
Proceedings of the Australasian Language Technology Workshop 2005, pages 191–199,
Sydney, Australia, December 2005.

Programming With Unrestricted Natural Language

David Vadas and James R. Curran
School of Information Technologies

University of Sydney
NSW 2006, Australia

{dvadas1,james}@it.usyd.edu.au

Abstract

We argue it is better to program in a natural lan-
guage such as English, instead of a programming
language like Java. A natural language interface
for programming should result in greater readabil-
ity, as well as making possible a more intuitive way
of writing code. In contrast to previous controlled
language systems, we allow unrestricted syntax, us-
ing wide-coverage syntactic and semantic methods
to extract information from the user’s instructions.

We also look at how people actually give pro-
gramming instructions in English, collecting and
annotating a corpus of such statements. We identify
differences between sentences in this corpus and in
typical newspaper text, and the effect they have on
how we process the natural language input. Finally,
we demonstrate a prototype system, that is capable
of translating some English instructions into exe-
cutable code.

1 Introduction

Programming is hard. It requires a number of spe-
cialised skills and knowledge of the syntax of the
particular programming language being used. Pro-
grammers need to know a number of different lan-
guages, that can vary in control structures, syntax,
and standard libraries. In order to reduce these dif-
ficulties, we would like to express the steps of the
algorithm we are writing in a more natural manner,
without being forced into a particular syntax. Ide-
ally, we want aplain English description.

We have built an initial prototype of such a
system, taking unrestricted English as input, and
outputting code in the Python programming lan-
guage. There are many advantages of such a system.
Firstly, any person that can write English, but not a
programming language, would still be able to pro-
gram. Also, it is often easier to write an English sen-
tence describing what is to be done, than to figure
out the equivalent code. Many programmers write
in a pseudocode style that is almost English before
elaborating on the details of an algorithm. There are

also many tasks that can easily be described using
English sentences, but are much harder to express
as code, such as negation and quantification.

Another advantage is that code written in English
will be much easier to read and understand than in a
traditional programming language. Quite often, it is
a difficult task to read another programmer’s code.
Even understanding one’s own code can be hard af-
ter a period of time. This is because without suffi-
cient commenting — this is an explanation in plain
English — one cannot tell what individual steps are
meant to do together. In our system, the comments
become the code.

Novice programmers could make great use out
of such a system. They make simple syntax er-
rors because they do not know the language well
enough. Similarly, a novice programmer may know
what function they want to use, but not its specific
name and required arguments.

Finally, standard programming languages exhibit
numerous technical details that are not evident in
natural languages. Examples of this include typing,
integer division and variable declarations. When we
say in English3

5
, we expect the result to be 0.6, not

0, as will result in many programming languages.
These complications are a result of the computer’s
implementation, rather than the algorithm we are
trying to describe. We would like to abstract away
these issues, using information present in the En-
glish sentences to figure out the correct action to
take.

2 An Example
We can see in Figure 1 two example programs that
could be entered by a user. The code for the first
program matches what is outputted by the current
system, but the second is more complicated and
does yet work correctly.

Looking at the these examples, we can see a num-
ber of difficulties that make the problem hard, as
well as form some intuitions that can help to solve
the task. For example, the first line of both programs
involves three function calls because of variable typ-

191

ENGLISH PYTHON

read in a number number = int(sys.stdin.readline().strip())
add 2 to the number number += 2
print out the number print number
read in 2 numbers number1 = int(sys.stdin.readline().strip())

number2 = int(sys.stdin.readline().strip())
add them together result = number1 + number2
print out the result print result

Figure 1: Some example English sentences and their Python translations.

ing. In Python, we must first read in a string, then
strip away the newline character, and finally convert
it to an integer. We can tell that integer conversion is
required, firstly because of the name of the variable
itself, and secondly, because a mathematical opera-
tion is applied to it later on. Of course, it is still am-
biguous. The user may have expected the number
to be a string, and to have the string2 concatenated
to what was read in. However, the code in Figure 1
is more likely to be correct, and if the user wants to
use a string representation, then they could specify
as much by saying:read in a number as a string.

