Edge Density and Weighted Edge Density Edge
density (ed) quantifies how many edges the graph
has, as a ratio over the number of edges of a fully
connected graph of the same size:

A(V ) = 2
(|V |

2

)
(13)
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Edge density (ed) is a global graph connectivity
measure; it refers to the whole graph and not a spe-
cific vertex. Edge density (ed) and weighted edge
density (wed) can be defined as follows:

ed(G(V,E)) =
|E|

A(V )
(14)

wed(G(V,E)) =
1

A(V )

∑

(u,v)∈E

wu,v

mew
(15)

In the graph of figure 1: A(V ) = 2
(
8
2

)
= 28,

ed(G) = 10
28 ' 0.357,

∑ wu,v

mew = 6 and wed(G) =
6
28 ' 0.214.

The use of the aforementioned GCM allows the
estimation of a different parameter setting for each
target word. Table 3 shows the parameters of the col-
locational graph-based WSI system (Klapaftis and
Manandhar, 2008). These parameters affect how the
collocational graph is constructed, and in effect the
quality of the induced clusters.

4 Evaluation

4.1 Experimental setting
The collocational WSI approach was evaluated un-
der the framework and corpus of SemEval-2007
WSI task (Agirre and Soroa, 2007a). The corpus
consists of text of the Wall Street Journal corpus,
and is hand-tagged with OntoNotes senses (Hovy et
al., 2006). The evaluation focuses on all 35 nouns of
SWSI. SWSI task employs two evaluation schemes.
In unsupervised evaluation, the results are treated as
clusters of contexts and gold standard (GS) senses
as classes. In a perfect clustering solution, each in-
duced cluster contains the same contexts as one of
the classes (Homogeneity), and each class contains
the same contexts as one of the clusters (Complete-
ness). F-Score is used to assess the overall quality of
clustering. Entropy and purity are also used, com-
plementarily. F-Score is a better measure than en-
tropy or purity, since F-Score measures both homo-
geneity and completeness, while entropy and purity
measure only the former. In the second scheme, su-
pervised evaluation, the training corpus is used to
map the induced clusters to GS senses. The testing
corpus is then used to measure WSD performance
(Table 4, Sup. Recall).

The graph-based collocational WSI method is re-
ferred as Col-Sm (where “Col” stands for the “col-

Parameter Range Value
G2 threshold 5, 10, 15 p1 = 5
Collocation frequency 4, 6, 8, 10 p2 = 8
Collocation weight 0.2, 0.3, 0.4 p3 = 0.2

Table 3: Parameters ranges and values in Klapaftis and
Manandhar (2008)

locational WSI” approach and “Sm” for its ver-
sion using “smoothing”). Col-Bl (where “Bl” stands
for “baseline”) refers to the same system without
smoothing. The parameters of Col-Sm were origi-
nally estimated by cross-validation on the training
set of SWSI. Out of 72 parameter combinations, the
setting with the highest F-Score was chosen and ap-
plied to all 35 nouns of the test set. This is referred
as Col-Sm-org (where “org” stands for “original”) in
Table 4. Table 3 shows all values for each parameter,
and the chosen values, under supervised parameter
estimation2. Col-Bl-org (Table 4) induces senses as
Col-Sm-org does, but without smoothing.

In table 4, Col-Sm-w (respectively Col-Bl-w)
refers to the evaluation of Col-Sm (Col-Bl), follow-
ing the same technique for parameter estimation as
in Klapaftis and Manandhar (2008) for each target
word separately (“w” stands for “word”). Given that
GCM are applied for each target word separately,
these baselines will allow to see the performance of
GCM compared to a supervised setting.

The 1c1inst baseline assigns each instance to a
distinct cluster, while the 1c1w baseline groups all
instances of a target word into a single cluster. 1c1w
is equivalent to MFS in this setting. The fifth column
of table 4 shows the average number of clusters.

The SWSI participant systems UOY and UBC-AS
used labeled data for parameter estimation. The au-
thors of I2R, UPV SI and UMND2 have empirically
chosen values for their parameters.

The next subsection presents the evaluation of
GCM as well as the results of SWSI systems. Ini-
tially, we provide a brief discussion on the differ-
ences between the two evaluation schemes of SWSI
that will allow for a better understanding of GCM
performance.

4.2 Analysis of results and discussion
Evaluation of WSI methods is a difficult task. For
instance, 1c1inst (Table 4) achieves perfect purity

2CW performed 200 iterations for all experiments, because
it is not guaranteed to converge.
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System Unsupervised Evaluation Sup.
FSc. Pur. Ent. # Cl. Recall

Col-Sm-org 78.0 88.6 31.0 5.9 86.4
Col-Bl-org 73.1 89.6 29.0 8.0 85.6
Col-Sm-w 80.9 88.0 32.5 4.3 85.5
Col-Bl-w 78.1 88.3 31.7 5.4 84.3
UBC-AS 80.8 83.6 43.5 1.6 80.7
UPV SI 69.9 87.4 30.9 7.2 82.5
I2R 68.0 88.4 29.7 3.1 86.8
UMND2 67.1 85.8 37.6 1.7 84.5
UOY 65.8 89.8 25.5 11.3 81.6
1c1w-MFS 80.7 82.4 46.3 1 80.9
1c1inst 6.6 100 0 73.1 N/A

Table 4: Evaluation of WSI systems and baselines.

and entropy. However, F-Score of 1c1inst is low,
because the GS senses are spread among clusters,
decreasing unsupervised recall. Supervised recall of
1c1inst is undefined, because each cluster tags only
one instance. Hence, clusters tagging instances in
the test corpus do not tag any instances in the train
corpus and the mapping cannot be performed. 1c1w
achieves high F-Score due to the dominance of MFS
in the testing corpus. However, its purity, entropy
and supervised recall are much lower than other sys-
tems, because it only induces the dominant sense.

Clustering solutions that achieve high supervised
recall do not necessarily achieve high F-Score,
mainly because F-Score penalises systems for in-
ducing more clusters than the corresponding GS
classes, as 1cl1inst does. Supervised evaluation
seems to be more neutral regarding the number of
clusters, since clusters are mapped into a weighted
vector of senses. Thus, inducing a number of clus-
ters similar to the number of senses is not a require-
ment for good results (Agirre and Soroa, 2007a).
High supervised recall means high purity and en-
tropy, as in I2R, but not vice versa, as in UOY. UOY
produces many clean clusters, however these are un-
reliably mapped to senses due to insufficient train-
ing data. On the contrary, I2R produces a few clean
clusters, which are mapped more reliably.

Comparing the performance of SWSI systems
shows that none performs well in both evaluation
settings, in effect being biased against one of the
schemes. However, this is not the case for the collo-
cational WSI method, which achieves a high perfor-
mance in both evaluation settings.

Table 6 presents the results of applying the graph

System Bound Unsupervised Evaluation Sup.
type FSc. Pur. Ent. # Cl. Recall

Col-Sm MaxR 79.3 90.5 26.6 7.0 88.6
Col-Sm MinR 62.9 89.0 26.7 12.7 78.8
Col-Bl MaxR 72.9 91.8 23.2 9.6 88.7
Col-Bl MinR 57.5 89.0 26.4 14.4 76.2
Col-Sm MaxF 83.2 90.0 28.7 4.9 86.6
Col-Sm MinF 43.6 90.2 22.1 17.6 83.7
Col-Bl MaxF 81.1 90.0 28.7 5.3 81.8
Col-Bl MinF 34.1 90.5 20.5 20.4 81.5

Table 5: Upper and lower performance bounds for sys-
tems Col-Sm and Col-Bl.

connectivity measures of section 3 in order to choose
the parameter values for the collocational WSI sys-
tem, for each word separately. The evaluation is
done both for Col-Sm and Col-Bl that use and ignore
smoothing, respectively.

To evaluate the supervised recall performance
using the graph connectivity measures, we com-
puted both the upper and lower bounds of Col-Sm,
i.e. the best and worst supervised recall, respectively
(MaxR and MinR in table 5). In the former case,
we selected the parameter combination per target
word that performs best (Col-Sm, MaxR in table 5),
which resulted in 88.6% supervised recall (F-Score:
79.3%), while in the latter we selected the worst per-
forming one, which resulted in 78.8% supervised re-
call (F-Score: 62.9%). In table 6 we observe that
the supervised recall of all measures is significantly
lower than the upper bound. However, all measures
perform significantly better than the lower bound
(McNemar’s test, confidence level: 95%); the small-
est difference is 4.9%, in the case of weighted edge
density. The picture is the same for Col-Bl.

In the same vein, we computed both the upper and
lower bounds of Col-Sm in terms of F-Score, 83.2%
and 43.6%, respectively (Col-Sm, MinF and MaxF
in table 5). The performance of the system is lower
than the upper bound, for all GCM. Despite that, we
observe that all measures except edge density and
weighted edge density outperform the lower bound
by large margins.

The comparison of GCM performance against
the lower and upper bounds of Col-Sm and Col-Bl
shows that GCM are able to identify useful differ-
ences regarding the degree of connectivity of in-
duced clusters, and in effect suggest parameter val-
ues that perform significantly better than the worst
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Col-Sm Col-Bl
Unsupervised Evaluation Sup. Unsupervised Evaluation Sup.

