
Book Reviews

Functional Grammar in Prolog: An Integrated Implementation for
English, French, and Dutch

Simon C. Dik
(University of Amsterdam)

Berlin: Mouton de Gruyter (Natural
Language Processing 2), 1992, x +
264 pp.
Hardbound, ISBN 3-11-012979-5,
DM 118.00

Reviewed by
Patrick Saint-Dizier
IRIT-CNRS

This book is a detailed description of a program, called ProfGlot, that implements
in Prolog the components of the theory of Functional Grammar, as described by Dik
(1989). The system presented in this book deals with English, Dutch, and French; it
can parse or produce linguistic expressions in these languages; it can also translate
one language into another.

ProfGlot can a priori parse or generate a great variety of grammatical construction
types. It is composed of data and rules that together define well-formed constructions
and permissible actions and inferences on these constructions. Great care has been
taken to define separate modules that describe language-independent principles and
rules, on the one hand, from language-specific rules and data, on the other hand. The
author concludes that the modules for English, Dutch, and French are comparatively
small and that the greater part of the program consists of language-independent rules
and principles that could also be used for other languages.

After a very short introduction to Prolog (14 pages) and to Functional Grammar
(12 pages), where general principles are introduced, the author presents the overall
structure of the ProfGlot program. A relatively ambitious linguistic coverage and a
relatively accurate form of semantic representation, dealing with logically complex
phenomena, are introduced, e.g., attributive term modifiers, term modality, subordi-
nate clauses of reason, condition, concession, etc. As a result, the reader then gets the
feeling that something great is going to follow.

But here disappointment begins. First, the form: the remainder of the book (i.e.,
from page 45 to 234) is rather a well-annotated listing of a program than a book
that presents the principles, the foundations, and the computer formalisms used to
implement in an adequate, modular, declarative, and generic way the principles of
Functional Grammar. Reading this book and understanding the portions of programs
is a difficult exercise, even for a well-trained Prolog programmer (though the reader of
this review may think that going into a Prolog program--and probably also into other
languages--is almost never an easy task). In spite of a good hierarchical organization
of clauses and of their reasonable length, these clauses are extremely difficult to get
into. Variable identifiers, in particular, have little mnemonic content. Consider as an

Computational Linguistics Volume 19, Number 4

example a clause taken almost at random in the book:

eq_term(Ll, L2, [0PS,[RI,R2,R3,R4],
:-

eq_restrl(Ll, L2, RI, RII),
eq_restr2(Ll, L2, R2, R22),

etc.

[OPS, [Rll, R22, R33, R44]])

The difficulty of keeping in mind the different data structures used to encode lexical
and grammatical data also obscures the reading of the program.

Second, the content: considering the considerable number of linguistic criteria and
the complexity of associated descriptive systems such as feature-value systems that we
find in most linguistic systems (Systemic Grammars are a good example, with which
Functional Grammars could have some similarities in their general principles), the
linguistic elements presented in this book lead me to think that the program probably
generates or parses ill-formed sentences. Consider, for example, the lexical entry for
tall (notice also the number of embedded lists):

bpreda(eng, [[tall] , [grad] , [[[vert] , t, [zero]]]]) .

This entry says that tall is an adjective that refers to a gradable property of the noun it
modifies, and it is related to a vertical dimension; t and zero remain enigmatic to me.
This description doesn't suffice to indicate which objects in the world tall can modify,
does it? Next, some programs, for example, describing the functions of the universal
generator, look very simple: one clause to treat anaphora (this treatment is said to be
rudimentary by the author), one clause also for reflexive arguments, etc.

Then, I must admit, I got lost.
This book should be viewed as a technical annex (but not as a user manual) for the

more general book on Functional Grammar (Dik 1989). It does not have any general
conclusion and the bibliography is short. It has, however, a quite exhaustive 18-page
list of the Prolog predicates defined in the book.

I personally have a neutral position with respect to Functional Grammars, and I
would say that, a priori, any real effort to model aspects of language comprehension
or processing should be strongly supported by the whole community. But I do wonder
what the goal and the use of this book is. It should, however, be noted that books
of this form, which give a comprehensive description of the implementation of a real
natural language processing system, either theoretical or practical, would be extremely
useful to many people. They are also certainly extremely difficult to organize and to
write in an accessible and stimulating way.

Reference
Dik, Simon C. (1989). The Theory of Functional

Grammar, Part h The Structure of the Clause.
Dordrecht: Foris Publications.

Patrick Saint-Dizier is the leader of a research group in Natural Language Processing and Logic
Programming at IRIT. His research interests include advanced logic programming formalisms
(constraints, types) for natural language parsing and generation, syntactic modeling, and lexical
semantics. Saint-Dizier's address is IRIT-CNRS, Universit6 Paul Sabatier, 118 route de Narbonne,
31062 Toulouse Cedex, France; e-maih stdizier@lexiqueirit.fr.

696

