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Abstract

We consider the task of predicting lexical
entailment using distributional vectors. We
perform a novel qualitative analysis of one
existing model which was previously shown
to only measure the prototypicality of word
pairs. We find that the model strongly learns
to identify hypernyms using Hearst patterns,
which are well known to be predictive of lexi-
cal relations. We present a novel model which
exploits this behavior as a method of fea-
ture extraction in an iterative procedure sim-
ilar to Principal Component Analysis. Our
model combines the extracted features with
the strengths of other proposed models in the
literature, and matches or outperforms prior
work on multiple data sets.

1 Introduction

As the field of Natural Language Processing has de-
veloped, more ambitious semantic tasks are starting
to be addressed, such as Question Answering (QA)
and Recognizing Textual Entailment (RTE). These
systems often depend on the use of lexical resources
like WordNet in order to infer entailments for indi-
vidual words, but these resources are expensive to
develop, and always have limited coverage.

To address these issues, many works have con-
sidered on how lexical entailments can be derived
automatically using distributional semantics. Some
focus mostly on the use of unsupervised techniques,
and study measures which emphasize particular
word relations (Baroni and Lenci, 2011). Many are
based on the Distributional Inclusion Hypothesis,

which states that the contexts in which a hypernym
appears are a superset of its hyponyms’ contexts
(Zhitomirsky-Geffet and Dagan, 2005; Kotlerman et
al., 2010). More recently, a great deal of work has
pushed toward using supervised methods (Baroni et
al., 2012; Roller et al., 2014; Weeds et al., 2014;
Levy et al., 2015; Kruszewski et al., 2015), varying
by their experimental setup or proposed model.

Yet the literature disagrees about which models
are strongest (Weeds et al., 2014; Roller et al.,
2014), or even if they work at all (Levy et al., 2015).
Indeed, Levy et al. (2015) showed that two exist-
ing lexical entailment models fail to account for
similarity between the antecedent and consequent,
and conclude that such models are only learning
to predict prototypicality: that is, they predict that
cat entails animal because animal is usually en-
tailed, and therefore will also predict that sofa en-
tails animal. Yet it remains unclear why such models
make for such strong baselines (Weeds et al., 2014;
Kruszewski et al., 2015; Levy et al., 2015).

We present a novel qualitative analysis of one pro-
totypicality classifier, giving new insight into why
prototypicality classifiers perform strongly in the lit-
erature. We find the model overwhelmingly learns
to identify hypernyms using Hearst patterns avail-
able in the distributional space, like “animals such
as cats” and “animals including cats.” These pat-
terns have long been used to identify lexical rela-
tions (Hearst, 1992; Snow et al., 2004).

We propose a novel model which exploits this be-
havior as a method of feature extraction, which we
call H-feature detectors. Using an iterative proce-
dure similar to Principal Component Analysis, our
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model is able to extract and learn using multiple H-
feature detectors. Our model also integrates overall
word similarity and Distributional Inclusion, bring-
ing together strengths of several models in the litera-
ture. Our model matches or outperforms prior work
on multiple data sets. The code, data sets, and model
predictions are made available for future research.1

2 Background

Research on lexical entailment using distributional
semantics has now spanned more than a decade,
and has been approached using both unsupervised
(Weeds et al., 2004; Kotlerman et al., 2010; Lenci
and Benotto, 2012; Santus, 2013) and supervised
techniques (Baroni et al., 2012; Fu et al., 2014;
Roller et al., 2014; Weeds et al., 2014; Kruszewski
et al., 2015; Levy et al., 2015; Turney and Mo-
hammad, 2015; Santus et al., 2016). Most of the
work in unsupervised methods is based on the Dis-
tributional Inclusion Hypothesis (Weeds et al., 2004;
Zhitomirsky-Geffet and Dagan, 2005), which states
that the contexts in which a hypernym appear should
be a superset over its hyponyms’ contexts.