Graph Connectivity Measure FSc Pur. Ent. # Cl. Recall FSc Pur. Ent. # Cl. Recall
Average Degree 79.2 87.2 34.2 3.9 84.8 77.5 31.3 88.4 5.7 83.8
Average Weighted Degree 77.1 87.8 32.0 5.5 84.2 75.1 28.3 89.6 8.5 83.3
Average Cluster Coefficient 72.5 88.8 28.5 9.1 83.9 68.7 24.0 90.9 12.9 83.9
Average Weighted Cluster Coefficient 65.8 88.4 28.0 9.6 84.1 68.9 22.4 91.3 13.9 83.7
Graph Entropy 67.0 89.6 25.9 12.3 83.8 68.5 22.1 91.8 14.4 84.4
Weighted Graph Entropy 72.7 89.4 28.1 9.6 84.1 72.2 23.5 91.2 12.5 84.0
Edge Density 47.8 91.8 19.4 18.4 84.8 42.0 16.9 92.8 21.9 84.1
Weighted Edge Density 53.4 90.2 23.1 15.5 83.7 42.2 17.1 92.7 21.9 83.9

Table 6: Unsupervised & supervised evaluation of the collocational WSI approach using graph connectivity measures.

case. However, they are all unable to approximate
the upper bound for both evaluation schemes, which
is also the case for the supervised estimation of pa-
rameters per target word (Col-Sm-w and Col-Bl-w).

In Table 6, we also observe that all measures
achieve higher supervised recall scores than the
MFS baseline. The increase is statistically signif-
icant (McNemar’s test, confidence level: 95%) in
all cases. This result shows that irrespective of the
number of clusters produced (low F-Score), GCM
are able to estimate a set of parameters that provides
clean clusters (low entropy), which when mapped to
GS senses improve upon the most frequent heuristic,
unlike the majority of unsupervised WSD systems.

Regarding the comparison between different
GCM, we observe that average degree and weighted
average degree for Col-Sm (Col-Bl) perform
closely to Col-Sm-w (Col-Bl-w) for both evaluation
schemes. This is due to the fact that they produce a
number of clusters similar to Col-Sm-w (Col-Bl-w),
while at the same time their distributions of clusters
over the target words’ instances are also similar.

On the contrary, the remaining GCM tend to pro-
duce larger numbers of clusters compared to both
Col-Sm-w (Col-Bl-w) and the GS, in effect being
penalised by F-Score. As it has already been men-
tioned, supervised recall is less affected by a large
number of clusters, which causes small differences
among GCM.

Determining whether the weighted or unweighted
version of GCM performs better depends on the
GCM itself. Weighted graph entropy performs in all
cases better than the unweighted version. For aver-
age cluster coefficient and edge density, we cannot
extract a safe conclusion. Unweighted average de-
gree performs better than the weighted version.

5 Conclusion and future work

In this paper, we explored the use of eight graph con-
nectivity measures for unsupervised estimation of
free parameters of a collocational graph-based WSI
system. Given a parameter setting and the associ-
ated induced clustering solution, each cluster was
scored according to the connectivity degree of its
corresponding subgraph, as assessed by a particular
graph connectivity measure. Each clustering solu-
tion was then assigned the average of its clusters’
scores, and the highest scoring one was selected.

Evaluation on the nouns of SemEval-2007 WSI
task (SWSI) showed that all eight graph connectiv-
ity measures choose parameters for which the corre-
sponding performance of the system is significantly
higher than the lower performance bound, for both
the supervised and unsupervised evaluation scheme.
Moreover, the selected parameters produce results
which outperform the MFS baseline by a statisti-
cally significant amount in the supervised evalua-
tion scheme. The best performing measures, average
degree and weighted average degree, perform com-
parably well to the set of parameters chosen by a
supervised parameter estimation. In general, graph
connectivity measures can quantify significant dif-
ferences regarding the degree of connectivity of in-
duced clusters.

Future work focuses on further exploiting graph
connectivity measures. Graph theoretic literature
proposes a variety of measures capturing graph
properties. Some of these measures might help in
improving WSI performance, while at the same time
keeping graph-based WSI systems totally unsuper-
vised.
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Abstract

The task of automatically acquiring semanti-
cally related words have led people to study
distributional similarity. The distributional
hypothesis states that words that are simi-
lar share similar contexts. In this paper we
present a technique that aims at improving
the performance of a syntax-based distribu-
tional method by augmenting the original in-
put of the system (syntactic co-occurrences)
with the output of the system (nearest neigh-
bours). This technique is based on the idea of
the transitivity of similarity.

1 Introduction

The approach described in this paper builds on the
DISTRIBUTIONAL HYPOTHESIS, the idea that se-
mantically related words are distributed similarly
over contexts. Harris (1968) claims that, ‘the mean-
ing of entities and the meaning of grammatical re-
lations among them, is related to the restriction of
combinations of these entities relative to other enti-
ties.’ In other words, you can grasp the meaning of
a word by looking at its context.

Context can be defined in many ways. In this pa-
per we look at the syntactic contexts a word is found
in. For example, the verbs that are in a object rela-
tion with a particular noun form a part of its context.
In accordance with the Firthian tradition these con-
texts can be used to determine the semantic related-
ness of words. For instance, words that occur in a
object relation with the verb drink have something
in common: they are liquid. We will refer to words
linked by a syntactic relation, such as drink -OBJ-
beer, as SYNTACTIC CO-OCCURRENCES. Syntac-
tic co-occurrences have often been used in work on

lexical acquisition (Lin, 1998b; Dagan et al., 1999;
Curran and Moens, 2002; Alfonseca and Manand-
har, 2002).

Distributional methods for automatic acquisition
of semantically related words suffer from data
sparseness. They generally perform less well
on low-frequency words (Weeds and Weir, 2005;
van der Plas, 2008). This is a pity because the avail-
able resources for semantically related words usu-
ally cover the frequent words rather well. It is for the
low-frequency words that automatic methods would
be most welcome.

This paper tries to find a way to improve the per-
formance on the words that are most wanted: the
middle to very-low-frequency words. At the basis of
the proposed technique lies the intuition that seman-
tic similarity between concepts is transitive: if A is
like B and B is like C → A is like C. As explained
in the second paragraph of this section, the fact that
both milk and water are found in object relation with
the verb to drink tells us that they might be similar.
However, even if we had never seen lemonade in the
same syntactic contexts as water, we could still in-
fer that lemonade and water are similar because we
have found evidence that both water and lemonade
are similar to milk.

In an ideal world we would be able to infer that
milk and water are related from the syntactic co-
occurrences alone, however, because of data sparse-
ness we might not always encounter this evidence
directly. We hope that nearest neighbours are able
to account for the missing information. Nearest
neighbours such as milk and water, and water and
lemonade are the output of our system. We used the
nearest neighbours (the output of our system) as in-
put to our system that normally takes syntactic co-
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occurrences as input. Thus it uses the output of the
system as input in a second round to smooth the syn-
tactic co-occurrences.

Grefenstette (1994) discusses the difference be-
tween FIRST- AND SECOND-ORDER AFFINITIES.
There exists a first-order affinity between words if
they often appear in the same context, i.e., if they are
often found in the vicinity of each other. Words that
co-occur frequently such as orange and squeezed
have a first-order affinity. There exists a second-
order affinity between words if they share many first-
order affinities. These words need not appear to-
gether themselves, but their contexts are similar. Or-
ange and lemon appear often in similar contexts such
as being the object of squeezed, or being modified by
juicy.

In this paper we will use second-order affinities as
input to the distributional system. We are thus com-
puting THIRD-ORDER AFFINITIES.1 There exists
a third-order affinity between words, if they share
many second-order affinities. If pear and water-
melon are similar and orange and watermelon are
similar, then pear and orange have a third-order
affinity.

We will refer to traditional approaches that com-
pute second-order affinities as second-order tech-
niques. In this paper we will compare a second-
order technique with a third-order technique, a tech-
nique that computes third-order affinities. In ad-
dition we use a combined technique that combines
both second-order and third-order techniques.

2 Previous work

In Edmonds (1997) the term third-order is used to
refer to a different concept. Firstly, we have to
mention that the author is working in a proximity-
based framework, that is, he is concerned with co-
occurrences of words in text, not relations between
words in syntactic dependencies. Secondly, the no-
tion of higher-order co-occurrences refers to con-
nectivity paths in networks, i.e. the network of re-
lations between words co-occurring is augmented
by connecting words that are connected by a path
of length 2 (second-order co-occurrences) and paths

1Grefenstette (1994) uses the term third-order affinities for
a different concept, i.e. for the subgroupings that can be found
in list of second-order nearest neighbours.

of length 3 (third-order co-occurrences) and so on.
In the above example water and lemonade would
be connected by a second-order relation implied by
the network in which water and lemonade both co-
occur with for example to pour. A third-order rela-
tion would be implied between lemonade and drink
if drink should co-occur with water. We define
third-order affinity as an iterative process of calcu-
lating similarity. The output of the system is fed
into the system again. There exists a third-order
affinity between words if they share many nearest
neighbours with another word, not if a word shares
a context that in turn shares a context with the other
word. The same perspective on higher-order co-
occurrence, that of connectivity paths in networks,
is taken in literature of computational modelling of
the acquisition of word meaning (Lemaire and Den-
hire, 2006).

Although Biemann et al. (2004) work in the same
proximity-based tradition as the previous authors
their notion of third-order is closer to our definition.
It is defined as an iterative process in which words
are linked when their co-occurrence score trespasses
a certain threshold. These nth-order co-occurrences
are then used to construct an artificial corpus con-
sisting of the co-occurrence sets retrieved from the
original corpus.

