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Abstract

Automatic Machine Translation metrics, such
as BLEU, are widely used in empirical eval-
uation as a substitute for human assessment.
Subsequently, the performance of a given met-
ric is measured by its strength of correlation
with human judgment. When a newly pro-
posed metric achieves a stronger correlation
over that of a baseline, it is important to take
into account the uncertainty inherent in cor-
relation point estimates prior to concluding
improvements in metric performance. Con-
fidence intervals for correlations with human
judgment are rarely reported in metric eval-
uations, however, and when they have been
reported, the most suitable methods have un-
fortunately not been applied. For example,
incorrect assumptions about correlation sam-
pling distributions made in past evaluations
risk over-estimation of significant differences
in metric performance. In this paper, we pro-
vide analysis of each of the issues that may
lead to inaccuracies before providing detail of
a method that overcomes previous challenges.
Additionally, we propose a new method of
translation sampling that in contrast achieves
genuine high conclusivity in evaluation of the
relative performance of metrics.

1 Introduction

In empirical evaluation of Machine Translation
(MT), automatic metrics are widely used as a sub-
stitute for human assessment for the purpose of
measuring differences in MT system performance.
The performance of a newly proposed metric is it-
self measured by the degree to which its automatic

scores for a sample of MT systems correlate with
human assessment of that same set of systems. A
main venue for evaluation of MT metrics is the an-
nual Workshop for Statistical Machine Translation
(WMT) (Bojar et al., 2015) where large-scale hu-
man evaluation takes place, primarily for the pur-
pose of ranking systems competing in the transla-
tion shared task, but additionally to use the resulting
system rankings for evaluation of automatic metrics.
Since 2014, WMT has used the Pearson correla-
tion as the official measure for evaluation of metrics
(Macháček and Bojar, 2014; Stanojević et al., 2015).
Comparison of the performance of any two metrics
involves the comparison of two Pearson correlation
point estimates computed over a sample of MT sys-
tems, therefore. Table 1 shows correlations with hu-
man assessment of each of the metrics participat-
ing in the Czech-to-English component of WMT-
14 metrics shared task, and, for example, if we wish
to compare the performance of the top-performing
metric, REDSYSSENT (Wu et al., 2014), with the
popular metric BLEU (Papineni et al., 2001), this in-
volves comparison of the correlation point estimate
of REDSYSSENT, r = 0.993, with the weaker corre-
lation point estimate of BLEU, r = 0.909, with both
computed with reference to human assessment of a
sample of 5 MT systems.

When a new metric achieves a stronger correla-
tion with human assessment over a baseline metric,
such as the increase achieved by REDSYSSENT over
BLEU, it is important to consider the uncertainty sur-
rounding the difference in correlation. Confidence
intervals are very rarely reported in metric evalua-
tions, however, and when attempts have been made,
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Metric r CI UCL

REDSYSSENT 0.993 ± 0.018 1.011
REDSYS 0.989 ± 0.021 1.010

NIST 0.983 ± 0.025 1.008
DISCOTK-PARTY 0.983 ± 0.025 1.008

APAC 0.982 ± 0.026 1.008
METEOR 0.980 ± 0.029 1.009

TER 0.976 ± 0.031 1.007
DISCOTK-PARTY-TUNED 0.975 ± 0.031 1.006

WER 0.974 ± 0.033 1.007
CDER 0.965 ± 0.035 1.000

TBLEU 0.957 ± 0.040 0.997
DISCOTK-LIGHT 0.954 ± 0.038 0.992

UPC-STOUT 0.948 ± 0.040 0.988
BLEU-NRC 0.946 ± 0.044 0.990

ELEXR 0.945 ± 0.044 0.989
LAYERED 0.941 ± 0.045 0.986

VERTA-EQ 0.938 ± 0.048 0.986
VERTA-W 0.934 ± 0.050 0.984

BLEU 0.909 ± 0.054 0.963
PER 0.883 ± 0.063 0.946

UPC-IPA 0.824 ± 0.073 0.897
AMBER 0.744 ± 0.095 0.839

Table 1: WMT-14 Czech-to-English metrics shared task Pear-

son correlation (r) point estimates for metrics with human as-

sessment (5 MT systems), reported confidence intervals (CI),

and corresponding upper confidence limits (UCL).

the most appropriate method has unfortunately not
been applied. For example, although WMT consti-
tutes a main authority on MT evaluation, and have
made the best attempt to provide confidence inter-
vals for metric correlations we could find, when
we closely examine results of WMT-14 Czech-to-
English metrics shared task, reproduced here in Ta-
ble 1, a discrepancy can be identified. For the nine
top-performing metrics participating in the shared
task, upper confidence interval limits are reported to
exceed 1.0.