This work focuses primarily on the supervised
works in the literature. Formally, we consider meth-
ods which treat lexical entailment as a supervised
classification problem, which take as input the dis-
tributional vectors for a pair of words, (H, w), and
predict on whether the antecedent w entails the con-
sequent H .2

One of the earliest supervised approaches was
Concat (Baroni et al., 2012). In this work, the con-
catenation of the pair 〈H, w〉was used as input to an
off-the-shelf SVM classifier. At the time, it was very
successful, but later works noted that it had major
problems with lexical memorization (Roller et al.,
2014; Weeds et al., 2014; Levy et al., 2015). That is,
when the training and test sets were carefully con-
structed to ensure they were completely disjoint, it
performed extremely poorly. Nonetheless, Concat is
continually used as a strong baseline in more recent
work (Kruszewski et al., 2015).

1http://github.com/stephenroller/
emnlp2016

2We use the notation w and H for word and hypernym.
These variables refer to either the lexical items, or their dis-
tributional vectors, depending on context.

In response to these issues of lexical memoriza-
tion, alternative models were proposed. Of particu-
lar note are the Diff (Fu et al., 2014; Weeds et al.,
2014) and Asym classifiers (Roller et al., 2014). The
Diff model takes the vector difference H − w as
input, while the Asym model uses both the vector
difference and the squared vector difference as in-
put. Weeds et al. (2014) found that Concat moder-
ately outperformed Diff, while Roller et al. (2014)
found that Asym outperformed Concat. Both Diff
and Asym can also be seen as a form of supervised
Distributional Inclusion Hypothesis, with the vector
difference being analogous to the set-inclusion mea-
sures of some unsupervised techniques (Roller et al.,
2014). All of these works focused exclusively on hy-
pernymy detection, rather than the more general task
of lexical entailment.

Recently, other works have begun to analyze Con-
cat and Diff for their ability to go beyond just hyper-
nymy detection. Vylomova et al. (2016) take an ex-
tensive look at Diff’s ability to model a wide variety
of lexical relations and conclude it is generally ro-
bust, and Kruszewski et al. (2015) have success with
a neural network model based on the Distributional
Inclusion Hypothesis.

On the other hand, Levy et al. (2015) analyze both
Concat and Diff in their ability to detect general lex-
ical entailment on five data sets: two consisting of
only hypernymy, and three covering a wide variety
of other entailing word relations. They find that both
Concat and Diff fail, and analytically show that they
are learning to predict the prototypicality of the con-
sequent H , rather than the relationship between the
antecedent and the consequent, and consider this a
form of lexical memorization. They propose a new
model, Ksim, which addresses their concerns, but
lacks any notion of Distributional Inclusion. In par-
ticular, they argue for directly including the cosine
similarity of w and H as a term in a custom SVM
kernel, in order to determine whether w and H are
related all. Ultimately, Levy et al. (2015) conclude
that distributional vectors may simply be the wrong
tool for the job.

3 Data and Resources

Prior work on lexical entailment relied on a variety
of data sets, each constructed in a different manner.
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We focus on four different data sets, each of which
has been used for evaluation in prior work. Two data
sets contain only hypernymy relations, and two con-
sider general lexical entailment.

Our first data set is LEDS, the Lexical Entail-
ment Data Set, originally created by Baroni et al.
(2012). The data set contains 1385 hyponym-
hypernym pairs extracted directly from WordNet,
forming a set of positive examples. Negative exam-
ples were generated by randomly shuffling the orig-
inal set of 1385 pairs. As such, LEDS only contains
examples of hypernymy and random relations.

Another major data set has been BLESS, the
Baroni and Lenci (2011) Evaluation of Semantic
Spaces. The data set contains annotations of word
relations for 200 unambiguous, concrete nouns from
17 broad categories. Each noun is annotated with its
co-hyponyms, meronyms, hypernym and some ran-
dom words. In this work, we treat hypernymy as
positive, and other relations as negative.

These two data sets form our hypernymy data
sets, but we cannot overstate their important differ-
ences: LEDS is balanced, while BLESS contains
mostly negative examples; negatives in BLESS in-
clude both random pairs and pairs exhibiting other
strong semantic relations, while LEDS only contains
random pairs. Furthermore, all of the negative ex-
amples in LEDS are the same lexical items as the
positive items, which has strong implications on the
prototypicality argument of Levy et al. (2015).

