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Abstract

An important task in information retrieval is to
identify sentences that contain important relation-
ships between key concepts. In this work, we
propose a novel approach to automatically extract
sentence patterns that contain interactions involv-
ing concepts of molecular biology. A pattern is
defined in this work as a sequence of specialized
Part-of-Speech (POS) tags that capture the struc-
ture of key sentences in the scientific literature.
Each candidate sentence for the classification task
is encoded as a POS array and then aligned to
a collection of pre-extracted patterns. The qual-
ity of the alignment is expressed as a pairwise
alignment score. The most innovative component
of this work is the use of a Genetic Algorithm
(GA) to maximize the classification performance
of the alignment scoring scheme. The system
achieves an F-score of 0.834 in identifying sen-
tences which describe interactions between bio-
logical entities. This performance is mostly af-
fected by the quality of the preprocessing steps
such as term identification and POS tagging.

1 Introduction

Recent research in information extraction (IE) in bio-
logical science has focused on extracting information
about interactions between biological entities from re-
search communications. The type of interaction of in-
terest includes protein-protein, protein-DNA, gene reg-
ulations and other interactions between macromole-
cules. This work broadens the definition of the term
“interaction” to include other types of concepts that
are semantically related to cellular components and
processes. This contrasts with the past efforts focus-
ing strictly on molecular interactions (Blaschke et al.,
1999; Ono et al., 2001). We anticipate that identifying
the relationships between concepts of molecular biol-
ogy will facilitate the building of knowledge models,
improve the sensitivity of IE tasks and ultimately facil-

itate the formulation of new hypothesis by experimen-
talists.

The extraction of interactions is based on the heuris-
tic premise that interacting concepts co-occur within
a given section of text. The challenge is that co-
occurrence certainly does not guarantee that a passage
contains an interaction(Jang et al., 2006; Skusa et al.,
2005). Co-occurrence is highly dependent on the de-
finition of the section of text within which the target
terms are expected to be found. A thorough compari-
son on the prediction of protein-protein interaction be-
tween abstract-level co-occurrence and sentence-level
co-occurrence was undertaken (Raychaudhuri, 2006).
It is demonstrated that abstract co-occurrence is more
sensitive but less specific for interactions. At the cost
of wide coverage, sentence co-occurrence increases the
accuracy of interaction prediction. Since the ultimate
goal of IE is to extract knowledge and accuracy is the
most important aspect in evaluating the performance
of such systems, it makes sense to focus the effort
in seeking interaction sentences rather than passages
or abstracts. Not every co-occurrence in sentences
implies a relationship that expresses a fact. In the
2005 Genomics Track dataset, 50% of all sentence co-
occurrences of entities correspond to definite relation-
ships while the rest of the co-occurrences only convey
some possible relationships or contain no relationship
of interest (Li et al., 2005). Therefore, more sophisti-
cated text mining strategies are required to classify sen-
tences that describe interactions between co-occurring
concepts.

In the BioCreative II challenge1, teams were asked
to determine whether a given passage of text contained
information about the interaction between two proteins.
This classification task worked at the abstract level and
the interacting protein pairs were not required to be ex-
tracted. The task for the Learning Language in Logic

1http://biocreative.sourceforge.net/
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(LLL’05) challenge 2 was to build systems that ex-
tract interactions between genes or proteins from bio-
logical literature. From individual sentences annotated
with agent-target relations, patterns or models had to be
learned to extract these interactions. The task focused
on extracting only the interacting partners. The context
of an interaction may also be critical to the validity of
the extracted knowledge since not all statements found
in the literature are always true.

In this work, we propose an approach to automati-
cally extract patterns containing relevant interaction be-
tween biological concepts. This extraction is based on
the assumption that biological interactions are articu-
lated by a limited number of POS patterns embedded
in sentences where entities/concepts are co-occurring.
The extracted patterns are then applied to identify inter-
action sentences which describe interactions between
biological entities. Our work aims to identify precise
sentences rather than passages. Because of the nature
of the patterns, we hope that some of the contextual in-
formation present in interaction sentences also play a
role in the classification task.