Confidence intervals reported in the metrics
shared task unfortunately also risk inaccurate con-
clusions about the relative performance of metrics
for other less obvious reasons and risk conclusions
that over-estimate the presence of significant dif-
ferences. False-positives are problematic in metric
evaluations because, if a given metric is mistakenly
concluded to significantly outperform a competing
metric, it is possible that had a larger sample of MT
systems been employed in the evaluation, that the re-
verse conclusion should in fact be made. We demon-
strate how this can occur for metrics, showing that in
reality in current metric evaluation settings, it is only
possible to identify a very small number of signifi-
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Figure 1: 10k simulated BLEU scores correlating with human

assessment at r = 0.91 as in BLEU evaluation of Czech-to-

English in WMT-14.

cant differences in performance. A main cause is the
small number of MT systems employed in evalua-
tions, and we propose a new sampling technique, hy-
brid super-sampling, that overcomes previous chal-
lenges and facilities the evaluation of metrics with
reference to a practically unlimited number of MT
systems.

2 WMT-style Evaluation

Alongside the correlation sample point estimates
achieved by metrics, WMT reports confidence in-
tervals for correlations that unfortunately risk over-
estimation of significant differences in metric per-
formance, reasons for which we outline below
(Macháček and Bojar, 2013; Macháček and Bojar,
2014; Stanojević et al., 2015).

2.1 Sampling Distribution Assumptions

As shown in Table 1, confidence intervals are re-
ported for metric correlations using ± notation. The
use of the ± notation implies that the sampling dis-
tribution is symmetrical. Since the sampling distri-
bution of the Pearson correlation, r, is skewed, how-
ever, this means that, for a non-zero correlation, it is
not possible for the portion of the confidence interval
that lies above the correlation sample point estimate
and the portion that lies below it to be equal. Ad-
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Figure 2: Sampling distribution of r = 0.91 and N = 5 for

correlation of BLEU with human assessment for hypothetical

“population” of MT systems in Figure 1.

ditionally, since the correlation sample statistic, r,
cannot take on values greater than 1.0, the closer r
is to 1.0 the more extreme the skew of its sampling
distribution becomes.1

To demonstrate how the skew of the sampling dis-
tribution of r impacts on upper and lower confidence
interval limits for metrics, in Figures 1 and 2, we
simulate a possible population and sampling distri-
bution for BLEU’s correlation with human assess-
ment, r = 0.91, achieved in WMT-14 Czech-to-
English shared task, where the sample size, n, was 5
MT systems. Figure 1 depicts a hypothetical “pop-
ulation” of 10,000 MT systems and BLEU scores,
where hypothetical BLEU scores for systems corre-
spond with human assessment scores in such a way
that a correlation of 0.91 is achieved. Figure 2 de-
picts the sampling distribution for r yielded by re-
peatedly drawing sets of 5 systems at random from
the larger “population” of 10,000 systems, where
the negative skew can be clearly observed. Figure 2
also depicts the 95% confidence interval (CI), within
which 95% of sampled correlations lie, where the
width of the lower portion of confidence interval is
substantially wider than the upper portion, and the

1It should be noted that the assumption of symmetry of the
sampling distribution of r is not explicitly made in any WMT
report.

overly conservative confidence interval reported for
BLEU in WMT-14, where upper and lower portions
of the confidence interval are incorrectly assumed to
be equal in size.

2.2 Application of Bootstrap Resampling
A conventional approach to bootstrap resampling for
the purpose of computing confidence intervals for a
correlation sample point estimate is to create a cor-
relation coefficient pseudo-distribution by sampling
(at random with replacement) human and automatic
scores for n MT systems from the set of n systems
for which we have genuine metric and human scores.
Instead, however, reported confidence intervals are
the result of creating pseudo-distributions of human
assessment scores for systems. The method unfor-
tunately does not produce accurate confidence inter-
vals for correlation sample point estimates, as con-
fidence intervals produced in this way can unfortu-
nately only inform us about the certainty surround-
ing human assessment scores for systems rather than
the more relevant question of the certainty surround-
ing the correlation point estimates achieved by met-
rics. Confidence intervals computed in this way
are substantially narrower than confidence intervals
computed using the standard Fisher r-to-z transfor-
mation, that can also be directly applied to corre-
lations of metrics with human assessment without
application of randomized methods.