Another problem to deal with is the referencing
of variables. In the first program, it is fairly easy to
know thatnumber is the same variable in all three
sentences, but this is not as easy in the second. For
the first sentence of the second program, the system
needs to interpret2 numbers correctly, and map it
to multiple lines of code. Another complication is
them, which references the previously mentioned
variables. Finally,result, which does not appear in
the second line, must still be part of the equivalent
code, so that it can be used later.

One possibility that we could use to simplify the
task that we are undertaking is to use a restricted
natural language. However, we do not want to re-
strict the vocabulary available to a user, or force
them to construct sentences in a specific way, as
is the case for existing restricted natural languages
(Fuchs and Schwitter, 1996). Of course, this means
that we must then deal with the inherent ambigu-
ity and the great breadth of unrestricted natural En-
glish. For this reason, we employ wide-coverage
syntactic and semantic processing, that is able to
process this extensive range of inputs. In order to
resolve ambiguities, we can apply the intuitions we
have described above. We may not be sure that the
number should be treated as an integer, but this is
more likely than treating it as a string. This is the
conclusion that our system should come to as well.

3 Background

Clearly, the task we are undertaking is not trivial.
Though there are a number of related systems to
the one we propose, which have had success imple-
menting a natural language interface for some task.

3.1 Natural Language Interfaces to Databases

The most popular task is a Natural Language In-
terface for a Database (NLIDB) (Androutsopoulos
et al., 1995). This is because databases present a
large amount of information, which both novice and
expert users need to query. A specific query lan-
guage such as SQL must be used, which requires
one to understand the syntax for entering a query,
and also the way to join the underlying tables to ex-
tract data that is needed. A NLIDB simplifies the
task, by not requiring any knowledge of a specific
query language, or of the underlying table structure
of the database. We can see how this is similar to
the English programming system that we are con-
structing. Both take a natural language as input, and
map to some output that a computer can process.

There are a number of problems that exist with
NLIDBs. Firstly, it is not easy to understand all
the ambiguity of natural language, and as such,
a NLIDB can simply respond with the wrong an-
swers. As a result of this, many NLIDBs only ac-
cept a restricted subset of natural language. For ex-
ample, in the NLIDB PRE (Epstein, 1985), relative
clauses must come directly after the noun phrases
they are attached to.

One feature of many NLIDBs, is the ability to
engage the user in a dialogue, so that past events
and previously mentioned objects can be referenced
more easily. Two examples of this, anaphora and
elliptical sentences, are shown in Figure 2.

Understanding thatit refers to the ship, and that
the female manager’s degrees are again the subject
of the question, reduces the amount of effort re-
quired by the user, and makes the discourse more
natural. We also intend to maintain a discourse be-
tween the user and the computer for our own sys-

192

• ANAPHORA

> Is there a ship whose destination is unknown?
Yes.
> What is it?
What is [the ship whose
destination is unknown]?

Saratoga

• ELLIPTICAL SENTENCE

> Does the highest paid female manager have
any degrees from Harvard?

Yes, 1.
> How about MIT?
No, none.

Figure 2: An example of anaphora and an elliptical
sentence

tem. This would also allow us to resolve much of
the ambiguity involved in natural language by ask-
ing the user which possibility they actually meant.

3.2 Early Systems

One of the first natural language interfaces is
SHRDLU (Winograd, 1972), which allows users to
interact with a number of objects in what was called
Blocksworld. This system is capable of discriminat-
ing between objects, fulfilling goals, and answering
questions entered by the user. It also uses discourse
in order to better interpret sentences from the user.

There were also a handful of systems that at-
tempted to build a system similar to what we de-
scribe in this paper (Heidorn, 1976; Biermann et al.,
1983). Most of these used a restricted syntax, or de-
fined a specific domain over which they could be
used. Our system should have much greater cover-
age, and be able to interpret most instructions from
the user in some way.

More generally, we can look at a system that in-
terprets natural language utterances about planetary
bodies (Frost and Launchbury, 1989). This system
processes queries about its knowledge base, but is
restricted to sentences that are covered by its vocab-
ulary and grammar. It deals with ambiguous ques-
tions by providing answers to each possible reading,
even when those readings would be easily dismissed
by humans. With our system, we will determine the
most likely reading, and process the sentence ac-
cordingly.