The rest of the paper is organized as follows: In Sec-
tion 2, we review recent research advances in extracting
biological interactions. Section 3 describes an experi-
mental system designed for our work. Sections 4, 5
and 6 elaborate the approaches and algorithms. Per-
formance is evaluated in Section 7. Finally, Section 8
summarizes the paper and introduces future work.

2 Related work

Early on, Blaschke (Blaschke et al., 1999) employed
patterns to predict the presence of a protein-protein in-
teraction. A series of patterns was developed manu-
ally to cover the most obvious descriptions of protein
functions. This process was based on a set of key-
words, including interaction verbs, that are commonly
used to describe this type of interaction. A sentence ex-
traction system BioIE (Divoli and Attwood, 2005) also
uses patterns to extract entire sentences related to pro-
tein families, protein structures, functions and diseases.
The patterns were manually defined and consisted of
single words, word pairs, and small phrases.

Although systems relying on hand-coded patterns
have achieved some success in extracting biological in-
teractions, the strict requirement of dedicated expert
work is problematic. Moreover, each type of interac-
tion may require a definition of many different patterns
including different arrangements and different variants

2http://genome.jouy.inra.fr/texte/LLLchallenge/

of the same keyword. Manually encoding all patterns
encountered in a corpus is time-consuming and poten-
tially impractical in real applications. Thus, automati-
cally learning such patterns is an attractive solution.

An approach which combines dynamic program-
ming and sequence alignment algorithms as normally
used for the comparison between nucleotide sequences
was introduced by Huanget al. (Huang et al., 2004).
This approach is designed to generate patterns useful
for extracting protein-protein interactions. The main
problem with this approach is that the scoring scheme
that is required to implement the alignment algorithm is
difficult to define and contains a potentially large num-
ber of free parameters. We propose a method based
on Genetic Algorithm (GA) heuristics to maximize the
alignment procedure for the purpose of classification.
GAs were also used as a learning strategy to train finite
state automata for finding biological relation patterns
in texts(Plake et al., 2005). It was reported (Bunescu et
al., 2005; Hakenberg et al., 2005) that automatically
learned patterns identify biological interactions even
more accurately than hand-coded patterns.

3 Overview of system design

In this work, we have designed an experimental sys-
tem to facilitate the automatic extraction of biological
interaction patterns and the identification of interaction
sentences. It consists of three major modules: biolog-
ical text preprocessing, interaction pattern extraction,
and interaction sentence identification.

Biological text preprocessing reformats the original
biological texts into candidate sentences. A pattern
learning method is then proposed to automatically ex-
tract the representative patterns of biological interac-
tions. The obtained patterns are further used to iden-
tify instances that evidently describe biological inter-
actions. Poor performance during preprocessing will
have detrimental effects on later stages. In the follow-
ing sections, we will describe each component.

4 Biological text preprocessing

4.1 Sentence preparation

A heuristic method is implemented to detect sentence
boundaries (Mikheev, 2002) based on the assumption
that sentences are usually demarcated by some indica-
tive delimiting punctuation marks in order to segment
the biological texts into sentence units. Captions and
headings that are not grammatically valid sentences are
therefore detected and further eliminated for our work.
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4.2 Part-of-Speech tagging

POS tagging is then performed to associate each word
in a sentence with its most likely POS tag. Because
subsequent processing steps typically depend on the
tagger’s output, high performance at this level is cru-
cial for success in later stages. A statistical tagger Lin-
gua::EN::Tagger3 is used to perform this task.

4.3 Biological term annotation

A learning-based biological term annotation system,
ABTA (Jiampojamarn et al., 2005), is embedded in our
system. The type of terms includes molecules, such
as genes, proteins and cell lines, and also biological
processes. Examples of biological processes as entities
are: “T cell activation” and “IL-2 gene transcription”.
We consider that a broader definition of biological term
will include more facts from literature, thus leading to
more general use of interaction patterns for IE tasks.