Schütze and Walsh (2008) present a graph-
theoretic model of lexical-syntactic representation in
which higher-order syntactic relations, those that re-
quire some generalisation, are defined recursively.
The problem they are trying to solve, lexical syn-
tactic acquisition, is different form ours and so
is the evaluation method: discriminating sentences
that exhibit local coherence from those that do not.
Again the method is proximity-based, but since the
context are defined very locally (left and right neigh-
bours) the results are likely to be more compara-
ble to a syntax-based method than proximity-based
methods that use larger contexts.

3 Limits of the transitivity of similarity

The validity of the third-order affinities is depen-
dent on the transitivity of the similarity between con-
cepts. Unfortunately, it is not always the case that
the similarity between A and B and B and C implies
the similarity between A and C.
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When two concepts are identical, the transitivity
of similarity holds. If A=B AND B=C → A=C.
Does the same reasoning hold for similarity of a
lesser degree? For (near-)synonyms the transitivity
holds and it is symmetric. If felicity is like gladness,
and gladness is like joy→ felicity is like joy. Also,
the near-synonymy relation is symmetric. We can
infer that gladness is like felicity.

Tversky and Gati (1978) give an example of co-
hyponymy where transitivity does not hold. Ja-
maica is similar to Cuba (with respect to geograph-
ical proximity); Cuba is similar to Russia (with re-
spect to their political affinity), but Jamaica and Rus-
sia are not similar at all. Geographical proximity and
political affinity are SEPARABLE FEATURES. Cuba
and Jamaica are co-hyponyms if we imagine a hy-
pernym Caribbean islands of which both concepts
are daughters. Cuba and Russia are co-hyponyms
too, but being daughters of another mother, i.e. the
concept communist countries. The concept Jamaica
thus inherits features from multiple mothers. What
can we say about the transitivity of meaning in this
case? The transitivity between two co-hyponyms
holds when restricted to single inheritance.

When words are ambiguous, we come to a sim-
ilar situation. Widdows (2004) gives the following
example: Apple is similar to IBM in the domain of
computer companies; Apple is similar to pear, when
we are thinking of fruit. Pear and IBM are not sim-
ilar at all. Again, there is the problem of multiple
inheritance. Apple is a daughter both of the con-
cept computer manufacturers and of fruits. For co-
hyponyms similarity is only transitive in case of sin-
gle inheritance. The same holds for synonyms. If a
word has multiple senses we get into trouble when
applying the transitivity of meaning.

Although we have seen many examples of cases
where the transitivity of meaning does not hold, we
hope to find improvements for finding semantically
related words, when using third-order affinity tech-
niques.

4 Methodology

We will now describe the methodology used to com-
pute nearest neighbours (subsection 4.1). In subsec-
tion 4.2 we will describe how we have used these
nearest neighbours as input to the third-order and

combined technique.

4.1 Syntax-based distributional similarity
In this section we will describe the syntactic con-
texts selected, the data we used, and the measures
and weights applied to retrieve nearest neighbours.

4.1.1 Syntactic context
Most research has been done using a limited num-

ber of syntactic relations (Lee, 1999; Weeds, 2003).
We use several syntactic relations: subject, ob-
ject, adjective, coordination, apposition, and prepo-
sitional complement. In Figure 1 examples are given
for these types of syntactic relations.2

Subj: De kat eet.
‘The cat eats.’

Obj: Ik voer de kat.
‘I feed the cat.’

Adj: De langharige kat loopt.
‘The long-haired cat walks.’

Coord: Jip and Janneke spelen.
‘Jip and Janneke are playing.’

Appo: De clown Bassie lacht.
‘The clown Bassie is laughing.’

Prep: Ik begin met mijn werk.
‘I start with my work.’

Figure 1: Types of syntactic relations extracted

4.1.2 Data collection
Because we believe that the method will remedy

data sparseness we applied the method to a medium-
sized corpus. Approximately 80 million words of
Dutch newspaper text.3 All data is parsed automat-
ically using the Alpino parser (van Noord, 2006).
The result of parsing a sentence is a dependency
graph according to the guidelines of the Corpus of
Spoken Dutch (Moortgat et al., 2000).

4.1.3 Syntactic co-occurrences
For each noun we find its syntactic contexts in the

data. This results in CO-OCCURRENCE VECTORS,
such as the vector given in Table 1 for the headword
kat. These are used to find distributionally similar

2We are working on Dutch and we are thus dealing with
Dutch data.

3This is the so-called CLEF corpus as it was used in the
Cross Language Evaluation Forum (CLEF). The corpus is a
subset of the TwNC corpus (Ordelman, 2002).
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heb OBJ voer OBJ harig ADJ
‘have OBJ’ ‘feed OBJ’ ‘furry’ ADJ’

kat ‘cat’ 50 10 25

Table 1: Syntactic co-occurrence vector for kat

words. Every cell in the vector refers to a particular
SYNTACTIC CO-OCCURRENCE TYPE, for example,
kat ‘cat’ in object relation with voer ‘feed’. The val-
ues of these cells indicate the number of times the
co-occurrence type under consideration is found in
the corpus. In the example, kat ‘cat’ is found in
object relation with voer ‘feed’ 10 times. In other
words, the CELL FREQUENCY for this co-occurrence
type is 10.

The first column of this table shows the HEAD-
WORD, i.e. the word for which we determine the
contexts it is found in. Here, we only find kat ‘cat’.
The first row shows the contexts that are found, i.e.
the syntactic relation plus the accompanying word.
These contexts are referred to by the terms FEA-
TURES or ATTRIBUTES.

Each co-occurrence type has a cell frequency.
Likewise each headword has a ROW FREQUENCY.
The row frequency of a certain headword is the sum
of all its cell frequencies. In our example the row
frequency for the word kat ‘cat’ is 85. Cut-offs for
cell and row frequency can be applied to discard cer-
tain infrequent co-occurrence types or headwords,
respectively. We use cutoffs because we have too
little confidence in our characterisations of words
with low frequency. We have set a row cut-off of
10. So only headwords that appear in 10 or more
co-occurrence tokens in total are taken into account.
We have not set a cutoff for the cell frequency.

4.1.4 Measures and feature weights
Some syntactic contexts are more informative

than others. Large frequency counts do not always
indicate an important syntactic co-occurrence. A
large number of nouns can occur as the subject of the
verb hebben ‘have’. The verb hebben is selectionally
weak (Resnik, 1993) or a LIGHT verb. A verb such
as voer ‘feed’ on the other hand occurs much less
frequently, and only with a restricted set of nouns
as direct object. Intuitively, the fact that two nouns
both occur as subject of hebben tells us less about
their semantic similarity than the fact that two nouns

both occur as the direct object of feed. The results
of vector-based methods can be improved if we take
into account the fact that not all combinations of
a word and syntactic relation have the same infor-
mation value. We have used POINTWISE MUTUAL

INFORMATION (PMI, Church and Hanks (1989)) to
account for the differences in information value be-
tween the several headwords and attributes.

The more similar the co-occurrence vectors of any
two headwords are, the more distributionally similar
the headwords are. In order to compare the vectors
of any two headwords, we need a similarity measure.
In these experiments we have used a variant of Dice:
Dice†, proposed by Curran and Moens (2002). It is
defined as:

Dice† =
2
∑

min(wgt(W1, ∗r, ∗w′), wgt(W2, ∗r, ∗w′))∑
wgt(W1, ∗r, ∗w′) + wgt(W2, ∗r, ∗w′)

We describe the function using an extension of the
notation used by Lin (1998a), adapted by Curran
(2003). Co-occurrence data is described as relation
tuples: 〈word, relation, word′〉, for example, 〈cat,
obj, have〉.

Asterisks indicate a set of values ranging over all
existing values of that component of the relation tu-
ple. For example, (w, ∗, ∗) denotes for a given word
w all relations with any other word it has been found
in. W1 and W2 are the two words we are compar-
ing, and wgt is the weight given by PMI.

Whereas Dice does not take feature weights into
account, Dice† does. For each feature two words
share, the minimum is taken. If W1 occurred 15
times with relation r and word w′ and W2 occurred
10 times with relation r and word w′, it selects 10
as the minimum (if weighting is set to 1). Note
that Dice† gives the same ranking as the well-known
Jaccard measure, i.e. there is a monotonic trans-
formation between their scores. Dice† is easier to
compute and therefore the preferred measure (Cur-
ran and Moens, 2002). Choices for measures and
weights are based on previous work (van der Plas
and Bouma, 2005).

4.2 Syntactic co-occurrences and nearest
neighbours

The syntactic co-occurrence vectors have co-
occurrence frequencies as values. An example is
given in Figure 2.
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GRACHT ‘canal’
97 Amsterdams ADJ ‘Amsterdam ADJ’
26 ben SUBJ ‘am SUBJ’
12 word SUBJ ‘become SUBJ’
9 straat CONJ ‘street CONJ’
9 gedempt ADJ ‘closed ADJ’
8 Utrechts ADJ Utrecht ADJ
5 wal CONJ ‘shore CONJ’
5 muur CONJ ‘wall CONJ’
5 moet SUBJ ‘has to SUBJ’
5 graaf OBJ ‘ditch OBJ’

Figure 2: Syntactic co-occurrences for the word gracht
‘canal’

To retrieve nearest neighbours, needed for the
third-order technique, we computed for each noun a
ranked list of most similar words using the method-
ology described in the two previous sections, i.e. by
comparing the weighted feature vector of the head-
word with all other words in the corpus. We col-
lected the 3 most similar nouns to all nouns. These
are the nearest neighbours that will be input to our
third-order system.