3.3 Understanding Natural Language

One thing that we have not yet considered is how
people would describe a task to be carried out, if
they could use English to do so. The constructs
and formalisms required by traditional program-
ming languages do not apply when using a natu-
ral language. In fact, there are many differences
between the way non-programmers describe a task,
to the method that would be employed if one were
using a typical programming language (Pane et al.,
2001). Firstly, loops are hardly ever used explicitly,
and instead, aggregate operations are applied to an
entire list. These two methods for describing the
same action are shown in Figure 3.

• AGGREGATE

sum up all the values in the list

• ITERATION

start the sum at 0

for each in value in the list

add this value to the sum

Figure 3: Finding the sum of the values in a list

Another point of difference comes in the way
people use logical connectives such asAND andOR,
which are not neccesarily meant in the strictly logi-
cal way that is the case when using a programming
language. There are also differences in the way that
people describe conditions, remember the state of
objects, and the way they reference those objects.

HANDS (Pane et al., 2002) is a programming lan-
guage that has been designed with this information,
and with the idea of providing a programming in-
terface that is more natural to a human user. This
system takes a controlled language as input, but still
demonstrates a number of methods, such as the ag-
gregate operations described above, which make it
possible for people to describe the actions they want
performed as if they were writing in English.

There are actually many ways in which natu-
ral language constructions map onto programming
concepts. Theseprogrammatic semantics(Liu and
Lieberman, 2004) can be seen in syntactic types,
where nouns map to objects or classes, verbs map to
methods, and adjectives to attributes of the classes.
Using these concepts could allow us to more eas-
ily understand an English sentence, and map it to a
corresponding code output.

Metafor (Liu and Lieberman, 2005) is a system

193

that uses these ideas, taking a natural language de-
scription as input. As output, the system provides
scaffolding code, that is, the outline for classes and
methods, and only a small amount of actual con-
tent. The code is not immediately executable, but
can help the programmer in getting started.

NaturalJava (Price et al., 2000) is another natural
language programming system that allows users to
create and edit Java programs using English com-
mands. Each sentence in the natural language input
given to the system is mapped to one of 400 man-
ually created case frames, which then extracts the
triggering word and the arguments required for that
frame. The frame can generate a change in the Ab-
stract Syntax Tree (AST), an intermediate represen-
tation of the code, which is turned in Java code later.

This system has a number of problems that we
intend to improve on. Firstly, it can only handle
one action per sentence. Our prototype can detect
multiple verbs in a sentence, and generate code for
each of them. Also, the AST representation Natu-
ralJava uses makes it hard to navigate around a large
amount of code, since only simple movement oper-
ations are available.

Another problem with NaturalJava is that it maps
to specific operations that are included in Java,
rather than more general programming language
concepts. This means that it is not adaptable to
different programming languages. We intend to be
more language-neutral. A user of our system should
not need to look at the underlying code at all, just as
a programmer writing in C does not need to look at
the machine code.

4 Combinatory Categorial Grammar

Combinatory Categorial Grammar (CCG) is a type-
driven, lexicalised theory of grammar (Steedman,
2000). Each word receives a syntactic category that
defines its predicate-argument relationship with sur-
rounding words. We can see a simple example of
this in Figure 4.

Each word is assigned a category that defines
how it is involved with other words in the sentence.
These relationships are carried out through a num-
ber of rules, such as forward and backward applica-
tion, which can be seen in the example. Additional
rules such as composition and conjuction also al-
low the formalism to easily capture long-range de-
pendencies. This is particularly important for our
system, as the constructions used to describe pro-
gramming instructions often contain non-standard
constituents such as extraction, relativization, and
coordination.

These possiblities result in a large number of

interpretations, as a single word can be assigned
a different category depending on how it is used,
and the words that surround it. However, the ap-
plication of statistical parsing techniques forCCG

have shown that it is capable of performing wide-
coverage parsing at state-of-the-art levels (Clark and
Curran, 2004).

5 English Code Corpus

In order to investigate the way that people would
use English to describe a programming task, we el-
licited responses from programmers, asking them
to describe how they would solve sample tasks.
These tasks included finding the smallest number in
a list, splitting a string on a character and finding
all primes less than 100. The respondents were all
experienced programmers, since computer science
staff were all that were easily available. As a re-
sult of this, they tended to impose typical program-
ming constructs on what they wanted to do, rather
than using a simpler English sentence. For example,
one respondent wroteFor each number in the list
compare to min., whenCompare each number
in the list to the min. is more straightforward. This
demonstrates quite well the way that programming
languages force us to use a specific unnatural syn-
tax, rather than the freer style that a natural language
allows. It also shows that experienced programmers
can supply utterances that are less grammatically
correct and thereforeharder to process than what
novices would be expected to write.