ABTA considers the longest expression and ignores
embedded entities. Further, instead of distinguishing
terms from their relevant biology concepts, a unified
tag “BIO ” is assigned to all the identified terms. We
aim to discover patterns of the general interactions be-
tween biological concepts, not only the interactions be-
tween molecules, e.g., protein-protein interaction.

Tags likeNN (noun) andVB (verb) are typically used
to define entities and the action type of interactions,
and thus they are indispensable. However, tags such
asJJ(adjective) andRB(adverb) could occur at differ-
ent positions in a sentence. We decided to remove these
tags to prevent the combinatorial effect that these would
induce within the set of extracted patterns.

4.4 Text chunking

Next, a rule-based text chunker (Ramshaw and Mar-
cus, 1995) is applied on the tagged sentences to fur-
ther identify phrasal units, such as base noun phrases
NP and verbal unitsVB. This allows us to focus on the
holistic structure of each sentence. Text chunking is not
applied on the identified biological terms. In order to
achieve more generalized interaction patterns, a unified
tag “VB ” is used to represent every verbal unit instead
of employing different tags for various tenses of verbs.

As a result of preprocessing, every sentence is rep-
resented by its generalized form as a sequence of cor-
responding tags consisting of POS tags and predefined
tags. Table 1 summarizes the main tags in the system.

A biological interaction tends to involve at least three
objects: a pair of co-occurring biological entities con-

3http://search.cpan.org/˜acoburn

Tag name Tag description Tag type
BIO Biological entity Predefined
NP Base noun phrase Predefined
VB Verbal unit Predefined
IN Preposition POS
CC Coordinating conjunction POS
TO to POS
PPC Punctuation comma POS
PRP Possessive 2nd determiner POS
DET Determiner POS
POS Possessive POS

Table 1: Main tags used in the system

nected by a verb which specifies the action type of the
interaction. Thus, a constraint is applied that only sen-
tences satisfying form “BioEntity A – Verb – BioEn-
tity B” will be preserved as candidate sentences to be
further processed in the system. It is possible that the
presence of two entities in different sentence structures
implies a relationship. However, this work assumes the
underlying co-occurrence of two concepts and a verb in
the interest of improving the classification accuracy.

The obtained candidate sentences are split into train-
ing and testing sets. The training set is used to ex-
tract the representative patterns of biological interac-
tions. The testing set is prepared for identifying sen-
tences that evidently describe biological interactions.

5 Interaction pattern extraction

5.1 PATRICIA trees

The method we propose to extract interaction patterns
from candidate sentences is based on the use of PATRI-
CIA trees (Morrison, 1968). A PATRICIA tree uses
path compression by grouping common sequences into
nodes. This structure provides an efficient way of stor-
ing values while maintaining the lookup time for a key
of O(N). It has been applied to many large information
retrieval problems (Chien, 1997; Chen et al., 1998).

In our work, a PATRICIA tree is used for the first
time to facilitate the automatic extraction of interaction
patterns. All training sentences are inserted and stored
in a generic PATRICIA tree from which the common
patterns of POS tags can be efficiently stored and the
tree structure used to compute relevant usage statistics.

5.2 Potential pattern extraction

Patterns of straightforward biological interactions are
frequently encountered in a range of actual sentences.
Conversely, vague relationships or complex interac-
tions patterns are seldom repeated. Therefore, the
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premise of this work is that there is a set of frequently
occurring interaction patterns that matches a majority
of stated facts about molecular biology. In this work, a
biological interaction patternis defined as follows:

Definition 5.1. A biological interaction patternbip
is a sequence of tags defined in Table 1 that captures an
aggregate view of the description of certain types of bi-
ological interactions based on the consistently repeated
occurrences of this sequence of tags in different inter-
action sentences.BIP = {bip1, bip2, · · · , bipk} repre-
sents the set of biological interaction patterns.

