
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 65–74,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

A Position Encoding Convolutional Neural Network Based on Dependency
Tree for Relation Classification

Yunlun Yang Yunhai Tong∗ Shulei Ma Zhi-Hong Deng∗

{incomparable-lun, yhtong, mashulei, zhdeng}@pku.edu.cn
Key Laboratory of Machine Perception (Ministry of Education),

School of Electronics Engineering and Computer Science, Peking University,
Beijing 100871, China

Abstract

With the renaissance of neural network in re-
cent years, relation classification has again
become a research hotspot in natural lan-
guage processing, and leveraging parse trees
is a common and effective method of tack-
ling this problem. In this work, we offer a
new perspective on utilizing syntactic infor-
mation of dependency parse tree and present
a position encoding convolutional neural net-
work (PECNN) based on dependency parse
tree for relation classification. First, tree-
based position features are proposed to en-
code the relative positions of words in depen-
dency trees and help enhance the word repre-
sentations. Then, based on a redefinition of
“context”, we design two kinds of tree-based
convolution kernels for capturing the semantic
and structural information provided by depen-
dency trees. Finally, the features extracted by
convolution module are fed to a classifier for
labelling the semantic relations. Experiments
on the benchmark dataset show that PECNN
outperforms state-of-the-art approaches. We
also compare the effect of different position
features and visualize the influence of tree-
based position feature by tracing back the con-
volution process.

1 Introduction

Relation classification focuses on classifying the se-
mantic relations between pairs of marked entities in
given sentences (Hendrickx et al., 2010). It is a fun-
damental task which can serve as a pre-existing sys-
tem and provide prior knowledge for information ex-

∗Corresponding authors

traction, natural language understanding, informa-
tion retrieval, etc. However, automatic recognition
of semantic relation is challenging. Traditional fea-
ture based approaches rely heavily on the quantity
and quality of hand-crafted features and lexical re-
sources, and it is time-consuming to select an op-
timal subset of relevant features in order to maxi-
mize performance. Though kernel based methods
get rid of the feature selection process, they need
elaborately designed kernels and are also computa-
tionally expensive.

Recently, with the renaissance of neural network,
deep learning techniques have been adopted to pro-
vide end-to-end solutions for many classic NLP
tasks, such as sentence modeling (Socher, 2014;
Kim, 2014) and machine translation (Cho et al.,
2014). Recursive Neural Network (RNN) (Socher
et al., 2012) and Convolutional Neural Network
(CNN) (Zeng et al., 2014) have proven powerful
in relation classification. In contrast to traditional
approaches, neural network based methods own the
ability of automatic feature learning and alleviate the
problem of severe dependence on human-designed
features and kernels.

However, previous researches (Socher et al.,
2012) imply that some features exploited by tradi-
tional methods are still informative and can help en-
hance the performance of neural network in relation
classification. One simple but effective approach is
to concatenate lexical level features to features ex-
tracted by neural network and directly pass the com-
bined vector to classifier. In this way, Socher et al.
(2012), Liu et al. (2015) achieve better performances
when considering some external features produced

65

by existing NLP tools. Another more sophisticated
method adjusts the structure of neural network ac-
cording to the parse trees of input sentences. The
results of (Li et al., 2015) empirically suggest syn-
tactic structures from recursive models might offer
useful power in relation classification. Besides rela-
tion classification, parse tree also gives neural net-
work a big boost in other NLP tasks (Mou et al.,
2015; Tai et al., 2015).

caused

[Convulsions] are by

occur [fever]

that after a

DTaP

[Convulsions] that occur after DTaP are caused by a [fever].

Figure 1: A dependency tree example. Words in square brack-

ets are marked entities. The red dashed-line arrows indicate the

path between two entities.

Dependency parse tree is valuable in relation clas-
sification task. According to our observation, depen-
dency tree usually shortens the distances between
pairs of marked entities and helps trim off redundant
words, when comparing with plain text. For exam-
ple, in the sentence shown in Figure 1, two marked
entities span the whole sentence, which brings much
noise to the recognition of their relation. By con-
trast, in the dependency tree corresponding to the
sentence, the path between two marked entities com-
prises only four words and extracts a key phrase
“caused by” that clearly implies the relation of enti-
ties. This property of dependency tree is ubiquitous
and consistent with the Shortest Path Hypothesis
which is accepted by previous studies (Bunescu and
Mooney, 2005; Xu et al., 2015a; Xu et al., 2015b).