The next data set we consider is Medical (Levy et
al., 2014). This data set contains high quality anno-
tations of subject-verb-object entailments extracted
from medical texts, and transformed into noun-noun
entailments by argument alignments. The data con-
tains 12,600 annotations, but only 945 positive ex-
amples encompassing various relations like hyper-
nymy, meronomy, synonymy and contextonymy.3

This makes it one of the most difficult data sets: it is
both domain specific and highly unbalanced.

The final data set we consider is TM14, a varia-
tion on the SemEval 2012 Shared Task of identifying
the degree to which word pairs exhibit various rela-
tions. These relationships include a small amount
of hypernymy, but also many more uncommon rela-

3A term for entailments that occur in some contexts, but do
not cleanly fit in other categories; e.g. hospital entails doctor.

tions (agent-object, cause-effect, time-activity, etc).
Relationships were binarized into (non-)entailing
pairs by Turney and Mohammad (2015). The data
set covers 2188 pairs, 1084 of which are entailing.

These two entailment data sets also contain im-
portant differences, especially in contrast to the hy-
pernymy data sets. Neither contains any random
negative pairs, meaning general semantic similarity
measures should be less useful; And both exhibit a
variety of non-hypernymy relations, which are less
strictly defined and more difficult to model.

3.1 Distributional Vectors

In all experiments, we use a standard, count-based,
syntactic distributional vector space. We use a cor-
pus composed of the concatenation of Gigaword,
Wikipedia, BNC and ukWaC. We preprocess the
corpus using Stanford CoreNLP 3.5.2 (Chen and
Manning, 2014) for tokenization, lemmatization,
POS-tagging and universal dependency parses. We
compute a syntactic distributional space for the 250k
most frequent lemmas by counting their dependency
neighbors across the corpus. We use only the top 1M
most frequent dependency attachments as contexts.
We use CoreNLP’s “collapsed dependencies”, in
which prepositional dependencies are collapsed e.g.
“go to the store” emits the tuples (go, prep:to+store)
and (store, prep:to−1+go). After collecting counts,
vectors are transformed using PPMI, SVD reduced
to 300 dimensions, and normalized to unit length.
The use of collapsed dependencies is very important,
as we will see in Section 4, but other parameters are
reasonably robust.

4 Motivating Analysis

As discussed in Section 2, the Concat classifier is a
classifier trained on the concatenation of the word
vectors, 〈H, w〉. As additional background, we
first review the findings of Levy et al. (2015), who
showed that Concat trained using a linear classifier is
only able to capture notions of prototypicality; that
is, Concat guesses that (animal, sofa) is a positive
example because animal looks like a hypernym.

Formally, a linear classifier like Logistic Regres-
sion or Linear SVM learns a decision hyperplane
represented by a vector p̂. Data points are compared
to this plane with the inner product: those above
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the plane (positive inner product) are classified as
entailing, and those below as non-entailing. Cru-
cially, since the input features are the concatenation
of the pair vectors 〈H, w〉, the hyperplane p̂ vec-
tor can be decomposed into separate H and w com-
ponents. Namely, if we rewrite the decision plane
p̂ = 〈Ĥ, ŵ〉, we find that each pair 〈H, w〉 is classi-
fied using:

p̂>〈H, w〉
= 〈Ĥ, ŵ〉>〈H, w〉
= Ĥ>H + ŵ>w.

(1)

This analysis shows that, when the hyperplane p̂ is
evaluated on a novel pair, it lacks any form of direct
interaction between H and w like the inner prod-
uct H>w. Without any interaction terms, the Con-
cat classifier has no way of estimating the relation-
ship between the two words, and instead only makes
predictions based on two independent terms, Ĥ and
ŵ, the prototypicality vectors. Furthermore, the Diff
classifier can be analyzed in the same fashion and
therefore has the same fatal property.