We first extract potential interaction patterns by
populating a PATRICIA tree using training sentences.
Every node in the tree contains one or more system
tags, which is the preceding tag sequence of its descen-
dant nodes in each sentence. Every sentence is com-
posed of a path of system tags from the root to a leaf.
Hence, we propose that the sequence of system tags
that can be formed from traversing the nodes of the tree
is a potential pattern of biological interactions. At the
same time, the occurrence frequency of each pattern is
also retrieved from the traversal of tree nodes.

A predefined frequency thresholdfmin is used as
a constraint to filter out patterns that occur less than
fmin times. It has been demonstrated that if an interac-
tion is well recognized, it will be consistently repeated
(Blaschke et al., 1999; Ono et al., 2001). The general-
ization and the usability of patterns can be controlled by
tuning fmin. Further, some filtering rules are adapted
to control the form of a pattern and enhance the quality
of the discovered patterns, such as if a pattern ends with
a tagIN, VB, CC or TO, the pattern will be rejected.
Flexibility in setting this threshold can be applied to
meet special demands. Algorithm 1 shows our pattern
learning method which has a time complexity ofO(n)
in the size of candidate sentences,n.

Algorithm 1 Patricia-Tree-based Extraction of Biolog-
ical Interaction Patterns
Input: Candidate SentencesCS ∈ Biological text; a prede-

fined thresholdfmin; a set of filtering rulesFR
Output: BIP : Set of biological interaction patterns

BIP ← ∅; PT ← ∅ //PT : Patricia Trie
for all sentencess ∈ CS do

PT ← Insert(s) //Populating Patricia Tree
for all nodesni ∈ PT do

bipi ← Pattern(ni) //Concatenating tags in nodes
from root toni, which is a potential pattern
if Count(bipi) ≥ fmin and bipi does not meetFR
then

//Count(bipi) returns No. of occurrences ofbipi;
BIP ← bipi

5.3 Interaction verb mining

Although the obtained patterns are derived from the
candidate sentences possessing the form “BioEntity A
– Verb – BioEntity B”, some of them may not contain
facts about biological interactions. This is possible if
the action verbs do not describe an interaction. Quite a
few verbs, such as “report”, “believe”, and “discover”,
only serve a narrative discourse purpose. Therefore,
mining the correct interaction verbs becomes an impor-
tant step in the automatic discovery of patterns. We de-
cided to perform the method applied in (Huang et al.,
2004) to mine a list of interaction verbs. This will be
used to further improve the relevance of achieved pat-
terns by filtering out patterns formed by the sentences
in which the action verbs are not on the list.

6 Interaction sentence identification

Once the biological interaction patterns are obtained,
we perform interaction sentence identification on test-
ing sentences. For our work, they are partitioned into
two sets: interaction sentences which explicitly discuss
interactions between entities, and non-interaction sen-
tences which do not describe interactions, or merely
imply some vague relationships between entities. The
task of interaction sentence identification is treated as a
classification problem to differentiate between interac-
tion sentences and non-interaction sentences.

6.1 Pattern matching scoring

We first perform pattern matching by iteratively apply-
ing the interaction patterns to each testing sentence.
This is done using sequence alignment which calculates
the degree of the similarity of a sentence to an inter-
action pattern. Since patterns capture various ways of
expressing interactions among sentences, a high simi-
larity between an interaction sentence and a pattern is
expected. Therefore, we conjecture that the alignment
scores can be used to discriminate some type of inter-
action sentences from other types of sentences.

The scoring scheme involved in the pattern match-
ing consists of penalties for introducing gaps, match re-
wards and mismatch penalties for different system tag
pairs. Table 2 presents an example scoring scheme for
main tags. Penalties and rewards are denoted respec-
tively by negative and positive values.