To better utilize the powerful neural network and
make the best of the abundant linguistic knowledge
provided by parse tree, we propose a position encod-
ing convolutional neural network (PECNN) based
on dependency parse tree for relation classification.
In our model, to sufficiently benefit from the impor-
tant property of dependency tree, we introduce the
position feature and modify it in the context of parse

tree. Tree-based position features encode the rela-
tive positions between each word and marked en-
tities in a dependency tree, and help the network
pay more attention to the key phrases in sentences.
Moreover, with a redefinition of “context”, we de-
sign two kinds of tree-based convolution kernels for
capturing the structural information and salient fea-
tures of sentences.

To sum up, our contributions are:

1) We propose a novel convolutional neural network
with tree-based convolution kernels for relation
classification.

2) We confirm the feasibility of transferring the po-
sition feature from plain text to dependency tree,
and compare the performances of different posi-
tion features by experiments.

3) Experimental results on the benchmark dataset
show that our proposed method outperforms the
state-of-the-art approaches. To make the mech-
anism of our model clear, we also visualize the
influence of tree-based position feature on rela-
tion classification task.

2 Related Work

Recent studies usually present the task of relation
classification in a supervised perspective, and tra-
ditional supervised approaches can be divided into
feature based methods and kernel methods.

Feature based methods focus on extracting and
selecting relevant feature for relation classifica-
tion. Kambhatla (2004) leverages lexical, syntactic
and semantic features, and feeds them to a maxi-
mum entropy model. Hendrickx et al. (2010) show
that the winner of SemEval-2010 Task 8 used the
most types of features and resources, among all par-
ticipants. Nevertheless, it is difficult to find an opti-
mal feature set, since traversing all combinations of
features is time-consuming for feature based meth-
ods.

To remedy the problem of feature selection men-
tioned above, kernel methods represent the input
data by computing the structural commonness be-
tween sentences, based on carefully designed ker-
nels. Mooney and Bunescu (2005) split sentences
into subsequences and compute the similarities us-
ing the proposed subsequence kernel. Bunescu and

66

caused

[Convulsions] are by

[fever]

softmax

word representation: word embedding +
tree-based position feature

convolution with
tree-based kernels

max-pooling
fully connected layer +

softmax classifier

Figure 2: The framework of PECNN. The red and blue circles represent the word embeddings and tree-based position features of

words. The yellow and green circles stand for the feature maps extracted by two kinds of convolution kernels respectively.

Mooney (2005) propose a dependency tree kernel
and extract information from the Shortest Depen-
dency Path (SDP) between marked entities. Since
kernel methods require similarity computation be-
tween input samples, they are relatively computa-
tionally expensive when facing large-scale datasets.

Nowadays, deep neural network based ap-
proaches have become the main solutions to relation
classification. Among them, some handle this task
by modifying sentence modeling methods. Socher et
al. (2012) build RNN on constituency trees of sen-
tences, and apply the model to relation recognition
task. Zeng et al. (2014) propose the use of position
feature for improving the performance of CNN in
relation classification. dos Santos et al. (2015) di-
minish the impact of noisy class by using a pairwise
ranking loss function based CNN. Meanwhile, in-
spired by the ideas of traditional methods, some re-
cent researches concentrate on mining information
from the SDP. Xu et al. (2015b) use a multichan-
nel LSTM network to model the SDP in given sen-
tences. Liu et al. (2015) reserve the subtrees attached
to the SDP and propose an augmented SDP based
CNN. Neural network based methods offer the ad-
vantage of automatic feature learning and also scale
well with large amounts of data.

3 Proposed Model

Given a sentence s with two marked entities e1 and
e2, we aim to identify the semantic relation between
e1 and e2 in relation classification. As the set of
target relations is predefined, this task can be formu-

lated as a multi-class classification problem. In this
section, we detailedly describe our proposed model
designed for this problem.

3.1 Framework

The schematic illustration of the framework is
shown in Figure 2.

First, the dependency tree of a sentence is gen-
erated by the Stanford Parser (Klein and Manning,
2003). For each word in the tree, its word embed-
ding and tree-based position features are concate-
nated as its representation. The position feature of a
word is determined by the relative position between
the word and marked entities in the dependency tree.