We agree with this prototypicality interpretation,
although we believe it is incomplete: while it places
a fundamental ceiling on the performance of these
classifiers, it does not explain why others have found
them to persist as strong baselines (Weeds et al.,
2014; Roller et al., 2014; Kruszewski et al., 2015;
Vylomova et al., 2016). To approach this ques-
tion, we consider a baseline Concat classifier trained
using a linear model. This classifier should most
strongly exhibit the prototypicality behavior accord-
ing to Equation 1, making it the best choice for anal-
ysis. We first consider the most pessimistic hypothe-
sis: is it only learning to memorize which words are
hypernyms at all?

We train the baseline Concat classifier using Lo-
gistic Regression on each of the four data sets, and
extract the vocabulary words which are most simi-
lar to the Ĥ half of the learned hyperplane p̂. If the
classifier is only learning to memorize the training
data, we would expect items from the data to dom-
inate this list of closest vocabulary terms. Table 1
gives the five most similar words to the learned hy-
perplane, with bold words appearing directly in the
data set.

Interestingly, we notice there are very few bold
words at all in the list. In LEDS, we actually see

LEDS BLESS Medical TM14
material goods item sensitiveness
structure lifeform unlockable tactility
object item succor palate
process equipment team-up stiffness
activity herbivore non-essential content

Table 1: Most similar words to the prototype Ĥ learned by the

Concat model. Bold items appear in the data set.

some hypernyms of data set items that do not even
appear in the data set, and the Medical and TM14
words do not even appear related to the content of
the data sets. Similar results were also found for
Diff and Asym, and both when using Linear SVM
and Logistic Regression. These lists cannot explain
the success of the prototypicality classifiers in prior
work. Instead, we propose an alternative interpreta-
tion of the hyperplane: that of a feature detector for
hypernyms, or an H-feature detector.

4.1 H-Feature Detectors
Recall that distributional vectors are derived from
a matrix M containing counts of how often words
co-occur with the different syntactic contexts. This
co-occurrence matrix is factorized using Singular
Value Decomposition, producing both W , the ubiq-
uitous word-embedding matrix, and C, the context-
embedding matrix (Levy and Goldberg, 2014):

M ≈WC>

Since the word and context embeddings implicitly
live in the same vector space (Melamud et al., 2015),
we can also compare Concat’s hyperplane with the
context matrix C. Under this interpretation, the
Concat model does not learn what words are hy-
pernyms, but rather what contexts or features are in-
dicative of hypernymy. Table 2 shows the syntactic
contexts with the highest cosine similarity to the Ĥ
prototype for each of the different data sets.

This view of Concat as an H-feature detector
produces a radically different perspective on the
classifier’s hyperplane. Nearly all of the features
learned take the form of Hearst patterns (Hearst,
1992; Snow et al., 2004). The most recognizable
and common pattern learned is the “such as” pat-
tern, as in “animals such as cats”. These patterns
have been well known to be indicative of hyper-
nymy for over two decades. Other interesting pat-
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LEDS BLESS
nmod:such as+animal nmod:such as+submarine
acl:relcl+identifiable nmod:such as+ship
nmod:of−1+determine nmod:such as+seal
nmod:of−1+categorisation nmod:such as+plane
compound+many nmod:such as+rack
nmod:such as+pot nmod:such as+rope
Medical TM14
nmod:such as+patch amod+desire
nmod:such as+skin amod+heighten
nmod:including+skin nsubj−1+disparate
nmod:such as+tooth nmod:such as+honey
nmod:such as+feather nmod:with−1+body
nmod:including+finger nsubj−1+unconstrained

Table 2: Most similar contexts to the prototype Ĥ learned by

the Concat model.

terns are the “including” pattern (“animals includ-
ing cats”) and “many” pattern (“many animals”).
Although we list only the six most similar context
items for the data sets, we find similar contexts con-
tinue to dominate the list for the next 30-50 items.
Taken together, it is remarkable that the model iden-
tified these patterns using only distributional vectors
and only the positive/negative example pairs. How-
ever, the reader should note these are not true Hearst
patterns: Hearst patterns explicitly relate a hyper-
nym and hyponym using an exact pattern match of
a single co-occurrence. On the other hand, these
H-features are aggregate indicators of hypernymy
across a large corpus.