As a variation of global alignment, an end-space free
alignment algorithm is implemented to facilitate the
alignment between patterns and testing sentences. The
shortest pattern is always preferred for a sentence in
case that same alignment score is achieved by multiple
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Tag Gap Match Mismatch
BIO -10 +8 -3
NP -8 +6 -3
VB -7 +7 -3
IN -6 +5 -1
CC -6 +5 -1
TO -1 +5 -1
PPC -1 +3 -1
PRP -1 +3 -1
DET -1 +3 -1
POS -1 +3 -1

Table 2: An alignment scoring scheme for system tags

patterns. As a result, each sentence is assigned to its
most appropriate pattern along with a maximum align-
ment score. Therefore, an interaction sentence will be
highlighted with a high alignment score by its most
similar interaction pattern, while a non-interaction sen-
tence will be characterized by a low alignment score
indicating rejections by all patterns. Essentially, this
procedure can be seen as a variation of the well-known
k Nearest Neighbors classification method, withk = 1.

6.2 Performance evaluation

We then evaluate whether the alignment scores can be
used to classify the testing sentences. We have pro-
posed two independent evaluation measures: statistical
analysis (SA) and classification accuracy (AC).

SA measures whether the scoring difference be-
tween the mean of interaction sentences and the mean
of non-interaction sentences is statistically significant.
If the difference is significant, there will be a tendency
that interaction sentences outscore non-interaction sen-
tences in alignment. Hence, it would be reliable to
use alignment scores to classify testing sentences. Al-
though non-interaction sentences could come from the
same documents as interaction sentences and discuss
concepts that are associated with the target interac-
tions, we assume that interaction sentences and non-
interaction sentences are two independent samples.

The statistical two-samplez test (Freund and Per-
les, 2006) is performed with the null hypothesis that
there is no scoring difference between the means of
interaction and non-interaction sentences. A compar-
atively largez will lead to the rejection of the null
hypothesis. Naturally, the increase ofz value will in-
crease the difference between the means and therefore
conceptually keep pushing the overall scoring distrib-
utions of two samples further away from each other.
Consequently, interaction sentences can be separated
from non-interaction sentences according to alignment

scores. In reality, the distinction between interaction
and non-interaction sentences is not absolute. Thus,
the scoring distributions of two samples can only be
distanced by a certain maximum value ofz depending
on the scoring scheme applied in pattern matching.

Conversely,AC measures the proportion of correctly
classified testing sentences, including both interaction
and non-interaction sentences, to the total testing sen-
tences. An appropriate thresholdT is determined for
obtained alignment scores to differentiate between in-
teraction and non-interaction sentences, and to facili-
tate the calculation of classification accuracy.

It is not possible to evaluate the performance without
correctly pre-labeled testing sentences. We decided to
manually classify the testing sentences in advance by
assigning each sentence an appropriate label of inter-
action or non-interaction. This work was done by two
independent experts, both with Ph.D. degrees in mole-
cular biology or a related discipline.

6.3 Scoring scheme optimization

The scoring scheme applied in pattern matching has a
crucial impact on the performance of interaction sen-
tence identification. An interesting problem is whether
there exists an optimal scoring scheme covering the
costs of gap, match and mismatch for different sys-
tem tags in the pattern matching alignment, which is
destined to achieve the best performance on classify-
ing testing sentences. To the best of our knowledge,
no efforts have been made to investigate this problem.
Instead, an empirical or arbitrary scoring scheme was
adopted in previous research for the pairwise align-
ments (Huang et al., 2004; Hakenberg et al., 2005). We
have proved that the problem is NP-hard by reducing a
well-known NP-hard problem3-SAT to this problem.
The proof is not presented in this work.

A genetic algorithm (GA) is used as a heuristic
method to optimize parameters of the scoring scheme
for sentence classification. The costs of penalties and
rewards for different system tags are encoded by inte-
ger values within two predefined ranges: [-50, 0) and
(0, 50], and assembled as a potential solution of scor-
ing scheme, which consists of 30 parameters covering
the costs for tags in the alignment as listed in Table 2.
The two evaluation measuresSA andAC are used as
the fitness function for GA respectively with the goal
of maximizingz value or classification accuracy.