Next, with tree-based kernels, convolution opera-
tions are conducted on each node of the dependency
tree. Compared with plain text, dependency tree
could provide a word with more meaningful con-
text, thus making tree-based kernel more effective.
After convolution, we apply max-pooling over the
extracted feature maps to capture the most important
features.

At last, the output of max-pooling layer, i.e. the
feature vector of input sentence, is fed to a softmax
classifier for labelling the semantic relation of enti-
ties in each sentence.

3.2 Word Represetation

The representation of a word is composed of two
parts: word embedding and tree-based position fea-
ture.

67

3.2.1 Word Embedding
Distributed representation of words in a vector

space help learning algorithms to achieve better per-
formance in NLP tasks (Mikolov et al., 2013). Such
representation is usually called word embedding in
recent works. High-quality word embedding is able
to capture precise syntactic and semantic informa-
tion by training unsupervisedly on large-scale cor-
pora.

In our model, we initialize the word embeddings
by pretraining them on a large corpus and further
fine-tune them in training phase.

3.2.2 Tree-based Position Feature
Position Feature (PF) is first proposed by (Col-

lobert et al., 2011) for semantic role labeling. (Zeng
et al., 2014) exploit position feature as a substitute
for traditional structure features in relation classifi-
cation. The main idea of position feature is to map
each discrete distance to a real-valued vector. It is
similar to word embedding, except that words are
replaced by discrete distances. For instance, let us
examine again the sentence shown in Figure 1,

[Convulsions]e1 that occur after DTaP are caused by
a [fever]e2.

the relative distances of caused to Convulsions and
fever are respectively 6 and −3. Each relative dis-
tance is further mapped to a dpf (a hyperparameter)
dimensional vector, which is randomly initialized.
Supposing pf6 and pf−3 are the corresponding vec-
tors of distance 6 and −3, the position feature of
caused is given by concatenating these two vectors
[pf6,pf−3].

Position feature on plain text proves to be infor-
mative (dos Santos et al., 2015), while it may suf-
fer from several problems. According to our case
study, adverbs or unrelated entities that appear be-
tween two entities in a sentence could significantly
affect the performance of position feature, as these
words only change the relative distance to entities
without providing any more useful information for
relation classification. Similarly, position feature of-
ten fails to handle sentences in which marked enti-
ties are too far from each other.

On the other hand, dependency tree focuses on the
action and agents in a sentence (Socher et al., 2014),
which is valuable for relation classification. As we

have mentioned above, dependency tree is able to
shorten the distances between pairs of marked enti-
ties and help trim off redundant words. Therefore,
it is straightforward and reasonable to transfer the
position feature from plain text to dependency tree.

We propose two kinds of Tree-based Position Fea-
ture which we refer as TPF1 and TPF2.

TPF1 encodes the relative distances of current
word to marked entities in dependency trees. The
“relative distance” here refers to the length of the
shortest dependency path between current word and
target entity. The sign of the distance is used to dis-
tinguish whether current word is a descendant of tar-
get entity. After calculating the relative distances of
words in the tree, we can get their TPF1 by mapping
relative distances to corresponding vectors, which is
the same as the PF in plain text.

To more precisely describe the position of a word,
TPF2 incorporates more information given by de-
pendency tree. TPF2 represents the relative posi-
tions between current word and marked entities by
encoding their shortest paths. For a word and an en-
tity, the shortest path between them can be separated
by their lowest common ancestor, and the lengths
of the two sub-paths are sufficient for encoding the
shortest path and the relative position between the
word and the entity. As a result, we formally rep-
resent the relative position using a 2-tuple, in which
two elements are the lengths of the two separated
sub-paths respectively. Thereafter, each unique rel-
ative position is mapped to a real-valued vector.

caused

[Convulsions] are by

occur [fever]

that after a

DTaP

0

-1

-2 -2

-3

1

2
2

3

4(0,2) (0,2)

(0,3)

(0,1)

(0,0) (1,1)

(1,0)

(1,1)

(1,2)

(1,3)

Figure 3: Example of Tree-based Position Features. The red

numbers are relative distances in TPF1. The blue 2-tuples are

relative positions in TPF2.

For example, in Figure 3, the path between Con-
vulsions and by is Convulsions→ caused←by. In

68

TPF1, the relative distance of by to Convulsions is 2,
the length of this path. In TPF2, the lowest common
ancestor caused splits the path into two subpaths of
length 1, so the relative position between Convul-
sions and by is (1, 1) (encoded in 2-tuple). More ex-
amples of the tree-based position features are shown
in Figure 3.