These learned features are much more inter-
pretable than those found in the analysis of prior
work like Roller et al. (2014) and Levy et al. (2015).
Roller et al. (2014) found no signals of H-features
in their analysis of one classifier, but their model
was focused on bag-of-words distributional vectors,
which perform significantly worse on the task. Levy
et al. (2015) also performed an analysis of lexical
entailment classifiers, and found weak signals like
“such” and “of” appearing as prominent contexts in
their classifier, giving an early hint of H-feature de-
tectors, but not to such an overwhelming degree as
we see in this work. Critically, their analysis fo-
cused on a classifier trained on high-dimensional,
sparse vectors, rather than focusing on context em-
beddings as we do. By using these sparse vectors,
their model was unable to generalize across simi-

lar contexts. Additionally, their model did not make
use of collapsed dependencies, making features like
“such” much weaker signals of entailment and there-
fore less dominant during analysis.

Among these remarkable lists, the LEDS and
TM14 data sets stand out for having much fewer
“such as” patterns compared to BLESS and Medi-
cal. The reason for this is explained by the construc-
tion of the data sets: since LEDS contains the same
words used as both positive and negative examples,
the classifier has a hard time picking out clear sig-
nal. The TM14 data set, however, does not contain
any such negative examples.

We hypothesize the TM14 data set contains too
many diverse and mutually exclusive forms of lex-
ical entailment, like instrument-goal (e.g. “honey”
→ “sweetness”). To test this, we retrained the model
with only hypernymy as positive examples, and all
other relations as negative. We find that “such as”
type patterns become top features, but also some
interesting data specific features, like “retailer of
[clothes]”. Examining the data shows it contains
many consumer goods, like “beverage” or “clothes”,
which explains these features.

5 Proposed Model

As we saw in the previous section, Concat only acts
as a sort of H-feature detector for whether H is a
prototypical hypernym, but does not actually infer
the relationship between H and w. Nonetheless, this
is powerful behavior which should still be used in
combination with the insights of other models like
Ksim and Asym. To this end, we propose a novel
model which exploits Concat’s H-feature detector
behavior, extends its modeling power, and adds two
other types of evidence proposed in the literature:
overall similarity, and distributional inclusion.

Our model works through an iterative procedure
similar to Principal Component Analysis (PCA).
Each iteration repeatedly trains a Concat classifier
under the assumption that it acts as an H-feature de-
tector, and then explicitly discards this information
from the distributional vectors. By training a new
H-feature detector on these modified distributional
vectors, we can find additional features indicative of
entailment which were missed by the first classifier.
The entire procedure is iteratively repeated similar
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Figure 1: A vector p̂ is used to break x into two orthogonal

components, its projection and the rejection over p̂.

to how in Principal Component Analysis, the second
principal component is computed after the first prin-
cipal component has been removed from the data.

The main insight is that after training some H-
feature detector using Concat, we can remove this
prototype from the distributional vectors through the
use of vector projection. Formally, the vector pro-
jection of x onto a vector p̂, projp̂(x) finds the com-
ponent of x which is in the direction of p̂,

projp̂(x) =
(
x>p̂
‖p̂‖

)
p̂.

Figure 1 gives a geometric illustration of the vector
projection. If x forms the hypotenuse of a right tri-
angle, projp̂(x) forms a leg of the triangle. This also
gives rise to the vector rejection, which is the vec-
tor forming the third leg of the triangle. The vector
rejection is orthogonal to the projection, and intu-
itively, is the original vector after the projection has
been removed:

rejp̂(x) = x− projp̂(x).

Using the vector rejection, we take a learned H-
feature detector p̂, and discard these features from
each of the word vectors. That is, for every data
point 〈H,w〉, we replace it by its vector rejection
and rescale it to unit magnitude:

Hi+1 = rejp̂(H)/‖rejp̂(H)‖
wi+1 = rejp̂(w)/‖rejp̂(w)‖

A new classifier trained on the 〈Hi+1, wi+1〉 data
must now learn a different decision plane than p̂, as
p̂ is no longer present in any data points. This repeti-
tion of the procedure is roughly analogous to learn-
ing the second principal component of the data; we

wish to classify the pairs without using any informa-
tion learned from the previous iteration.