Table 22 includes reported confidence intervals of
metric correlations for English-to-Czech in WMT-
15, and those computed using the standard Fisher
r-to-z transformation, where confidence intervals of
the latter are substantially wider. An extreme ex-
ample occurs for metric DREEM, where the differ-
ence between its original reported lower confidence
interval limit and the correlation point estimate is
0.006, more than 34 times narrower than that com-
puted with the Fisher r-to-z transformation, 0.206.

2.3 Difference in Dependent Correlations
When reporting the outcome of an empirical evalua-
tion, along with sample point estimates, such as the
mean or, in the case of metrics, correlation, we only

2WMT confidence intervals have been recomputed from the
published data set to remove the previously described error with
respect to the symmetry of r’s sampling distribution.

3



Metric r Method Low. CI (-) Upper CI (+)

CHRF3 0.977 WMT 0.003 0.002
Fisher 0.046 0.015

CHRF 0.971 WMT 0.003 0.003
Fisher 0.059 0.020

RATATOUILLE 0.965 WMT 0.003 0.003
Fisher 0.071 0.024

BEER 0.962 WMT 0.004 0.003
Fisher 0.076 0.026

METEORWSD 0.953 WMT 0.004 0.003
Fisher 0.093 0.032

LEBLEU-DEF. 0.953 WMT 0.004 0.003
Fisher 0.091 0.031

BS 0.953 WMT 0.004 0.003
Fisher 0.032 0.092

BLEU 0.936 WMT 0.005 0.004
Fisher 0.123 0.043

PER 0.908 WMT 0.005 0.004
Fisher 0.168 0.062

DREEM 0.883 WMT 0.006 0.006
Fisher 0.206 0.078

Table 2: WMT and Fisher r-to-z (Fisher) confidence intervals

(CI) for Pearson correlation, ρ, in WMT-15 sample of English-

to-Czech metrics (15 MT systems).

ever have access to a sample of the actual data that
would be needed to compute the corresponding true
value for the population. Confidence intervals pro-
vide a way of estimating the range of values within
which we believe with a specified degree of cer-
tainty that the corresponding true value lies. Gener-
ally speaking, they can also provide a mechanism for
drawing conclusions about significant differences in
sample statistics. If, for example, mean scores are
used to measure system performance, and the confi-
dence intervals of a pair of systems do not overlap,
a significant difference in sample means and subse-
quently system performance can be concluded.

Although confidence intervals for individual cor-
relations do provide an indication of the degree of
certainty with which we should interpret reported
correlation sample point estimates, they unfortu-
nately cannot be used in the above described way to
conclude significant differences in the performance
of metrics, however. All we can gain from confi-
dence intervals for individual correlations with re-
spect to significance differences is the following: if
the confidence interval of a correlation sample point
estimate does not include zero, then it can be con-
cluded (with a specified degree of certainty) that this

individual correlation is significantly different from
zero. Confidence intervals for individual metric cor-
relations with human assessment do not inform us
about the certainty surrounding a difference in cor-
relation with human assessment, the relevant ques-
tion for comparing performance of competing MT
metrics.

When computing confidence intervals for a dif-
ference in correlation, it is important to consider
the nature of the data. For MT metric evaluation,
data used to compute correlation point estimates
for a given pair of metrics is dependent, as it in-
cludes three variables (Human, Metrica, Metricb),
and, for each MT system that is a member of the
sample, there is a value corresponding to each of
these three variables. Besides the two correlations
we are interested in comparing, r(Human, Metrica)
and r(Human, Metricb), there is a third correla-
tion to consider, therefore, the correlation that ex-
ists directly between the metric scores themselves,
r(Metrica, Metricb). Graham and Baldwin (2014)
provide detail of Williams test, a test of significance
of a difference in dependent correlations, suitable
for evaluation of MT metrics. Confidence intervals
are more informative than the binary conclusions
that can be inferred from p-values produced by sig-
nificance tests, however, and Zou (2007) presents
a method of constructing confidence intervals for
differences in dependent correlations also suitable
for evaluation of MT metrics. We provide an im-
plementation of Zou (2007) tailored to metric eval-
uation at https://github.com/ygraham/
MT-metric-confidence-intervals.