Now, how do we construct a second-order vec-
tor from these nearest neighbours? The cells of
the second-order vectors that we want to construct
should reflect the similarity between pairs of words.
The scores given to the pairs of words by the sys-
tem do not usually reflect the similarity very well
across different headwords and discriminates too lit-
tle between different nearest neighbours for a given
headword.

Instead we used the ranks or rather reversed ranks
for a given candidate word. However, the decrease
in similarity between the first candidate and the sec-
ond is not linear. It decreases more rapidly. After in-
specting the average decrease in similarity for near-
est neighbours, when going down the ranked list, we
decided to use a scoring method that is in line with
Zipf’s law (Zipf, 1949). We decided to attribute sim-
ilarity scores that are decreasing very rapidly for the
first ranks and less as we go down the ranked list of
nearest neighbours.

Apart from deciding on the slope of the similar-
ity score we needed to set a start value. We de-
cided to choose a start value according to the high-
est co-occurrence frequency (in the syntactic co-
occurrences) for that headword. So if a headword’s

GRACHT ‘canal’
97 gracht ‘canal’
48 laan ‘avenue’
32 sloot ‘ditch’

Figure 3: Nearest neighbours for the word gracht ‘canal’

highest co-occurrence frequency was 100, a simi-
larity score of 100 is given to the word at the first
rank (that is itself) and a score of 50 to the candi-
date word at the second rank and so on. The in-
tuition between this is that we want to balance the
importance given to nearest neighbours and syntac-
tic co-occurrences. The importance of the nearest
neighbours will not tresspass the importance of the
syntactic co-occurrences.

The highest score will be given to the second-
order affinity between a headword and itself. This
seems an unnecessary addition, but it is not, because
we want canal to be similar to words that have canal
as a second-order affinity as well.

The second-order similarity score (SOSS) for a
given headword (h) and a given nearest neighbour
(nn) is defined as follows:

SOSS(h,nn) =
max.freq.of.coocc(h)

rank(nn)

We have given an example of the second-order
feature vector of the word gracht ‘canal’ in Figure 3.
As we see the highest score is given to second-order
affinity between the headword and the headword it-
self : gracht-gracht. This score is taken from the
highest co-occurrence frequency found for the word
gracht as can be seen in Figure 2. Second-order
feature vectors such as given in Figure 3 are con-
structed for all headwords to be used as input to the
third-order technique. For the combined technique
we concatenated both types of data. So the input to
the combined technique for the word canal would be
all its syntactic co-occurrences of which a subset is
given in Figure 2 plus the three nearest neighbours
given in Figure 3.

5 Evaluation

In the following subsections we will first explain
how we determined the semantic similarity of the re-
trieved nearest neighbours (subsection 5.1) and then
we will describe the test sets used (subsection 5.2).
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5.1 EWN similarity measure and synonyms

Like most researchers in the field of distributional
methods we have little choice but to evaluate our
work on the resource that we want to enrich. We
want to be able to enrich Dutch EuroWordNet
(EWN, Vossen (1998)), but at the same time we use
it to evaluate on. Especially for Dutch there are
not many resources to evaluate semantically related
words available.

For each word we collected its k nearest neigh-
bours according to the system. For each pair of
words4 (target word plus one of the nearest neigh-
bours) we calculated the semantic similarity accord-
ing to EWN. We used the Wu and Palmer mea-
sure (Wu and Palmer, 1994) applied to Dutch EWN
for computing the semantic similarity between two
words.5 The EWN similarity of a set of word pairs
is defined as the average of the similarity between
the pairs.

The Wu and Palmer measure for computing the
semantic similarity between two words (W1 and
W2) in a word net, whose most specific common
subsumer (lowest super-ordinate) is W3, is defined
as follows:

Sim(W1,W2) =
2(D3)

D1 + D2 + 2(D3)

We computed, D1 (D2) as the distance from W1
(W2) to the lowest common ancestor of W1 and W2,
W3. D3 is the distance of that ancestor to the root
node.

Some words returned by the system as near-
est neighbours cannot be found in EWN. Because
counting the words not found in EWN as errors
would be too harsh6 we select the next nearest neigh-
bour that is found in EWN, when encountering a not-
found word.

The Wu and Palmer measure gives an indication
of the degree of semantic similarity among the re-

4If a word is ambiguous according to EWN, i.e. is a member
of several synsets, the highest similarity score is used.

5This measure correlates well with human judgements (Lin,
1998b) without the need for sense-tagged frequency informa-
tion, which we believe is not available for Dutch.

6Dutch EWN is incomplete. It is about half the size of
Princeton WordNet (Fellbaum, 1998). Nearest neighbours that
are not found in EWN might be valuable additions that we do
not want to penalise the system too much for.

EWN similarity
k=1 k=3 k=5 k=10

VLF 2 0.391 0.378 0.364 0.350
2-3 0.395 0.392 0.376 0.359
3 0.413 0.412 0.411 0.410

LF 2 0.433 0.408 0.392 0.371
2-3 0.434 0.417 0.401 0.381
3 0.437 0.426 0.426 0.428

MF 2 0.644 0.605 0.586 0.555
2-3 0.646 0.608 0.589 0.561
3 0.643 0.608 0.589 0.575

HF 2 0.719 0.672 0.645 0.610
2-3 0.718 0.674 0.645 0.612
3 0.720 0.670 0.639 0.615

Table 2: EWN similarity several values of k for the four
test sets

trieved neighbours. The fact that it combines sev-
eral lexical relations, such as synonymy, hyponymy,
an co-hyponymy is an advantage on the one hand,
but it is coupled with the disadvantage that it is a
rather opaque measure. We have therefore decided
to look at one lexical relation in particular: We cal-
culated the percentage of synonyms according to
EWN. Note that it is a very strict evaluation and the
numbers will therefore be relatively low. Because
Dutch EWN is much smaller than Princeton Word-
Net many synonyms are missing.

5.2 Test sets

To evaluate on EWN, we have used four test sets of
each 1000 words ranging over four frequency bands:
high-frequency, middle frequency, low-frequency,
and very-low frequency. For every noun appearing
in EWN we have determined its frequency in the
80 million-word corpus of newspaper text. For the
high-frequency test set the frequency ranges from
258,253 (jaar, ‘year’) to 2,278 (scène, ‘scene’). The
middle frequency test set has frequencies ranging
between 541 (celstraf, ‘jail sentence’) and 364 (vre-
desverdrag, ‘peace treaty’). The low-frequency test
set has frequencies ranging between 28 (röntgenon-
derzoek, ‘x-ray research’) and 23 (vriendenprijs,
‘paltry amount’). For the very low frequency test
set the frequency goes from 9 (slaginstrument ‘per-
cussion instrument’) to 8 (cederhout ‘cedar wood’).
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6 Results and discussion

In Table 2 the results of using second-order (2), com-
bined (2+3), and third-order (3) techniques is pre-
sented. The average EWN similarity is shown at sev-
eral values of k. At k=1 the average EWN similarity
between the test word and the nearest neighbour at
the first rank is calculated. For k=3 we average over
the top-three nearest neighbours returned by the sys-
tem and so on. Results are given for each of the four
test sets, the very-low-frequency set (VLF), the low-
frequency test set (LF), the middle-frequency test set
(MF), and high-frequency test set (HF).

We can easily compare the scores from the
second-order technique and the combined tech-
nique. The scores for the third-order technique is a
little more difficult to compare because, since there
is very little data, it is often not possible for all
test words to find the number of nearest neighbours
given under k. The coverage of the third-order tech-
nique is low, especially for the very-low to low-
frequency test set. Already at k=1 the number of test
word is about 60% and 70% (resp.) of the number
of nearest neighbours found when using the second-
order technique. For the middle and high-frequency
test set the number of nearest neighbours found is
comparable, but less for high values of k.

Let us compare the second-order and combined
techniques since coverage of these techniques is
more comparable.7 We see that the combined
method outperforms the second-order method for
almost all test sets. For the high frequency test
set there is no difference in performance and for
the middle-frequency testset the differences are very
small too. The largest improvements are for the
very-low-frequency and low-frequency test set. This
is expected, since the method was introduced to rem-
edy data sparseness and for these words data sparse-
ness is most severe. We can conclude that exploiting
the transitivity of meaning by augmenting the input
to the system with nearest neighbours from a previ-
ous round results in a higher degree of semantic sim-
ilarity among very-low and low-frequency words.
The differences in performance are small, but we

7In fact, the coverage of the combined method is a bit higher,
because it combines two types of data, but the differences are
not as big as between the third-order and the second-order tech-
nique.

Synonyms
k=1 k=3 k=5 k=10

HF
2 143(14.39) 276(9.26) 357(7.18) 461(4.64)
2+3 148(14.89) 275(9.22) 356(7.16) 465(4.68)
3 154(15.54) 259(8.84) 315(6.73) 382(5.26)
MF
2 105(10.56) 194(6.51) 245(4.93) 312(3.14)
2+3 109(10.97) 200(6.71) 250(5.03) 318(3.20)
3 107(11.38) 173(6.60) 198(5.07) 214(3.95)
LF
2 33(3.75) 65(2.47) 87(2.00) 108(1.28)
2+3 34(3.86) 73(2.77) 88(2.01) 113(1.32)
3 25(4.01) 41(3.18) 48(3.10) 54(3.20)
VLF
2 2(0.54) 4(0.36) 8(0.44) 10(0.30)
2+3 2(0.54) 4(0.36) 9(0.49) 10(0.29)
3 2(0.91) 2(0.50) 2(0.44) 2(0.42)

Table 3: Number of synonyms at several values of k for
the four test sets

should keep in mind that that EWN similarity does
not go from 0 to 1. The random baseline reported in
van der Plas (2008), i.e. the score obtained by pick-
ing random words from EWN as nearest neighbours
of a given target word, is 0.26 at k=5 and a score of
1 is impossible unless all words in the testset have k
synonyms.