This second classifier must perform strictly worse
than the original, otherwise the first classifier would
have learned this second hyperplane. Nonetheless,
it will be able to learn new H-feature detectors
which the original classifier was unable to capture.
By repeating this process, we can find several H-
feature detectors, p̂1, . . . , p̂n. Although the first, p̂1
is the best possible single H-feature detector, each
additional H-feature detector increases the model’s
representational power (albeit with diminishing re-
turns).

This procedure alone does not address the main
concern of Levy et al. (2015): that these linear clas-
sifiers never actually model any connection between
H and w. To address this, we explicitly compare
H and w by extracting additional information about
how H and w interact with respect to each of the
H-feature detectors. This additional information is
then used to train one final classifier which makes
the final prediction.

Concretely, in each iteration i of the procedure,
we generate a four-valued feature vector Fi, based
on the H-feature detector p̂i. Each feature vector
contains (1) the similarity of Hi and wi (before pro-
jection); (2) the feature p̂i applied to Hi; (3) the H-
feature detector p̂i applied to wi; and (4) the differ-
ence of 2 and 3.

Fi(〈Hi, wi〉, p̂i)
= 〈H>i wi, H

>
i p̂i, w

>
i p̂i, (Hi − wi)

>p̂i〉

These four “meta”-features capture all the bene-
fits of the H-feature detector (slots 2 and 3), while
still addressing Concat’s issues with similarity argu-
ments (slot 1) and distributional inclusion (slot 4).
The final feature’s relation to the DIH comes from
the observation of Roller et al. (2014) that the vec-
tor difference intuitively captures whether the hyper-
nym includes the hyponym.

The union of all the feature vectors F1, . . . , Fn

from repeated iteration form a 4n-dimensional fea-
ture vector which we use as input to one final classi-
fier which makes the ultimate decision. This classi-
fier is trained on the same training data as each of the
individual H-feature detectors, so our iterative pro-
cedure acts only as a method of feature extraction.
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For our final classifier, we use an SVM with an
RBF-kernel, though decision trees and other non-
linear classifiers also perform reasonably well. The
nonlinear final classifier can be understood as do-
ing a form of logical reasoning about the four slots:
“animal” is a hypernym of “cat” because (1) they are
similar words where (2) animal looks like a hyper-
nym, but (3) cat does not, and (4) some “animal”
contexts are not good “cat” contexts.

6 Experimental Setup and Evaluation

In our experiments, we use a variation of 20-fold
cross validation which accounts for lexical overlap.
To simplify explanation, we first explain how we
generate splits for training/testing, and then after-
wards introduce validation methodology.

We first pool all the words from the antecedent
(LHS) side of the data into a set, and split these lex-
ical items into 20 distinct cross-validation folds. For
each fold Fi, we then use all pairs (w,H) where
w ∈ Fi as the test set pairs. That is, if “car” is in
the test set fold, then “car → vehicle” and “car 9
truck” will appear as test set pairs. The training set
will then be every pair which does not contain any
overlap with the test set; e.g. the training set will be
all pairs which do not contain “car”, “truck” or “ve-
hicle” as either the antecedent or consequent. This
ensures that both (1) there is zero lexical overlap be-
tween training and testing and (2) every pair is used
as an item in a test fold exactly once. One quirk of
this setup is that all test sets are approximately the
same size, but training sizes vary dramatically.

This setup differs from those of previous works
like Kruszewski et al. (2015) and Levy et al. (2015),
who both use single, fixed train/test/val sets without
lexical overlap. We find our setup has several advan-
tages over fixed sets. First, we find there can be con-
siderable variance if the train/test set is regenerated
with a different random seed, indicating that multi-
ple trials are necessary. Second, fixed setups con-
sistently discard roughly half the data as ineligible
for either training or test, as lexical items appear in
many pairs. Our CV-like setup allows us to evaluate
performance over every item in the data set exactly
once, making a much more efficient and representa-
tive use of the original data set.