GA is set up to evolve for 100 generations, each of
which consists of a population of 100 potential solu-
tions of scoring scheme. GA starts with a randomly
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generated population of 100 potential solutions and
proceeds until 100 generations are reached. The num-
ber of generations and the population size are decided
with consideration of the runtime cost of evaluating the
fitness function, which requires running the scoring al-
gorithm with each sentence. A large number of gener-
ations or a large population size would incur an expen-
sive runtime cost of evaluation.

In addition, we further divide the labeled set of can-
didate sentences into two subsets: The first dataset is
used to optimize parameters of the scoring scheme,
while the second dataset, testing set, is used to test the
achieved scheme on the task of sentence classification.

7 Results and evaluation

7.1 Dataset

Our experiments have been conducted on Genia cor-
pus (v3.02)4, the largest, publicly available corpus in
molecular biology domain. It consists of 2,000 biolog-
ical research paper abstracts and is intended to cover
biological reactions concerning transcription factors in
human blood cells. The information of sentence seg-
mentation, word tokenization, POS tagging and biolog-
ical term annotation is also encoded in the corpus.

7.2 Biological text preprocessing results

Evaluated using the inherently equipped annotation in-
formation, our system achieves nearly 99% accuracy
on segmenting sentences. Further, it obtains an overall
POS tagging accuracy of 91.0% on 364,208 individ-
ual words. We noticed that the tagging information en-
coded in Genia corpus is not always consistent through-
out the whole corpus, thus introducing detrimental ef-
fects on the tagging performance. Also, considering
that the tagger is parameterized according to the gen-
eral English domain, porting this tagger to the biology
domain is accompanied by some loss in performance.

The system reaches an F-score of 0.705 on annotat-
ing all biological terms including both multi-word and
single word terms. After performing text chunking, the
system produces a set of candidate sentences. We fur-
ther perform text chunking on Genia corpus based on
its encoded annotations and use the resulting set of sen-
tences for the subsequent experiments to provide a gold
standard to which results produced based on our system
annotations can be compared. Table 3 presents some
statistics of the preprocessed dataset. For each type of
annotations, we randomized the candidate sentence set

4http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/

and chose 12,525 candidate sentences as the training
set to extract biological interaction patterns. The rest
of candidate sentences are prepared as the testing set.

Attributes Genia Our system
Total preprocessed sentences 18,545 18,355
Candidate sentences 16,272 17,525
Training set sentences 12,525 12,525
Testing set sentences 6,020 5,000

Table 3: Statistics of experimental dataset

7.3 Interaction pattern extraction results

fmin = 5 is used to filter out the potential patterns
that appear less than 5 times in the training set. Eval-
uated by domain experts, lists of 300 interaction verbs
and 700 non-interaction verbs are obtained from 12,525
training sentences with Genia annotations. Inflectional
variants of the verbs are also added into the lists.

Refined by the filtering rules and the interaction
verbs, a final set of representative patterns of biological
interactions are obtained from Algorithm 1. We per-
formed our proposed pattern learning method on train-
ing sentences of both the GENIA and our own anno-
tations. There are respectively 241 and 329 potential
patterns. Of these, 209 and 302 were extracted. Inter-
estingly, only 97 extracted patterns are common to both
annotation schemes.

Table 4 lists the 10 most frequent interaction patterns
based on Genia annotations. For instance, a training
sentence conforming to the second pattern is “The ex-
pression of the QR gene is regulated by the transcrip-
tion factor AP-1.” (MEDLINE: 96146856).