Table 3 includes confidence intervals for differ-
ences in dependent correlations (Zou, 2007) for the
seven top-performing German-to-English metrics in
WMT-15. Besides providing an indication of the
degree of certainty surrounding a given difference
in correlation for a pair of metrics, confidence inter-
vals that do not include zero can now be used to in-
fer a significant difference in performance for a pair
of metrics. For example, the 95% confidence inter-
val for the difference in correlation between the top-
performing metric, UPFCOBALT (r = 0.981) and
METEORWSD (r = 0.953), [0.005, 0.123], in Table
3, does not include zero and subsequently implies a
significant difference in performance.

Figure 3 depicts the contrast in conclusions for
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DPMFCOMB DPMF UOWLSTM RATATOUILLE CHRF3 METEORWSD
(r = 0.973) (r = 0.960) (r = 0.960) (r = 0.958) (r = 0.956) (r = 0.953)

(r = 0.981) UPFCOBALT [−0.023, 0.061] [−0.004, 0.101] [−0.013, 0.106] [−0.010, 0.109] [−0.001, 0.114] [ 0.005, 0.123]
DPMFCOMB - [−0.025, 0.087] [−0.032, 0.092] [−0.026, 0.093] [−0.024, 0.101] [−0.017, 0.109]

DPMF - - [−0.070, 0.073] [−0.067, 0.075] [−0.061, 0.079] [−0.054, 0.087]
UOWLSTM - - - [−0.071, 0.077] [−0.069, 0.084] [−0.066, 0.094]

RATATOUILLE - - - - [−0.072, 0.082] [−0.064, 0.088]
CHRF3 - - - - - [−0.067, 0.081]

Table 3: Pairwise 95% confidence intervals for differences in correlation for seven top-performing metrics for German-to-English

in WMT-15 (13 MT systems), confidence intervals not including zero imply a significant difference and are highlighted in bold.

(a) Individual Correlations (b) Difference in Dependent
WMT-15 Correlations
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Figure 3: Conclusions of significant differences in correlation for WMT-15 German-to-English metrics (13 MT systems) drawn

from the (a) non-overlap of individual correlation confidence intervals originally reported in WMT and from (b) confidence intervals

of a difference in dependent correlations not including zero, green cells imply a significant win for the metric in that row over the

metric in that column.
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WMT-15 German-to-English metrics drawn from
(a) a likely interpretation of confidence intervals
originally reported in WMT, where the non-overlap
of individual correlation confidence intervals of a
pair of metrics is used to infer a significant dif-
ference, and (b) those drawn from the non-overlap
of confidence intervals for differences in dependent
correlations with zero (Zou, 2007), highlighting the
over-estimation of significant differences in metric
performance risked by current WMT confidence in-
tervals. For example, for German-to-English with
interpretation (a) a total of 91 significant differ-
ences are implied that are not identified accord-
ing to our corresponding approach. For instance,
the non-overlap of confidence intervals of the top-
performing metric, UPFCOBALT, with those of all
but one other metrics in the original report risks
the interpretation of a significant increase in perfor-
mance for that metric with all but one other compet-
ing metrics, but with the more appropriate method
of Zou (2007), however, confidence intervals of this
metric’s difference in correlation with four of those
competing metrics in fact include zero, with no sig-
nificant difference identified. It is worth noting that
original WMT reports do not state that the confi-
dence intervals they provide should be interpreted in
the way we have done here, where the non-overlap
of individual correlation confidence intervals of a
pair of metrics implies a significant difference, but
this is nonetheless a very likely interpretation.