Our performance metric is F1 score. This is more

Model LEDS BLESS Medical TM14
Linear Models

Cosine .787 .208 .168 .676
Concat .794 .612 .218 .693
Diff .805 .440 .195 .665
Asym .865 .510 .210 .671
Concat+Diff .801 .604 .224 .703
Concat+Asym .843 .631 .240 .701

Nonlinear Models
RBF .779 .574 .215 .705
Ksim .893 .488 .224 .707
Our model .901 .631 .260 .697

Table 3: Mean F1 scores for each model and data set.

representative than accuracy, as most of the data sets
are heavily unbalanced. We report the mean F1
scores across all cross validation folds.

6.1 Hyperparameter Optimization
In order to handle hyperparameter selection, we ac-
tually generate the test set using fold i, and use
fold i − 1 as a validation set (removing pairs which
would overlap with test), and the remaining 18
folds as training (removing pairs which would over-
lap with test or validation). We select hyperpa-
rameters using grid search. For all models, we
optimize over the regularization parameter C ∈
{10−4, 10−3, . . . , 104}, and for our proposed model,
the number of iterations n ∈ {1, . . . , 6}. All other
hyperparameters are left as defaults provided by
Scikit-Learn (Pedregosa et al., 2011), except for us-
ing balanced class weights. Without balanced class
weights, several of the baseline models learn degen-
erate functions (e.g. always guess non-entailing).

7 Results

We compare our proposed model to several ex-
isting and alternative baselines from the literature.
Namely, we include a baseline Cosine classifier,
which only learns a threshold which maximizes F1
score on the training set; three linear models of prior
work, Concat, Diff and Asym; and the RBF and
Ksim models found to be successful in Kruszewski
et al. (2015) and Levy et al. (2015). We also in-
clude two additional novel baselines, Concat+Diff
and Concat+Asym, which add a notion of Distri-
butional Inclusion into the Concat baseline, but are
still linear models. We cannot include baselines like
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Model LEDS BLESS Medical TM14
No Similarity .099 .061 .034 .003
No Detectors -.008 .136 .018 .028
No Inclusion .010 .031 .014 .001

Table 4: Absolute decrease in mean F1 on the development

sets with the different feature types ablated. Higher numbers

indicate greater feature importance.

Ksim+Asym, because Ksim is based on a custom
SVM kernel which is not amenable to combinations.

Table 3 the results across all four data sets for all
of the listed models. Our proposed model improves
significantly4 over Concat in the LEDS, BLESS and
Medical data sets, indicating the benefits of combin-
ing these aspects of similarity and distributional in-
clusion with the H-feature detectors of Concat. The
Concat+Asym classifier also improves over the Con-
cat baseline, further emphasizing these benefits. Our
model performs approximately the same as Ksim
on the LEDS and TM14 data sets (no significant
difference), while significantly outperforming it on
BLESS and Medical data sets.

7.1 Ablation Experiments
In order to evaluate how important each of the vari-
ous F features are to the model, we also performed
an ablation experiment where the classifier is not
given the similarity (slot 1), prototype H-feature de-
tectors (slots 2 and 3) or the inclusion features (slot
4). To evaluate the importance of these features,
we fix the regularization parameter at C = 1, and
train all ablated classifiers on each training fold with
number of iterations n = 1, . . . , 6. Table 4 shows
the decrease (absolute difference) in performance
between the full and ablated models on the develop-
ment sets, so higher numbers indicate greater feature
importance.

We find the similarity feature is extremely impor-
tant in the LEDS, BLESS and Medical data sets,
therefore reinforcing the findings of Levy et al.
(2015). The similarity feature is especially impor-
tant in the LEDS and BLESS data sets, where neg-
ative examples include many random pairs. The
detector features are moderately important for the
Medical and TM14 data sets, and critically impor-
tant on BLESS, where we found the strongest evi-

4Bootstrap test, p < .01.

dence of Hearst patterns in the H-feature detectors.
Surprisingly, the detector features are moderately
detrimental on the LEDS data set, though this can
also be understood in the data set’s construction:
since the negative examples are randomly shuffled
positive examples, the same detector signal will ap-
pear in both positive and negative examples. Finally,
we find the model performs somewhat robustly with-
out the inclusion feature, but still is moderately im-
pactful on three of the four data sets, lending further
evidence to the Distributional Inclusion Hypothesis.
In general, we find all three components are valu-
able sources of information for identifying hyper-
nymy and lexical entailment.