The corpus is comprised of 370 sentences, from
12 different respondents. They range in style quite
significantly, with some using typically procedural
constructs such as loops and ifs (complete with the
non-sensical English statement:end loop in some
cases), while others used a more declarative style.

We have semi-automatically tagged the entire
corpus withCCGcategories (calledsupertags). This
process consisted of running the parser on the cor-
pus, and then manually correcting each parse. Cor-
rections were required in most sentences, as the way
people express programming statements varies sig-
nificantly from sentences found in newspaper text.
An example of this is in Figure 5.

This sentence uses an imperative construction,
beginning with a verb, which is quite different
from declarative sentences found in newspaper text,
and the earlier example in Figure 4. We can also
notice that the final category for the sentence is
S[b]\NP , rather than simply S. Another differ-
ence is in the vocabulary used for programming
tasks, compared to Wall Street Journal (WSJ) text.
We find if, loop, andvariables in the former, and

194

John hit Mary with the bat

N ((S[dcl]\NP)/PP)/NP N PP/NP NP [nb]/N N
<T <T >

NP NP NP
> >

(S[dcl]\NP)/PP PP
>

S[dcl]\NP
<

S

Figure 4: An example CCG derivation

Initialise min variable to zero

((S[b]\NP)/PP)/NP N/N N PP/NP N
> <T

N NP
<T >

NP PP
>

((S[b]\NP)/PP)
>

S[b]\NP

Figure 5: A CCG derivation for an English programming instruction

million, dollars, andexecutives in the latter. Par-
ticular words can also have different grammatical
functions. For example:print is usually a noun in
the WSJ, but mostly a verb while programming.

6 System Architecture
The system architecture and its components are
shown in Figure 6.

Figure 6: The system architechture

Firstly, the user will enter text that will be parsed
by theCCG parser. We then translate the predicate-
argument structure generated by the parser into a
first-order logic representation of DRS predicates.

This gives us a more generic representation of the
sentence, rather than the specific wording chosen by
the user. The final step is to generate the code itself.

Throughout these three phases, we also intend to
use a dialogue system that will interact with the user
in order to resolve ambiguity in their input. For ex-
ample, if the probability with which the parser gives
its output is too low, we may ask the user to con-
firm the main verb or noun. This is especially im-
portant, as we do not intend for the system to be
foolproof, but we do intend that the user should be
able to solve the problems that they encounter, ei-
ther through greater specification or rephrasing.

There are also a number of smaller tasks to be
dealt with, such as anaphora resolution, and GUI
construction. At this current stage though, we have
only dealt with basic functionality.

We will now describe each of the components of
the system in detail. Also, as we progress through
each stage, we will follow the example previously
shown in Figure 5. We will see how the processing
we do manages to begin with this English input, and
eventually output working Python code.

7 Parser

We use theC&C CCG parser (Clark and Curran,
2004) for this first stage of processing. This has the
advantage of being a broad coverage, robust parser,
that is able to extract long range dependancies re-
liably. We also have access to the code, and are
thus able to make changes if needed, and are able to
build new training models. In fact, we found that we

195

did indeed need to train a new model for the parser
as a result of the differences between programming
statements and typical newspaper text, as described
above. If we look at our example sentence, we can
see some of the problems quite well. Figure 7 shows
the parse provided by the original model.

We can see thatInitialise not been identified as
a verb, but is instead tagged as a proper noun.min
is also misclassified as a verb, when it is the noun.
This highlights the fact that the parser does not ex-
pect the first word in a sentence to be a verb. We
could not use this parse and expect to perform ade-
quately in the following stages of the system.

For this reason we created and annotated the En-
glish code corpus, in order to provide training data
and allow us to build a new, and better perform-
ing model. A similar process had been followed in
Question Answering (QA) (Clark et al., 2004), be-
cause questions also show quite different syntactic
properties to newspaper text. This technique pro-
duced a significant improvement for QA, and so we
have reused this idea.