To get a better idea of what is going on we in-
spected the nearest neighbours that are the output of
the system. There seemed to be many more syn-
onyms in the output of the combined method than
in the output of the second-order method. Because
synonymy is the lexical relation that is at the far end
of semantic similarity, it is important to find many
synonyms. To quantify our findings we determined
the number of synonyms among the nearest neigh-
bours according to EWN.

In Table 3 the number of synonyms as well as the
percentage of synonyms found at several values of k
is shown.8

Our initial findings proved quantifiable. The
combined technique (2+3) results in more syn-
onyms. Most surprising are the results for the high-
frequency testset. Whereas, based on evaluations
with the EWN similarity scores, we believed the
method did not do much good for the high-frequency

8At k=n we do not always find n nearest neighbour for all
words in the test set. That is the reason for showing both counts
and percentages in the table.
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Second-order Combined
cassette videoband bandje CDi cassette
cassette videoband bandje CDi cassette
videoband cassette cassette DCC videoband
CDi videofilm videoband CD bandje

Figure 4: Nearest neighbours for videoband ‘video tape’,
cassette ‘cassette’ bandje ‘tape’ and CDi ‘CDi’

method, we now see that the number of synonyms
found is higher when using the combined technique,
especially at k=1. This holds for all but one test
set. Only for the very low frequency test set there
is hardly any difference.

We explained before that coverage of the third-
order technique is low. However, we see that the
technique results in higher numbers of synonyms
found at k=1 for the high-frequency (+11) and the
middle-frequency test set (+2). At higher values of
k the absolute numbers are smaller for the third-
order technique and also for the low and very-low-
frequency test set. This is to be expected because
the number of nearest neighbours found dramati-
cally decreases, when using a third-order technique
on its own. But it is surprising that we are able to ex-
tract more synonyms, when using only the two near-
est neighbours (plus the headword itself) computed
by the system before as input.

Manual inspection showed that what happens is
that nearest neighbours that have each other as near-
est neighbour are promoted. As can be seen in Fig-
ure 4, cassette ‘cassette’ has videoband ‘video tape’,
and CDi as nearest neighbour. Because CDi has no
nearest neighbours in common with cassette, except
itself, it is demoted in the output of the combined
method. The word bandje ‘tape’ has two neighbours
in common with cassette. Bandje is promoted in the
output of the combined method.

This finding bring us to work by Lin (1998a),
where the author shows that, when selecting only
respective nearest neighbours (words that have each
other as the one most nearest neighbour), the results
are rather good. Our technique incorporates that no-
tion, but is less restricted, especially in the combined
technique.

7 Conclusion and future work

Guided by the idea of the transitivity of mean-
ing we have shown that by augmenting syntactic
co-occurrences (that are usually input to distribu-
tional methods) with nearest neighbours (the output
of the system from a previous round) we are able
to improve the performance on low- and middle-
frequency words with respect to semantic related-
ness in general. This result is encouraging, because
distributional methods usually perform rather poorly
on low- and middle-frequency words. In addition,
these are the words that are most sought after, be-
cause they are the ones that are missing in existing
resources. There is something to be gained for the
high-frequency to low-frequency words in addition.
The percentage of synonyms found is larger when
using combined techniques.

In future work we are planning to implement
a more principled way of combining syntactic-co-
occurrences and nearest neighbours. The method
and results presented here sufficed to support our in-
tuitions, but we believe that more convincing num-
bers could be attained when fully exploiting the prin-
ciple. Since the method uses a combination of la-
belled and unlabelled data (although in our case
the labelling is the result of the same unsupervised
method and not of manual annotation), we plan
to consult the literature on co-training (Blum and
Mitchell, 1998). Also, instead of expanding the
syntactic co-occurrences of words with their nearest
neighbours we could expand them with the syntactic
co-occurrences of their nearest neighbours to arrive
at more uniform data. Lastly, the technique allows
for iteration. We could measure the performance at
several iterations.
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Abstract 

A standard and widespread approach to 
part-of-speech tagging is based on Hidden 
Markov Models (HMMs). An alternative 
approach, pioneered by Schütze (1993), 
induces parts of speech from scratch using 
singular value decomposition (SVD). We 
introduce DEDICOM as an alternative to 
SVD for part-of-speech induction. 
DEDICOM retains the advantages of 
SVD in that it is completely unsupervised: 
no prior knowledge is required to induce 
either the tagset or the associations of 
types with tags. However, unlike SVD, it 
is also fully compatible with the HMM 
framework, in that it can be used to esti-
mate emission- and transition-probability 
matrices which can then be used as the 
input for an HMM. We apply the 
DEDICOM method to the CONLL corpus 
(CONLL 2000) and compare the output of 
DEDICOM to the part-of-speech tags 
given in the corpus, and find that the cor-
relation (almost 0.5) is quite high. Using 
DEDICOM, we also estimate part-of-
speech ambiguity for each type, and find 
that these estimates correlate highly with 
part-of-speech ambiguity as measured in 
the original corpus (around 0.88). Finally, 
we show how the output of DEDICOM 
can be evaluated and compared against 
the more familiar output of supervised 
HMM-based tagging. 

1 Introduction 

Traditionally, part-of-speech tagging has been ap-
proached either in a rule-based fashion, or stochas-
tically. Harris (1962) was among the first to 
develop algorithms of the former type. The rule-
based approach relies on two elements: a dictio-
nary to assign possible parts of speech to each 
word, and a list of hand-written rules – which must 
be painstakingly developed for each new language 
or domain – to disambiguate tokens in context. 
Stochastic taggers, on the other hand, avoid the 
need for hand-written rules by tabulating probabili-
ties of types and part-of-speech tags (which must 
be gathered from a tagged training corpus), and 
applying a special case of Bayesian inference 
(usually, Hidden Markov Models [HMMs]) to dis-
ambiguate tokens in context. The latter approach 
was pioneered by Stolz et al. (1965) and Bahl and 
Mercer (1976), and became widely known through 
the work of e.g. Church (1988) and DeRose 
(1988). 

A third and more recent approach, known as 
‘distributional tagging’ and exemplified by 
Schütze (1993, 1995) and Biemann (2006), aims to 
eliminate the need for both hand-written rules and 
a tagged training corpus, since the latter may not 
be available for every language or domain. Distri-
butional tagging is fully-unsupervised, unlike the 
two traditional approaches described above. 
Schütze suggests analyzing the distributional pat-
terns of words by forming a term adjacency matrix, 
then subjecting that matrix to Singular Value De-
composition (SVD) to reveal latent dimensions. He 
shows that in the reduced-dimensional space im-
plied by SVD, tokens do indeed cluster intuitively 
by part-of-speech; and that if context is taken into 
account, something akin to part-of-speech tagging 
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can be achieved. Whereas the performance of sto-
chastic taggers is generally sub-optimal when the 
domain of the training data differs from that of the 
test data, distributional tagging sidesteps this prob-
lem, since each corpus can be considered in its 
own right. Schütze (1995) notes two general draw-
backs of distributional tagging methods: the per-
formance is relatively modest compared to that of 
supervised methods; and languages with rich mor-
phology may pose a challenge.1

In this paper, we present an alternative unsuper-
vised approach to distributional tagging. Instead of 
SVD, we use a dimensionality reduction technique 
known as DEDICOM, which has various advan-
tages over the SVD-based approach. Principal 
among these is that, even though no pre-tagged 
corpus is required, DEDICOM can easily be used 
as input to a HMM-based approach (and the two 
share linear-algebraic similarities, as we will make 
clear in section 4). Although our empirical results, 
like those of Schütze (1995), are perhaps still rela-
tively modest, the fact that a clearer connection 
exists between DEDICOM and HMMs than be-
tween SVD and HMMs gives us good reason to 
believe that with further refinements, DEDICOM 
may be able to give us ‘the best of both worlds’ in 
many respects: the benefits of avoiding the need 
for a pre-tagged corpus, with empirical results ap-
proaching those of HMM-based tagging. 

In the following sections, we introduce 
DEDICOM, describe its applicability to the part-
of-speech tagging problem, and outline its connec-
tions to the standard HMM-based approach to tag-
ging. We evaluate the use of DEDICOM on the 
CONLL 2000 shared task data, discuss the results 
and suggest avenues for improvement. 

2 DEDICOM 

DEDICOM, which stands for ‘DEcomposition into 
DIrectional COMponents’, is a linear-algebraic 
decomposition method attributable to Harshman 
(1978) which has been used to analyze matrices of 
 
1 We note the latter is also true for languages in which word 
order is relatively free – usually the same languages as those 
with rich morphology. While English word order is signifi-
cantly constrained by part-of-speech categorizations, this is 
not as true of, say, Russian. Thus, an adjacency matrix formed 
from a Russian corpus is likely to be less informative about 
part-of-speech classifications as one formed from an English 
corpus. Quite possibly, this is as much of a limitation for 
DEDICOM as it is for SVD. 

asymmetrical directional relationships between 
objects or persons. Early on, the technique was 
applied by Harshman et al. (1982) to the analysis 
of two types of marketing data: ‘free associations’ 
– how often one phrase (describing hair shampoo) 
evokes another in the minds of survey respondents, 
and ‘car switching data’ – how often people switch 
from one to another of 16 car types. Both datasets 
are asymmetric and directional: in the first dataset, 
for example, the phrase ‘body’ (referring to sham-
poo) evoked the phrase ‘fullness’ twice as often in 
the minds of respondents as ‘fullness’ evoked 
‘body’. Likewise, the data from Harshman et al. 
(1982) show that in the given period, 3,820 people 
switched from ‘midsize import’ cars to ‘midsize 
domestic’ cars, but only 2,140 switches were made 
in the reverse direction. Another characteristic of 
these ‘asymmetric directional’ datasets is that they 
can be represented in square matrices. For exam-
ple, the raw car switching data can be represented 
in a 16 × 16 matrix, since there are 16 car types. 