3 Accurate and Conclusive Metric
Evaluations

Results of past metric evaluations have been highly
inconclusive with relatively few significant differ-
ences in performance possible to identify for met-
rics.3 The lack of conclusivity in metric evaluations
is mainly caused by the small number of systems
used to evaluate metrics. For example, in the origi-
nal experiments used to justify the use of automatic
metric BLEU, reported correlations with human as-

3Due to space limitations, it was only possible to include
confidence intervals for differences in correlation for a sub-
set of German-to-English WMT-15 metrics (Figure 3). Con-
fidence intervals for the the remaining metrics and language
pairs are available at https://github.com/ygraham/
MT-metric-confidence-intervals for which very
few significant differences in performance are identified.

sessment were for a sample size of as small as 5,
comprising three automatic systems and two human
translators (Papineni et al., 2001). WMT have im-
proved on this for some language pairs at least, as in
the past four evaluations sample sizes have ranged
from 5 (Czech-to-English WMT-14) to 22 systems
(German-to-English WMT-12/WMT-13). Even at
the maximum sample size of 22 systems, however,
correlation point estimates are computed with a high
degree of uncertainty.

3.1 Hybrid Super-Sampling

In an ideal world, MT metric evaluations would em-
ploy a much larger sample of systems than those
relied upon in past evaluations, subsequently yield-
ing correlation sample point estimates that can be
relied on with more certainty. Although not imme-
diately obvious, data sets currently used to evalu-
ate MT metrics potentially contain data for a very
large number of systems. If we consider the fact
that, given the output of as little as two MT systems,
there exists a very large number of possible ways of
combining their translated segments to form a hy-
brid system, this opens up the evaluation of metrics
to a vastly larger pool of systems. For example, even
if we restrict the creation of hybrid systems to com-
binations of pairs of the n MT systems competing in
a translation shared task (as opposed to hybrids cre-
ated by sampling translations from several different
MT systems at once), the number of potential hybrid
systems is exponential in size of the test set, m:

n(n− 1)/2 · 2m (1)

For instance, even for a language pair for which hu-
man scores are available for as few as 5 MT systems,
by super-sampling translations from every pair of
competing systems, this results in 10 x 23,000 hy-
brid systems. Including all possible hybrid systems
is of course not necessary, and to make the approach
feasible, we sample a large but manageable subset
of 10,000 MT systems.

Obtaining automatic metric scores for this larger
number of MT systems is feasible for any metric that
is expected to be useful in practice, since automatic
metrics must already be highly efficient to be used
for optimizing systems. Obtaining human assess-
ment of this large set of hybrid systems may seem
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CI of Difference in r CI of Difference in r
Metric r with next best metric r with next best metric

TERRORCAT 0.971 [ −0.019 , 0.155 ] 0.960 [ 0.028 , 0.030 ]
SAGANSTS 0.942 [ −0.120 , 0.136 ] 0.932 [ 0.006 , 0.011 ]

METEOR 0.938 [ −0.086 , 0.172 ] 0.923 [ 0.028 , 0.032 ]
POSF 0.919 [ −0.134 , 0.184 ] 0.893 [ 0.004 , 0.008 ]

SPEDE07FP 0.907 [ −0.138 , 0.162 ] 0.887 [ −0.001 , 0.003 ]
• SPEDE08FP 0.897 [ −0.142 , 0.202 ] 0.886 [ 0.004 , 0.007 ]
• SPEDE07F 0.902 [ −0.156 , 0.176 ] 0.880 [ 0.003 , 0.006 ]
• SPEDE07PP 0.879 [ −0.161 , 0.202 ] 0.876 [ 0.007 , 0.007 ]
• SPEDE07P 0.870 [ −0.188 , 0.196 ] 0.869 [ 0.006 , 0.009 ]

• XENERRCATS 0.884 [ −0.174 , 0.193 ] 0.862 [ 0.011 , 0.015 ]
• AMBER 0.859 [ −0.084 , 0.398 ] 0.849 [ 0.008 , 0.011 ]

• WORDBLOCKERRCATS 0.868 [ −0.183 , 0.220 ] 0.839 [ 0.057 , 0.065 ]
• SIMPBLEU 0.770 [ −0.210 , 0.318 ] 0.778 [ 0.033 , 0.036 ]