Following Clark et al., we used multiples of the
English corpus, as it is quite small in comparison
to the entire WSJ. These results are shown in Fig-
ure 8, for training with just the WSJ (original), with
the WSJ and the English code corpus (1x code), and
with the WSJ and multiples of the English corpus
(5x, 10x, 20x). We show results for POS tagging
and supertagging, on a word-by-word basis, and
also the proportion of whole lines that are tagged
correctly. We can see that as we add more copies of
the English code corpus, all accuracies continue to
improve.

These results come from both training and testing
on the English corpus, and thus are not completely
rigourous. However, it does demonstrate the data
is fairly consistently annotated. As a fairer compar-
ison, we conducted 10-fold cross validation on the
20x corpus, where each fold contained the 20 copies
of one-tenth of the English code corpus, together
with sentences from sections 2–21 of the WSJ. Each
fold contained lines from throughout the English
corpus and the WSJ. The results show that the ac-
curacies from training with the English code cor-
pus were still significantly greater than the original
model. Finally, with this new model, our example
sentence is parsed correctly, as shown in Figure 5.

8 Semantics

From the syntactic representation of the sentence,
we wish to build a more semantically abstracted ver-
sion of what the user wants to translate into code.
The advantage of this is that we can more readily ex-

%%% Initialise ’min’ variable to zero .

x4 x3 x5 x1 x2
thing(x4)
’min’(x5)
nn(x5,x3)
variable(x3)
initialise(x1)
agent(x1,x4)
patient(x1,x3)
to(x1,x2)
event(x1)

Figure 9: DRS for example sentence

tract the particular verbs and nouns that will become
functions and their arguments respectively. Having
a logical form also means we can apply inference
tools, and thereby detect anomolies in the user’s
descriptions, as well as including other sources of
knowledge into the system.

Theccg2sem system (Bos et al., 2004; Black-
burn and Bos, 2005) performs this task, takingCCG

parse trees as input, and outputting DRS logical
predicates. A single unambiguous reading is always
outputted for each sentence. The DRS for our ex-
ample sentence is shown in Figure 9. We can see
that the verb (x1) is identified by an event predicate,
while the agent (x4) and patient (x3) are also found.
One particular discriminating feature of the imper-
ative sentences that we see, is that the agent has no
representation in the sentence. We can also find the
preposition (x2) attached to the verb, and this be-
comes an additional argument for the function.

This logical form also extracts conditions that
would be found in if statements and loops very well.
Figure 10 shows the DRSs for the sentence:If num
is -1, quit. We can see the proposition DRS (the
middle box) and the proposition itself (x2), which
entails another verb (x3) to be interpreted. That is,
we should carry out the verbquit (x1), if the propo-
sition is true. Almost all if statements in the corpus
are identified in this way.

9 Generation
Having extracted the functional verb and its argu-
ments, we then need to find a mapping onto an
equivalent line of code. The simplest technique,
which the current system uses, consists of a list of
primitives, each of which describes the specific verb
in question as well as a number of arguments. If
the semantic information matches perfectly with a

196

Initialise min variable to zero

N (S[dcl]\NP)/(S[adj]\NP) (S[adj]\NP)/PP PP/NP N
<T

NP
>

PP
>

S[adj]\NP
>

S[dcl]\NP
<

S[dcl]

Figure 7: The original, incorrect CCG derivation

TRAINING DATA COVERAGE POS WORD SUPER WORD POS LINE SUPER L INE
Original model 95.6757% 0.873 0.736 0.359 0.197

1x code 93.2432% 0.975 0.848 0.829 0.510
5x code 85.9459% 0.994 0.931 0.962 0.708
10x code 82.4324% 0.996 0.962 0.975 0.821
20x code 82.7027% 0.998 0.978 0.986 0.889

20x code, 10-fold cross validation 85.40542% 0.974 0.896 0.840 0.624

Figure 8: Parser results

%%% If num is -1 , quit

x6 x1 x2
thing(x6)
quit(x1)
agent(x1,x6)
proposition(x2)
if(x1,x2)

x2:
event(x1)

Figure 10: DRS for if statement

primitive, then the equivalent code is generated. At
present, there exist only a few primitives, shown
in Figure 11. These primitives are made up of the
functional verb, the list of arguments they take, and
a code template that the arguments are used in.