The objective of DEDICOM, which can be 
compared to that of SVD, is to factorize the raw 
data matrices into a lower-dimensional space iden-
tifying underlying, idealized directional patterns in 
the data. For example, while there are 16 car types 
in the raw car switching data, Harshman shows 
that under a 4-dimensional DEDICOM analysis, 
these can be ‘boiled down’ to the basic types ‘plain 
large-midsize’, ‘specialty’, ‘fancy large’, and 
‘small’ – and that patterns of switching among 
these more basic types can then be identified. 

If X represents the original n × n matrix of 
asymmetric relationships, and a general entry xij in 
X represents the strength of the directed relation-
ship of object i to object j, then the single-domain 
DEDICOM model2 can be written as follows: 
 

X = ARAT + E (1) 
 
where A denotes an n × q matrix of weights of the 
n observed objects in q dimensions (where q < n), 
and R is a dense q × q asymmetric matrix express-
ing the directional relationships between the q di-
mensions or basic types. AT is simply the transpose 
 
2 There is a dual-domain DEDICOM model, which is also 
described in Harshman (1978). The dual-domain DEDICOM 
model is not relevant to our discussion, and thus it will not be 
mentioned further. References in this paper to ‘DEDICOM’ 
are to be understood as references in shorthand to ‘single-
domain DEDICOM’. 
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of A, and E is a matrix of error terms. Our objec-
tive is to minimize E, so we can also write: 
 

X ≈ ARAT (2) 
 

As noted by Harshman (1978: 209), the fact that 
A appears on both the left and right of R means 
that the data is described ‘in terms of asymmetric 
relations among a single set of things’ – in other 
words, when objects are on the receiving end of the 
directional relationships, they are still of the same 
type as those on the initiating end. 

One difference between DEDICOM and SVD is 
that there is no unique solution: either A or R can 
be scaled or rotated without changing the goodness 
of fit, so long as the inverse operation is applied to 
the other. For example, if we let Â = AD, where D 
is any diagonal scaling matrix (or, more generally, 
any nonsingular matrix), then we can write 
 

X ≈ ARAT = ÂD-1RD-1ÂT (3) 
since ÂT = (AD) T = DAT

(In our application, we constrain A and R to be 
nonnegative as noted below.) 

To our knowledge, there have been no applica-
tions of DEDICOM to date in computational lin-
guistics. This is in contrast to SVD, which has 
been extensively used for text analysis (for appli-
cations other than unsupervised part-of-speech 
tagging, see Baeza-Yates and Ribeiro-Neto 1999). 

3 Applicability of DEDICOM to part-of-
speech tagging 

Schütze’s (1993) key insight is that – at least in 
English – adjacencies between types are a good 
guide to their grammatical functions. That insight 
can be leveraged by applying either SVD or 
DEDICOM to a type-by-type adjacency matrix. 
With DEDICOM, however, we add the constraint 
(already stated) that the types are a ‘single set of 
things’: whether a type ‘precedes’ or ‘follows’ – 
i.e., whether it is in a row or a column of the ma-
trix – does not affect its grammatical function. This 
constraint is as it should be, and, to our knowledge, 
sets DEDICOM apart from all previous unsuper-
vised approaches including those of Schütze (1993, 
1995) and Biemann (2006). 

Given any corpus containing n types and k to-
kens, we can let X be an n × n token-adjacency 

matrix. Let each entry xij in X denote the number 
of times in the corpus that type i immediately pre-
cedes type j. X is thus a matrix of bigram frequen-
cies. It follows that the sum of the elements of X 
equals k – 1 (because the first token in the corpus 
is preceded by nothing, and the last token is fol-
lowed by nothing). Any given row sum of X (the 
type frequency corresponding to the particular 
row) will equal the corresponding column sum, 
except if the type happens to occur in the first or 
last position in the corpus. X will be asymmetric, 
since the frequency of bigram ij is clearly not the 
same as that of bigram ji for all i and j.

It can be seen, therefore, that our X represents 
asymmetric directional data, very similar to the 
data analyzed in Harshman (1978) and Harshman 
et al. (1982). If we fit the DEDICOM model to our 
X matrix, then we obtain an A matrix which 
represents types by latent classes, and an R matrix 
which represents directional relationships between 
latent classes. We can think of the latent classes as 
induced parts of speech. 

With SVD, we believe that the orthogonality of 
the reduced-dimensional features militates against 
any attempt to correlate these features with parts of 
speech. From a linguistic point of view, there is no 
reason to believe that parts of speech are orthogon-
al to one another in any sense. For example, nouns 
and adjectives (traditionally classified together as 
‘nominals’) seem to share more in common with 
one another than nouns and verbs. With 
DEDICOM, this is not an issue, because the col-
umns of A are not required to be mutually ortho-
gonal to one another, unlike the left and right 
singular vectors from SVD. 

Thus, the A matrix from DEDICOM shows how 
strongly associated each type is with the different 
induced parts of speech; we would expect types 
which are ambiguous (such as ‘claims’, which can 
be either a noun or a verb) to have high loadings 
on more than one column in A. Again, if the 
classes correlate with parts of speech, the R matrix 
will show the latent patterns of adjacency between 
different parts of speech. 

4 Connections between DEDICOM and 
HMM-based tagging 

For any HMM, two components are necessary: a 
set of emission probabilities and a set of transition 
probabilities. Applying this framework to part-of-
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speech tagging, the tags are conceived of as the 
hidden layer of the HMM and the tokens (each of 
which is associated with a type) as the visible 
layer. The emission probabilities are then the prob-
abilities of types given the tags, and the transition 
probabilities are the probabilities of the tags given 
the preceding tags. If these probabilities are 
known, then there are algorithms (such as the Vi-
terbi algorithm) to determine the most likely se-
quence of tags given the visible sequence of types. 

In the case of supervised learning, we obtain the 
emission and transition probabilities by observing 
actual frequencies in a tagged corpus. Suppose our 
corpus, as previously discussed, consists of n types 
and k tokens. Since we are dealing with supervised 
learning, the number of the tags in the tagset is also 
known: we denote this number q. Now, the ob-
served frequencies can be represented, respective-
ly, as n × q and q × q matrices: we denote these A* 
and R*. Each entry aij in A* denotes the number of 
times type i is associated with tag j, and each entry 
rij in R* denotes the number of times tag j imme-
diately follows tag i. Moreover, we know some 
other properties of A* and R*: 

 
• the respective sums of the elements of A* and 

R* are equal to k – 1; 

• each row sum of A* (∑
=

q

x
ixa

1
) corresponds to 

the frequency in the corpus of type i;
• each column sum of A*, as well as the corres-

ponding row and column sums of R*, are the 
frequencies of the given tags in the corpus (for 

all j, ∑∑∑
===
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q

x
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). 

 
If A* and R* contain frequencies, however, we 

must perform a matrix operation to obtain transi-
tion and emission probabilities for use in an 
HMM-based tagger. In effect, A* must be made 
column-stochastic, and R* must be made row-
stochastic. Since the column sums of A* equal the 
respective row sums of R*, this can be achieved by 
post-multiplying both A* and R* by DA, where DA
is a diagonal scaling matrix containing the inverses 
of the column sums of A (or equivalently, the row 
sums of R). Then the matrix of emission probabili-
ties is given by A*DA, and the matrix of transition 
probabilities by R*DA.

We can now make the connection to DEDICOM 
explicit. Let A = A*DA and R = R*, then we can 
rewrite (2) as follows: 
 

X ≈ ARAT = (A*DA) R* (A*DA)T (4) 
X ≈ A*DA R*DA A*T (5) 

 
In other words, for any corpus we may compute 

a probabilistic representation of the type adjacency 
matrix X (which will contain expected frequencies 
comparable to the actual frequencies) by multiply-
ing the emission probability matrix A*DA, the 
transition probability matrix R*DA, and the type-
by-tag frequency matrix A*. (Presumably, the 
closer the approximation, the better the tagging in 
the training set actually factorizes the true direc-
tional relationships.) 

Conversely, for fully unsupervised tagging, we 
can fit the DEDICOM model to the type adjacency 
matrix X. The resulting A matrix contains esti-
mates of what the tags should be (if a tagged train-
ing corpus is unavailable), as well as the emission 
probability of each type given each tag, and the 
resulting R matrix is the corresponding transition 
probability matrix given those tags. In this case, a 
column-stochastic A can be used directly as the 
emission probability matrix, and we simply make 
R* row-stochastic to obtain the matrix of transition 
probabilities. The only difference then between the 
output of the fully-unsupervised DEDICOM/HMM 
tagger and that of a supervised HMM tagger is that 
in the first case, the ‘tags’ are numeric indices 
representing the corresponding column of A, and 
in the second case, they are the members of the 
tagset used in the training data. 