• BLEU 0.741 - 0.744 [ 0.008 , 0.016 ]
• BLOCKERRCATS 0.779 [ −0.257 , 0.293 ] 0.731 -

12 Systems 10k Systems

Table 4: Correlations and confidence intervals of pseudo document-level metrics (averaged segment-level metrics) with human

assessment evaluated on original 12 MT systems and 10k hybrid super-sample (WMT-12 Spanish-to-English). Metrics with a

different rank order in the original sample and hybrid super-sample evaluations are marked with • and confidence intervals that do

not include zero are in bold.
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Figure 4: Human, TERRORCAT and BLEU scores for 10k super-sampled hybrid MT systems for WMT-12 Spanish-to-English.
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more challenging, but the method of human evalua-
tion we employ facilitates the straight-forward com-
putation of human scores for vast numbers of sys-
tems directly from the original human evaluation of
only n systems. Graham et al. (2013) provide a hu-
man evaluation of MT that elicits adequacy assess-
ments of translations, independent of other transla-
tions on a fine-grained 100-point rating scale. After
score standardization to iron-out differences in indi-
vidual human assessor scoring strategies, the overall
human score for a MT system is simply computed as
the mean of the ratings attributed to its translations,
and this facilitates the straight-forward computation
of a human score for any hybrid system from the
original human evaluation of n systems.

To demonstrate, we replicate a previous year’s
WMT metrics shared task, constructing a hybrid
super-sample of 10,000 MT systems each with a
corresponding metric and human score. Since we
do not have access to all document-level metrics
that participated in the original shared task, we use
segment-level metric scores as pseudo document-
level metrics by taking the average of segment-level
scores of the segments that comprise the test set doc-
ument. This allows retrospective computation of au-
tomatic metric scores for the large set of 10k hy-
brid MT systems. For the purpose of comparison,
in addition to averaged segment-level metrics, we
also include document-level BLEU and an analysis
of the correlation it achieves in the context of hy-
brid super-sampling. Human evaluation scores were
computed using the mean of a minimum of 1,500
crowd-sourced human ratings per system, where
strict quality-controlling of crowd-sourced workers
was applied.

Table 4 shows correlations achieved by metrics
when evaluated on the original 12 and 10k systems,
as well as confidence intervals of the difference in
correlation achieved by each metric with that of the
next best performing metric in each case.4 As ex-
pected, confidence intervals for differences in corre-
lation are substantially reduced for the larger sample
of metrics. Importantly, the change in rank order of
metrics when evaluated with reference to a sample

4It should be noted, since participating teams did not intend
segment-level metric scores to be averaged as we have done
here, correlations are for demonstrative purposes and do not re-
flect performance of participating teams.

of 10k MT systems, as opposed to 12, highlights the
risk of concluding an increase in performance from
evaluations that include only a small sample of sys-
tems.

Figure 4 plots super-sampled human and auto-
matic metric scores for BLEU providing insight into
how BLEU scores correspond with human assess-
ment. Worryingly for the range of systems with
scores below 20 BLEU points, the plot shows an
almost horizontal band of systems spread across a
wide range of quality according to human assessors
despite extremely similar BLEU scores. The top-
performing automatic metric, TERRORCAT, on the
other hand, impressively sustains its high correla-
tion with human assessment when evaluated on as
many as 10k MT systems, evidence that this metric
is indeed highly consistent with human assessment
of Spanish-to-English.

Due to space limitations, it is not possible to
include pairwise confidence intervals for all pairs
of metrics, and instead we include in Figure 5 a
heatmap of significant differences in performance,
where a significant win is inferred for the metric in
a given row over the metric in a given column if
the confidence interval of the difference in correla-
tion for that pair did not include zero. Results show
the super-sampled evaluation facilitates not only the
identification of an outright best-performing met-
ric, TERRORCAT, it also yields an almost total-order
ranking of metrics, as significant differences are pos-
sible to identify for all but one pairs of competing
metrics. Finally, we repeated the metric evaluation
with ten distinct super-samples of 10k MT systems
with all replications resulting in precisely the same
ranking of metrics as shown in Table 4.

4 Conclusion

Analysis of evaluation methodologies applied to au-
tomatic MT metrics was provided and the risk of
over-estimation of significant differences in metric
performance identified. Confidence intervals for
differences in dependent correlations were recom-
mended as appropriate for evaluation of MT met-
rics. Hybrid super-sampling was proposed, evaluat-
ing metrics with reference to a substantially larger
sample of MT systems, achieving genuinely highly
conclusive metric rankings.
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Figure 5: Pairwise conclusions for pseudo document-level metrics (averaged segment-level metrics) from WMT-12 Spanish-to-

English metrics shared task, where a green cell indicates a significant win for the metric in a given row over the metric in the

corresponding column.
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