This system obviously has a number of weak-
nesses. Firstly, that if the user chooses a verb that
is not listed in a primitive, then no code can be gen-

erated. Also, some primitives would be described
with the same verb and arguments, but require dif-
ferent code, such as adding two numbers together,
compared to adding one number to a list. This is
similar to operator overloading, a feature present in
a number of programming languages such as C++.

We can make a number of observations that can
help us improve this step in the system. Firstly,
we can reduce the number of possibilities by look-
ing at the program as a whole, rather than as in-
dividual lines. For example, for the second prob-
lem mentioned above, if the user had previously de-
clared that the second argument was a list, then we
would know which of the two primitive operations
was correct. We can also constrain the number of
possibilities by using intuitive notions, such as not
being able to output a previously unseen variable.

Also, we can take advantage of the limited do-
main of programming. Rather than trying to list
every sense of every verb in the English language
together with its equivalent programming concept,
we could create a much smaller set of programming
primitives, and simply map everything onto one of
those. Considering the small number of choices and
the constraints mentioned above, this may be possi-
ble using a machine learning approach.

Of course, we must consider what to do when a
function that is not one of the primitives is referred
to. In such a case, and assuming it can be detected,
we believe the most sensible thing to do is to ask
the user to describe how to carry out such a func-
tion, using the more basic primitive functions that
already exist. Thus we would allow the creation

197

FUNCTIONAL VERB ARGUMENTS CODE TEMPLATE
read input <input> = int(sys.stdin.readline())
print output print <output>
add addAmount, addTo <addTo> += <addAmount>

initialise variable, setting <variable> = <setting>
set variable, setting <variable> = <setting>

assign variable, setting <variable> = <setting>
iterate item, list for <item> in <list>:

Figure 11: Primitives used for generation

of user-defined functions, just as a normal program-
ming language would.

Looking back to our example sentence once
more, we proceed to extract the predicate (initialise)
and argument information (min variable, 0) from
the DRS. This maps to the initialise primitive in Fig-
ure 11. The matching code, stored in the primitive,
then comes out as:

min variable = 0

This is clearly a suitable outcome, and we can say
that for this case, the system has worked perfectly.

10 Future Work
There is a great deal of work still to be done, be-
fore we will have constructed a usable system. We
intend to progress initially by expanding the gener-
ation component to be able to process most of the
commands contained in the English code corpus.
We also expect to do more work with the parser and
semantic engine. For example, if we find that the
coverage or accuracy of the parser is insufficient,
then we can create more data for our corpus, or de-
sign specialised features to help disambiguate cer-
tain word types. Similarly, we may find that some
information is not relevant or simply missing from
the DRSs that are currently produced, in which case
we would be required to extend the current system
so that it can extract what is needed.

Once the three basic components described above
function at a satisfactory level, then we will be-
gin work on other components of the system. The
largest of these is a dialogue component, which
should solve a wide range of problems. These could
include simple questions about the parse for a sen-
tence:

> Blerg the number
Is Blerg a verb?

It could also help in resolving some ambiguity, or
inquire about some missing information.

> Read in 2 numbers

> Add 2 to the number
Which number do you mean?

> Open a file for reading
What is the name of the file?

Anaphora resolution is another problem fre-
quently encountered in the English code corpus we
have collected. As discovered previously in the case
of NLIDBs, having a system capable of dealing with
this phenonemon makes it a great deal easier to use.
For this reason, we intend to implement such a com-
ponent for our final system.

Lastly, we intend to develop a GUI that allows a
user to interact more easily with the system. Inte-
grating the syntactic, semantic and generation com-
ponents, together with a text editor, would allow the
system to highlight certain functions and arguments.
This would make it clearer to the user what the sys-
tem is doing. The dialogue component in particu-
lar would gain a great deal from this, as it could be
made clear what sentence or word was being clari-
fied, as well as the context it was in.

11 Conclusion
Programming is a very complicated task, and any
way in which it can be simplified will be of great
benefit. The system we have outlined and proto-
typed aims to allow a user describe their instructions
in a natural language. For this, a user may be asked
to clarify or rephrase a number of points, but will
not have to corrrect syntax errors as when using a
normal programming language.