7.2 Analysis by Number of Iterations
In order to evaluate how the iterative feature extrac-
tion affects model performance, we fix the regular-
ization parameter at C = 1, and train our model
fixing the number of iterations to n = {1, . . . , 6}.
We then measure the mean F1 score across the de-
velopment folds and compare to a baseline which
uses only one iteration. Figure 2 shows these results
across all four data sets, with the 0 line set at per-
formance of the n = 1 baseline. Models above 0
benefit from the additional iterations, while models
below do not.

In the figure, we see that the iterative pro-
cedure moderately improves performance LEDS,
while greatly improving the scores of BLESS and
TM14, but on the medical data set, additional it-
erations actually hurt performance. The differing
curves indicate that the optimal number of itera-
tions is very data set specific, and provides differing
amounts of improvement, and therefore should be
tuned carefully. The LEDS and BLESS curves indi-
cate a sort of “sweet spot” behavior, where further
iterations degrade performance.

To gain some additional insight into what is cap-
tured by the various iterations of the feature extrac-
tion procedure, we repeat the procedure from Sec-
tion 4: we train our model on the entire BLESS
data set using a fixed four iterations and regular-
ization parameter. For each iteration, we compare
its learned H-feature detector to the context embed-
dings, and report the most similar contexts for each
iteration in Table 5.

The first iteration is identical to the one in Ta-
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Figure 2: Performance of model on development folds by number of iterations. Plots show the improvement (absolute difference)

in mean F1 over the model fixed at one iteration.

Iteration 1 Iteration 2 Iteration 3 Iteration 4
nmod:such as+submarine nmod:including+animal amod+free-swimming advcl+crown
nmod:such as+ship nmod:including+snail nmod:including−1+thing advcl+victorious
nmod:such as+seal nmod:including+insect nsubj−1+scarcer nsubj+eaters
nmod:such as+plane nmod:such as+crustacean nsubj−1+pupate nsubj+kaine
nmod:such as+rack nmod:such as+mollusc nmod:such as+mollusc nmod:at+finale
nmod:such as+rope nmod:such as+insect nmod:of−1+value nsubj+gowen
nmod:such as+box nmod:such as+animal nmod:as−1+exhibit nsubj+pillman

Table 5: Most similar contexts to the H-feature detector for each iteration of the PCA-like procedure. This model was trained on all

data of BLESS. The first and second iterations contain clear Hearst patterns, while the third and fourth contain some data-specific

and non-obvious signals.

ble 2, as expected. The second iteration includes
many H-features not picked up by the first itera-
tion, mostly those of the form “X including Y”. The
third iteration picks up some data set specific signal,
like “free-swimming [animal]” and “value of [com-
puter]”, and so on. By the fourth iteration, the fea-
tures no longer exhibit any obvious Hearst patterns,
perhaps exceeding the sweet spot we observed in
Figure 2. Nonetheless, we see how multiple iter-
ations of the procedure allows our model to capture
many more useful features than a single Concat clas-
sifier on its own.

8 Conclusion

We considered the task of detecting lexical entail-
ment using distributional vectors of word meaning.
Motivated by the fact that the Concat classifier acts
as a strong baseline in the literature, we proposed a
novel interpretation of the model’s hyperplane. We
found the Concat classifier overwhelmingly acted
as a feature detector which automatically identifies
Hearst Patterns in the distributional vectors.

We proposed a novel model that embraces these

H-feature detectors fully, and extends their model-
ing power through an iterative procedure similar to
Principal Component Analysis. In each iteration of
the procedure, an H-feature detector is learned, and
then removed from the data, allowing us to iden-
tify several different kinds of Hearst Patterns in the
data. Our final model combines these H-feature de-
tectors with measurements of general similarity and
Distributional Inclusion, in order to integrate the
strengths of different models in prior work. Our
model matches or exceeds the performance of prior
work, both on hypernymy detection and general lex-
ical entailment.
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