The fact that emission and transition probabili-
ties (or at least something very like them) are a 
natural by-product of DEDICOM sets DEDICOM 
apart from Schütze’s SVD-based approach, and is 
for us a significant reason which recommends the 
use of DEDICOM. 

5 Evaluation 

For all evaluation described here, we used the 
CONLL 2000 shared task data (CONLL 2000). 
This English-language newswire corpus consists of 
19,440 types and 259,104 tokens (including punc-
tuation marks as separate types/tokens). Each to-
ken is associated with a part-of-speech tag and a 
chunk tag, although we did not use the chunk tags 
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in the work described here. The tags are from a 44-
item tagset. The CONLL 2000 tags against which 
we measure our own results are in fact assigned by 
the Brill tagger (Brill 1992), and while these may 
not correlate perfectly with those that would have 
been assigned by a human linguist, we believe that 
the correlation is likely to be good enough to allow 
for an informative evaluation of our method. 

Before discussing the evaluation of unsuper-
vised DEDICOM, let us briefly reconsider the si-
milarities of DEDICOM to the supervised HMM 
model in the light of actual data in the CONLL 
corpus. We stated in (5) that X ≈ A*DAR*DAA*T.
For the CONLL 2000 tagged data, A* is a 19,440 
× 44 matrix and R* is a 44 × 44 matrix. Using 
A*DA and R*DA as emission- and transition-
probability matrices within a standard HMM 
(where the entire CONLL 2000 corpus is treated as 
both training and test data), we obtained a tagging 
accuracy of 95.6%. By multiplying 
A*DAR*DAA*T, we expect to obtain a matrix ap-
proximating X, the table of bigram frequencies. 
This is indeed what we found: it will be apparent 
from Table 1 that the top 10 expected bigram fre-
quencies based on this matrix multiplication are 
generally quite close to actual frequencies. Moreo-
ver, the sum of the elements in A*DAR*DAA*T is 
equal to the sum of the elements in X, and if we let 
E be the matrix of error terms (X - 
A*DAR*DAA*T), then we find that ||E|| (the Frobe-
nius norm of E) is 38.764% of ||X|| - in other 
words, A*DAR*DAA*T accounts for just over 60% 
of the data in X. 
 

Type 1 Type 2 Actual 
frequency 

Expected 
frequency 

of the 1,421.000 1,202.606 
in the 1,213.000 875.822 
for the 553.000 457.067 
to the 445.000 415.524 
on the 439.000 271.528 
the company 383.000 105.794 
a share 371.000 32.447 
that the 315.000 258.679 
and the 302.000 296.737 
to be 285.000 499.315 

Table 1. Actual versus expected frequencies for 10 most 
common bigrams in CONLL 2000 corpus 

 
Having confirmed that there exists an A 

(=A*DA) and R (=R*) which both satisfies the 
DEDICOM model and can be used directly within 

a HMM-based tagger to achieve satisfactory re-
sults, we now consider whether A and R can be 
estimated if no tagged training set is available. 

We start, therefore, from X, the square 19,440 ×
19,440 (sparse) matrix of raw bigram frequencies 
from the CONLL 2000 data. Using Matlab and the 
Tensor Toolbox (Bader and Kolda 2006, 2007), we 
computed the best rank-44 non-negative 
DEDICOM3 decomposition of this matrix using 
the 2-way version of the ASALSAN algorithm 
presented in Bader et al. (2007), which is based on 
iteratively improving random initial guesses for A 
and R. As with SVD, the rank of the decomposi-
tion can be selected by the user; we chose 44 since 
that was known to be the number of items in the 
CONLL 2000 tagset, but a lower number could be 
selected for a coarser-grained part-of-speech anal-
ysis. Ultimately, perhaps the best way to determine 
the optimal rank would be to evaluate different 
options within a larger end-to-end system, for ex-
ample an information retrieval system; this, how-
ever, was beyond our scope in this study. 

As already mentioned, there are indeterminacies 
of rotation and scale in DEDICOM. As Harshman 
et al. (1982: 211) point out, ‘when the columns of 
A are standardized… the R matrix can then be in-
terpreted as expressing relationships among the 
dimensions in the same units as the original data. 

That is, the R matrix can be interpreted as a ma-
trix of the same kind as the original data matrix X, 
but describing the relations among the latent as-
pects of the phrases, rather than the phrases them-
selves’. Thus, if DEDICOM is constrained so that 
A is column-stochastic (which is required in any 
case of the matrix of emission probabilities), then 
the sum of the elements in R should approximate 
the sum of the elements in X. R is therefore com-
parable to R* (with some provisos which shall be 
enumerated below), and to obtain the row-
stochastic transition-probability matrix, we simply 
multiply R by a diagonal matrix DR whose ele-
ments are the inverses of R’s row sums. 

 
3 Non-negative DEDICOM imposes the constraint not present 
in Harshman (1978, 1982) that all entries in A and R must be 
non-negative. This constraint is appropriate in the present 
case, since the entries in A* and R* (and of course the proba-
bilities in A*D and R*D) are by definition non-negative. 
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Table 2. Partial confusion matrix of gold-standard tags against DEDICOM-induced tags for CONLL 2000 dataset 

With A as an emission-probability matrix and 
RDR as a transition-probability matrix, we now 
have all that is needed for an HMM-based tagger 
to estimate the most likely sequence of ‘tags’ given 
the corpus. However, since the ‘tags’ here are nu-
merical indices, as mentioned, to evaluate the out-
put we must look at the correlation between these 
‘tags’ and the gold-standard tags given in the 
CONLL 2000 data. One way this can be done is by 
presenting a 44 × 44 confusion matrix (of gold-
standard tags against induced tags), and then mea-
suring the correlation coefficient (Pearson’s R) 
between that matrix and the ‘idealized’ confusion 
matrix in which each induced tag corresponds to 
one and only one ‘gold standard’ tag. Using A and 
RDR as the input to a HMM-based tagger, we 
tagged the CONLL 2000 dataset with induced tags 
and obtained the confusion matrix shown in Table 
2 (owing to space constraints, only the first 20 col-
umns are shown). The correlation between this 
matrix and the equivalent diagonalized ‘ideal’ ma-
trix is in fact 0.4942, which is significantly higher 
than could have occurred by chance. 

It should be noted that a lack of correlation be-
tween the induced tags and the gold standard tags 
can be attributed to at least two independent fac-
tors. The first, of course, is any inability of the 
DEDICOM model to fit the particular problem and 
data. Clearly, this is undesirable. The other factor 
to be borne in mind, which works to DEDICOM’s 
favor, is that the DEDICOM model could yield an 
A and R which factorize the data more optimally 
than the A*D and R* implied by the gold-standard 
tags. There are three methods we can use to try and 
tease apart these competing explanations of the 
results, two quantitative and the other subjective. 
Quantitatively, we can compare the respective er-
ror matrices E. We have already mentioned that 

38764.0
||X||

||ADRDAX|| T*
A

*
A

*

≈
−

(6) 

Similarly, using the A and R from DEDICOM we 
can compute 

24078.0
||X||

||ARAX|| T

≈
−

(7) 
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The fact that the error is lower in the second case 
implies that DEDICOM allows us to find a part-of-
speech ‘factorization’ of the data which fits better 
even than the gold standard, although again there 
are some caveats to this; we will return to these in 
the discussion. 

Another way to evaluate the output of 
DEDICOM is by comparing the number of part-of-
speech tags for a type in the gold standard to the 
number of classes in the A matrix with which the 
type is strongly associated. We test this by measur-
ing the Pearson correlation between the two va-
riables. First, we compute the average number of 
part-of-speech tags per type using the gold stan-
dard. We refer to this value as ambiguity coeffi-
cient; for the CONLL dataset, this is 1.05. Because 
A is dense, if we count all non-zero columns for a 
type in the A matrix as possible classes, we obtain 
a much higher ambiguity coefficient. We therefore 
set a threshold and consider only those columns 
whose values exceed a certain threshold. The thre-
shold is selected so that the ambiguity coefficient 
of the A matrix is the same as that of the gold stan-
dard. For a given type, every column with a value 
exceeding the threshold is counted as a possible 
class for that type. We then compute the Pearson 
correlation coefficient between the number of 
classes for a type in the A matrix and the number 
of part-of speech tags for that type in the CONLL 
dataset as provided by the Brill tagger. We ob-
tained a correlation coefficient of 0.88, which 
shows that there is indeed a high correlation be-
tween the induced tags and the gold standard tags 
obtained with DEDICOM. 

Finally, we can evaluate the output subjectively 
by looking at the content of the A matrix. For each 
‘tag’ (column) in A, the ‘types’ (rows) can be 
listed in decreasing order of their weighting in A. 
This gives us an idea of which types are most cha-

racteristic of which tags, and whether the grouping 
into tags makes any intuitive sense. These results 
(for selected tags only, owing to limitations of 
space) are given in Table 3. 