Using modern parsing techniques, and a bet-
ter understanding of just how programmers would
write English code, we have built a prototype that
is capable of translating natural language input to
working code. More complicated sentences that de-
scribe typical programming structures, such as if
statements and loops, are also understood. Indeed,
much of the work to be done involves increasing the
coverage of the system in a general manner, so that
it is able to understand a wider variety of user input.
Once we have built a complete system that can make

198

some understanding of almost any input, we expect
it to be usable by novice and experienced program-
mers alike.

Acknowledgements
We would like to thank members of the Language
Technology Research Group and the anonymous re-
viewers for their helpful feedback. This work has
been supported by the Australian Research Council
under Discovery Project DP0453131.

References
I. Androutsopoulos, G.D. Ritchie, and P. Thanisch.

1995. Natural language interfaces to databases–
an introduction.Journal of Language Engineer-
ing, 1(1):29–81.

A. Biermann, B. Ballard, and A. Sigmon. 1983. An
experimental study of natural language program-
ming. International Journal of Man-Machine
Studies, 18:71–87.

P. Blackburn and J. Bos. 2005.Representation and
Inference for Natural Language. A First Course
in Computational Semantics.CSLI Publications.

J. Bos, S. Clark, M. Steedman, J.R. Curran, and
J. Hockenmaier. 2004. Wide-coverage seman-
tic representations from a CCG parser. InPro-
ceedings of the 20th International Conference
on Computational Linguistics (COLING ’04),
Geneva, Switzerland.

S. Clark and J.R. Curran. 2004. Parsing the WSJ
using CCG and log-linear models. InProceed-
ings of the 42nd Meeting of the ACL, Barcelona,
Spain.

S. Clark, M. Steedman, and J.R. Curran. 2004.
Object-extraction and question-parsing using
CCG. InProceedings of the SIGDAT Conference
on Empirical Methods in Natural Language Pro-
cessing (EMNLP-04), pages 111–118, Barcelona,
Spain.

S.S. Epstein. 1985. Transportable natural language
processing through simplicity – the PRE system.
ACM Transactions on Office Information Sys-
tems, 3:107–120.

R. Frost and J. Launchbury. 1989. Constructing
natural language interpreters in a lazy functional
language.The Computer Journal. Special issue
on lazy functional programming, 32(2):108–121,
April.

N. E. Fuchs and R. Schwitter. 1996. Attempto
controlled English (ACE). InProceedings of the
First International Workshop on Controlled Lan-
guage Applications, pages 124–136.

G. E. Heidorn. 1976. Automatic programming
though natural language dialogue: A survey.

IBM Journal of Research and Development,
20(4):302–313, July.

H. Liu and H. Lieberman. 2004. Toward a pro-
grammatic semantics of natural language. In
Proceedings of VL/HCC’04: the 20th IEEE Sym-
posium on Visual Languages and Human-Centric
Computing, pages 281–282, Rome, September.

H. Liu and H. Lieberman. 2005. Metafor: Visual-
izing stories as code. InProceedings of the ACM
International Conference on Intelligent User In-
terfaces, pages 305–307, San Diego, CA, USA,
January.

J.F. Pane, C.A. Ratanamahatana, and B.A. My-
ers. 2001. Studying the language and struc-
ture in non-programmers’ solutions to program-
ming problems.International Journal of Human-
Computer Studies, 54(2):237–264, February.

J.F. Pane, B.A. Myers, and L.B. Miller. 2002. Us-
ing hci techniques to design a more usable pro-
gramming system. InProceedings of IEEE 2002
Symposia on Human Centric Computing Lan-
guages and Environments (HCC 2002), pages
198–206, Arlington, VA, September.

D. Price, E. Riloff, J. Zachary, and B. Harvey. 2000.
NaturalJava: A natural language interface for
programming in Java. InProceedings of the 2000
International Conference on Intelligent User In-
terfaces, pages 207–211.

M. Steedman. 2000.The Syntactic Process. The
MIT Press, Cambridge, MA.

T. Winograd. 1972.Understanding Natural Lan-
guage. Academic Press.

199

	A Dual-Iterative Method for Concept-Word Acquisition from Large-Scale Chinese Corpora