Pattern count Pattern
264 BIO VB BIO IN BIO
261 NP IN BIO VB IN BIO
182 NP IN BIO VB BIO
162 BIO IN BIO VB IN BIO
160 BIO VB IN BIO IN BIO
143 NP IN BIO VB IN NP IN BIO
142 NP VB IN BIO VB BIO
138 PRP VB IN BIO VB BIO
126 BIO VB NP IN BIO IN BIO
121 NP IN BIO VB NP IN BIO

Table 4: Extracted Biological Interaction Patterns

7.4 Interaction sentence identification results

Since the total testing sentence set is large, we decided
to randomly extract 400 sentences from it as the sam-
ple set for our task. The 400 sentences were manu-
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Figure 1:AC comparison between two measures

ally pre-labeled into two classes: interaction and non-
interaction. Further, a subset of 300 testing sentences
was used by GA to optimize parameters of the scor-
ing scheme, while the remaining 100 sentences were
prepared to test the achieved scheme on sentence clas-
sification. The distribution of class labels of the sample
sentences is shown in Table 5.

Class label 300 sentences 100 sentences
No. % No. %

Interaction 158 52.67 53 53
Non-interaction 142 47.33 47 47

Table 5: Class distribution of sample sentences

7.4.1 Comparison between two measures

We applied the evaluation measures,SA and AC,
respectively to the subset of 300 testing sentences as
the fitness function for GA, and recorded the scoring
scheme of every generation resulted from GA. Figure 1
presents the distribution of achieved classification ac-
curacy in terms of each scoring scheme optimized by
GA. This comparison is done with respect to the gener-
ation and evaluated on 300 testing sentences using the
annotations from the Genia corpus.

The achieved classification accuracy forAC gen-
erally outperforms the classification accuracy derived
by SA. It reaches its highest classification accuracy
80.33% from the 91th generation. Therefore,AC is
considered more efficient with the system and becomes
our final choice of fitness function for GA.

7.4.2 Results of sentence identification

GA results in an optimized performance on the 300
sentences. It also results in an optimized scoring

scheme along with its associated scoring thresholdT ,
which are then applied together to the other 100 test-
ing sentences. Table 6 and 7 present the system perfor-
mance on the two sets respectively to both annotations.

Experimental Genia Our system
Results Interaction Non Interaction Non
Precision 0.757 0.887 0.704 0.702
Recall 0.928 0.665 0.761 0.640
F-score 0.834 0.750 0.731 0.670
OverallAC(%) 80.33 70.33

Table 6: Performance on 300 testing sentences

Experimental Genia Our system
Results Interaction Non Interaction Non
Precision 0.739 0.762 0.676 0.697
Recall 0.792 0.723 0.755 0.638
F-score 0.765 0.742 0.713 0.666
OverallAC(%) 75.96 70.00

Table 7: Performance on 100 testing sentences

Table 6 shows that when using the Genia annota-
tions the system achieves an 0.834 F-score in identify-
ing interaction sentences and an overallAC of 80.33%,
which is much higher than the proportion of either in-
teraction or non-interaction sentences in the 300 sen-
tence subset. This indicates that the system performs
well on both classes. In 100 generations GA is not able
to evolve a scoring scheme that leads to anAC above
80.33%. Moreover, our system annotations achieve
a lower performance than Genia annotations. We at-
tribute the difference to the accuracy loss of our system
annotations in the preprocessing steps as inaccurate an-
notations will lead to inappropriate patterns, thus harm-
ing the performance of sentence identification. For Ge-
nia annotations, the performance on the 100 testing sen-
tences suggests an overfitting problem.

There are a number of preprocessing steps that affect
the final classification performance. However, even as-
suming an ideal preprocessing of the unstructured text,
our method relies on the assumption that all interac-
tion sentences are articulated by a set of POS patterns
that are distinct to all other types of sentences. The
manual annotation of the training/testing set was a dif-
ficult task, so it is reasonable to assume that this will
also be difficult for the classifier. The use of passive
voice and the common use of comma splicing within
patterns makes sentence-level classification an espe-
cially difficult task. Another source of interactions that
our system cannot identify are implied and assume a
deeper semantic understanding of the concepts them-
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selves. Other sentences are long enough that the inter-
action itself is merely a secondary purpose to another
idea. All of these factors pose interesting challenges
for future development of this work.