Many groupings in Table 3 do make sense: for 
example, the fourth tag is clearly associated with 
verbs, while the two types with significant weight-
ings for tag 2 are both determiners. By referring 
back to Table 2, we can see that many tokens in the 
CONLL 2000 dataset tagged as verbs are indeed 
tagged by the DEDICOM tagger as ‘tag 4’, while 
many determiners are tagged as ‘tag 3’. To under-
stand where a lack of correlation may arise, how-
ever, it is informative to look at apparent 
anomalies in the A matrix. For example, it can be 
seen from Table 3 that ‘new’, an adjective, is 
grouped in the third tag with ‘a’ and ‘the’ (and 
ranking above ‘an’). Although not in agreement 
with the CONLL 2000 ‘gold standard’ tagging, the 
idea that determiners are a type of adjective is in 
fact in accordance with traditional English gram-
mar. Here, the grouping of ‘new’, ‘a’ and ‘the’ can 
be explained by the distributional similarities (all 
precede nouns). It should also be emphasized that 
the A matrix is essentially a ‘soft clustering’ of 
types (meaning that types can belong to more than 
one cluster). Thus, for example, ‘u.s.’ (the abbrevi-
ation for United States) appears under both tag 2 
(which appears to have high loadings for nouns) 
and tag 8 (with high loadings for adjectives). 

We have alluded above in passing to possible 
methods for improving the results of the 
DEDICOM analysis. One would be to pre-process 
the data differently. Here, a variety of options are 
available which maintain a generally unsupervised 
approach (one example is to avoid treating punctu-
ation as tokens). However, variations in pre-
processing are beyond the scope of this paper. 

Tag Top 10 types (by weight) with weightings 
1 million share said . year billion inc. corp. years quarter 

0.0246 0.0146 0.0129 0.0098 0.0088 0.0069 0.0064 0.0061 0.0058 0.0054 
2 company u.s. new first market share year stock . government 

0.0264 0.0136 0.0113 0.0095 0.0086 0.0086 0.0079 0.0077 0.0065 0.006 
3 the a new an other its any addition their 1988 

0.2889 0.1194 0.0121 0.0094 0.0092 0.0085 0.0067 0.0062 0.0062 0.0057 
…
8 the its his about those their all u.s. . this 

0.0935 0.0462 0.0208 0.0160 0.0096 0.0095 0.0088 0.0077 0.0074 0.0071 
…

Table 3. Type weightings in A matrix, by tag 
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Another method would be to constrain 
DEDICOM so that the output more closely models 
the characteristics of A* and R*, the emission- and 
transition-probability matrices obtained from a 
tagged training set. In particular, there is one im-
portant constraint on R* which is not replicated in 
R: the constraint mentioned above that for all j,

∑∑
==

=
q

x
jx

q

x
xj rr

11

. We note that this constraint can be 

satisfied by Sinkhorn balancing (Sinkhorn 1964)4,
although it remains to be seen how the constraint 
on R can best be incorporated into the DEDICOM 
architecture. Assuming that A is column-
stochastic, another desirable constraint is that the 
rows of A(DR)-1 should sum to the same as the 
rows of X (the respective type frequencies). With 
the implementation of these (and any other) con-
straints, one would expect the fit of DEDICOM to 
the data to worsen (cf. (6) and (7) above), but in-
curring this cost could be worthwhile if the payoff 
were somehow linguistically interesting (for ex-
ample, if it turned out we could achieve a much 
higher correlation to gold-standard tagging). 

6 Conclusion 

In this paper, we have introduced DEDICOM, an 
analytical technique which to our knowledge has 
not previously been used in computational linguis-
tics, and applied it to the problem of completely 
unsupervised part-of-speech tagging. Theoretical-
ly, the model has features which recommend it 
over other previous approaches to unsupervised 
tagging, specifically SVD. Principal among the 
advantages is the compatibility of DEDICOM with 
the standard HMM-based approach to part-of-
speech tagging, but another significant advantage 
is the fact that types are treated as ‘a single set of 
objects’ regardless of whether they occupy the first 
or second position in a bigram. 

By applying DEDICOM to a tagged dataset, we 
have shown that there is a significant correlation 
between the tags induced by unsupervised, 
DEDICOM-based tagging, and the pre-existing 
gold-standard tags. This points both to an inherent 
validity in the gold-standard tags (as a reasonable 

 
4 It is also worth noting that Sinkhorn was motivated by the 
same problem which concerns us, that of estimating a transi-
tion-probability matrix for a Markov model. 

factorization of the data) and to the fact that 
DEDICOM appears promising as a method of in-
ducing tags in cases where no gold standard is 
available. 

We have also shown that the factors of 
DEDICOM are interesting in their own right: our 
tests show that the A matrix (similar to an emis-
sion-probability matrix) models type part-of-
speech ambiguity well. Using insights from 
DEDICOM, we have also shown how linear alge-
braic techniques may be used to estimate the fit of 
a given part-of-speech factorization (whether in-
duced or manually created) to a given dataset, by 
comparing actual versus expected bigram frequen-
cies. 

In summary, it appears that DEDICOM is a 
promising way forward for bridging the gap be-
tween unsupervised and supervised approaches to 
part-of-speech tagging, and we are optimistic that 
with further refinements to DEDICOM (such as 
the addition of appropriate constraints), more in-
sight will be gained on how DEDICOM may most 
profitably be used to improve part-of-speech tag-
ging when few pre-existing resources (such as 
tagged corpora) are available. 

Acknowledgements 

We are grateful to Danny Dunlavy for contributing 
his thoughts to this work. 

Sandia is a multiprogram laboratory operated by 
Sandia Corporation, a Lockheed Martin Company, 
for the United States Department of Energy’s Na-
tional Nuclear Security Administration under con-
tract DE-AC04-94AL85000. 

61



References  

Brett W. Bader, Richard A. Harshman, and Tamara G. 
Kolda. 2007. Temporal analysis of semantic graphs 
using ASALSAN. In Proceedings of the 7th IEEE In-
ternational Conference on Data Mining, 33-42. 

Brett W. Bader and Tamara G. Kolda. 2006.  Efficient 
MATLAB Computations with Sparse and Factored 
Tensors.  Technical Report SAND2006-7592, Sandia 
National Laboratories, Albuquerque, NM and Liver-
more, CA. 

Brett W. Bader and Tamara G. Kolda. 2007.  The 
MATLAB Tensor Toolbox, version 2.2.  
http://csmr.ca.sandia.gov/~tgkolda/TensorToolbox/.  

Ricardo Baeza-Yates and Berthier Ribeiro-Neto. 1999. 
Modern Information Retrieval. New York: ACM 
Press. 

L. R. Bahl and R. L. Mercer. 1976. Part of speech as-
signment by a statistical decision algorithm. In Pro-
ceedings of the IEEE International Symposium on 
Information Theory, 88-89. 

C. Biemann. 2006. Unsupervised part-of-speech tagging 
employing efficient graph clustering. In Proceedings 
of the COLING/ACL 2006 Student Research Work-
shop, 7-12. 

E. Brill. 1992. A simple rule-based part of speech tag-
ger. In Proceedings of the Third Conference on Ap-
plied Natural Language Processing, 152-155. 

K. W. Church. 1988. A stochastic parts program and 
noun phrase parser for unrestricted text. In ANLP 
1988, 136-143. 

CONLL 2000. Shared task data. Retrieved Dec. 1, 2008 
from http://www.cnts.ua.ac.be/conll2000/chunking/. 

S. J. DeRose. 1988. Grammatical category disambigua-
tion by statistical optimization. Computational Lin-
guistics 14, 31-39. 

Harris, Z. S. 1962. String Analysis of Sentence Struc-
ture. Mouton: The Hague. 

Richard Harshman. 1978. Models for Analysis of 
Asymmetrical Relationships Among N Objects or 
Stimuli. Paper presented at the First Joint Meeting of 
the Psychometric Society and The Society for Ma-
thematical Psychology. Hamilton, Canada. 

Richard Harshman, Paul Green, Yoram Wind, and Mar-
garet Lundy. 1982. A Model for the Analysis of 
Asymmetric Data in Marketing Research. Marketing 
Science 1(2), 205-242. 

Hinrich Schütze. 1993. Part-of-Speech Induction from 
Scratch. In Proceedings of the 31st Annual Meeting of 
the Association for Computational Linguistics, 251-
258. 

Hinrich Schütze. 1995. Distributional Part-of-Speech 
Tagging. In Proceedings of the 7th Conference of the 
European Chapter of the Association for Computa-
tional Linguistics, 141-148. 

Richard Sinkhorn. 1964. A Relationship Between Arbi-
trary Positive Matrices and Doubly Stochastic Ma-
trices. The Annals of Mathematical Statistics 35(2), 
876-879. 

W. S. Stolz, P. H. Tannenbaum, and F. V. Carstensen. 
1965. A stochastic approach to the grammatical cod-
ing of English. Communications of the ACM 8(6), 
399-405. 

62



Author Index

Bader, Brett, 54

Chew, Peter, 54

Gomez, Fernando, 1

Igo, Sean, 18
Ismail, Azniah, 10

Ji, Heng, 27

Klapaftis, Ioannis, 36
Korkontzelos, Ioannis, 36

Manandhar, Suresh, 10, 36

Riloff, Ellen, 18
Rozovskaya, Alla, 54

Schwartz, Hansen A., 1

van der Plas, Lonneke, 45

63


	Conference Program
	Acquiring Applicable Common Sense Knowledge from the Web
	Utilizing Contextually Relevant Terms in Bilingual Lexicon Extraction
	Corpus-based Semantic Lexicon Induction with Web-based Corroboration
	Cross-lingual Predicate Cluster Acquisition to Improve Bilingual Event Extraction by Inductive Learning
	Graph Connectivity Measures for Unsupervised Parameter Tuning of Graph-Based Sense Induction Systems.
	Combining Syntactic Co-occurrences and Nearest Neighbours in Distributional Methods to Remedy Data Sparseness.
	Using DEDICOM for Completely Unsupervised Part-of-Speech Tagging