Moreover, we also experimented with 10 empirical
scoring schemes derived from previous experiments on
the 300 sentences respectively, including the scheme in
the Table 2. Several fixed thresholds were attempted for
obtained alignment scores to differentiate between in-
teraction and non-interaction sentences. Without using
GA to optimize parameters of the scoring scheme, the
best performance of 10 empirical schemes is an overall
AC of 65.67%, which is outperformed at the 3rd gen-
eration of the GA optimization with Genia annotations.

7.5 System performance comparison

Within the framework of our system, we further con-
ducted experiments on the same dataset for sentence
identification using interaction patterns generated by
another pattern generating algorithm (PGA) (Huang et
al., 2004) in order to compare with the performance of
patterns obtained by our pattern learning method.

In our implementation, PGA iterates over all pairs
of candidate sentences in the training set and calculates
the best alignment for each pair in terms of the cost
scheme of gap penalties proposed (Huang et al., 2004).
Each consensus sequence from the optimal alignment
of each pair forms a pattern. The filter rules proposed
are also applied. PGA has a time complexity ofO(n2)
in the size of candidate sentences,n. Hence, our pro-
posed pattern learning method is much more efficient
when dealing with large collections of biological texts.
PGA produces a large number of patterns, even with
fmin = 5 and other filtering criteria. There are 37,319
common patterns between two types of annotations.

Attributes Genia Our system
Potential patterns (fmin = 5) 476,600 387,302
Extracted patterns (fmin = 5) 176,082 88,800

Table 8: Pattern extraction results of PGA

In order to make a direct comparison, we decided to
experiment with the same number of interaction pat-
terns. For Genia annotations, we chose the most fre-
quent 209 patterns generated by PGA to compare with
the 209 patterns by our method. For our system annota-
tions, two sets of 302 patterns are employed. Further, it
is found that there are 96 common patterns between the
two sets of 209 patterns for Genia annotations, and 153
common patterns between the two sets of 302 patterns
for our system annotations. Table 9 and 10 present the

results of sentence identification of PGA. The results
show that patterns generated by PGA do not perform
as well as patterns obtained by our method.

Experimental Genia Our system
Results Interaction Non Interaction Non
Precision 0.721 0.869 0.663 0.699
Recall 0.918 0.606 0.785 0.556
F-score 0.808 0.714 0.719 0.619
OverallAC(%) 77.00 67.67

Table 9: Performance of PGA on 300 testing sentences

Experimental Genia Our system
Results Interaction Non Interaction Non
Precision 0.664 0.796 0.698 0.635
Recall 0.849 0.574 0.566 0.766
F-score 0.745 0.667 0.625 0.694
OverallAC(%) 71.98 66.00

Table 10: Performance of PGA on 100 testing sentences

8 Conclusion and future work

In this paper, a novel approach is presented to auto-
matically extract the representative patterns of biologi-
cal interactions, which are used to detect sentences that
describe biological interactions. We conducted the ex-
periments on our designed system based on the Ge-
nia corpus. By means of a genetic algorithm, the sys-
tem achieves an 0.834 F-score using Genia annotations
and an 0.731 F-score using our system annotations in
identifying interaction sentences by evaluating 300 sen-
tences. By applying the optimized scoring scheme to
another set of 100 sentences, the system achieves com-
parable results for both types of annotations. Further-
more, by comparing with another pattern generating al-
gorithm, we infer that our proposed method is more ef-
ficient in producing patterns to identify interaction sen-
tences.

In our future work, we would like to employ the ob-
tained interaction patterns to guide the extraction of
specific interactions. The matching between patterns
and sentences will be performed and the matched parts
of each sentence will be extracted as candidate interac-
tions. Further reasoning processes can be performed
by means of available biological ontologies, such as
UMLS Semantic Network (Mccray and Bodenreider,
2002) and Gene Ontology (Consortium, 2001), to in-
fer new relations from the initial interactions. Such
processes can be employed to derive additional biolog-
ical knowledge from existing knowledge, or test for bi-
ological consistency of the newly entered data.
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