TPF1 and TPF2 both offer good strategies for en-
coding word position in dependency tree. TPF2 is
more fine-grained than TPF1 and TPF1 is a simpli-
fied version of TPF2.

In our model, for each word in dependency trees,
its word embedding and tree-based position feature
are concatenated to form its representation, which is
subsequently fed to the convolutional layer.

3.3 Convolution Methods

In the classic CNN architecture of (Collobert et al.,
2011) and its variants (Kim, 2014), a convolution
window covers a word and its context, i.e. its neigh-
boring words. Thus convolution only captures local
features around each word. Words that are not in a
same window will not interact, even if they are syn-
tactically related.

Compared with plain text, dependency tree could
provide a word with more meaningful context. In
a dependency tree, words are connected if they are
in some dependency relationship. To capitalize on
these syntactic information, we regard the parent and
children of a word (i.e. nodes neighboring this word)
as its new context. Changing the definition of “con-
text” leads to modification of convolution kernel. To
implement this idea, we design two kinds of tree-
based kernels (Kernel-1 and Kernel-2), and apply
them to sentences in dependency tree form.

Formally, for a word x in the dependency tree,
let p be its parent and c1, · · · , cn be its n children.
Their vector representation are respectively denoted
by x, p, c1, · · · , cn ∈ Rd. The convolution process
of Kernel-1 is formulated as

z1
xi =g(W 1

x · x+W 1
p · p+W 1

c · ci)
for i = 1, · · · , n

(1)

where z1
xi ∈ Rn1 and n1 is the number of Kernel-1,

and W 1
x ,W

1
p ,W

1
c ∈ Rn1×d are weight parameters

corresponding to the word, its parent and children

respectively. g is the non-linear activation function.
For leaf nodes which have no child, i.e. n = 0, we
assign each of them a child of which the vector rep-
resentation is 0. For the root node, p is set to be
0.

Similarly, the output of Kernel-2 is given by

z2
xi =g(W 2

x · x+W 2
lc · ci +W 2

rc · ci+1)

for i = 1, · · · , n− 1
(2)

where z2
xi ∈ Rn2 and n2 is the number of Kernel-

2, and W 2
x ,W

2
lc,W

2
rc ∈ Rn2×d are weight parame-

ters associated with the word and its two neighbor-
ing children. If n ≤ 1, we simply add one or two 0
children, just like the zero padding strategy.

Kernel-1 aims at extracting features from words
of multiple levels in dependency tree, while Kernel-
2 focuses on mining the semantic information be-
tween words which share the same parent. Kernel-
1 and Kernel-2 both consider 3 words at a time
because the experimental results of previous re-
searches (Zeng et al., 2014; dos Santos et al., 2015)
suggest that trigram features are relatively more use-
ful in relation classification. And it is also straight-
forward to extend these kernels to a larger size and
apply them to other tasks.

After convolution with tree-based kernels, we ap-
ply a global max-pooling operation over extracted
features by taking the maximum value in each di-
mension, which is formulated as

h1 = elemax
x,i

z1
xi (3)

h2 = elemax
x,i

z2
xi (4)

where h1 ∈ Rn1 , h2 ∈ Rn2 , and elemax is the op-
eration which gives the element-wise maximum of
all input vectors. As a consequence, the output of
convolution process is [h1,h2], the combination of
features extracted by two kinds of kernels.

3.4 Output and Training Objective

After convolution, the extracted feature is further
passed to a fully connected softmax layer whose out-
put is the probability distribution over all types of
relations.

69

Since we treat the relation classification task as a
multi-class classification problem, the training ob-
jective is the cross-entropy error. For regularization,
we apply dropout (Srivastava et al., 2014) to the fea-
ture vector extracted by convolution and penalize the
fully connected layer with l2 regularizer as well.

Some other dependency tree based methods like
(Liu et al., 2015), (Xu et al., 2015a) and (Xu et al.,
2015b), all focus on using different kinds of neu-
ral networks to model the shortest dependency path
(SDP) between entities. By contrast, PECNN ex-
tracts features from the whole dependency tree, so
that the information out of SDP will be taken into
consideration as well. The empirical results of (dos
Santos et al., 2015) suggest that when position fea-
tures exist, modeling the full sentence yields a bet-
ter performance than only using the subsentence be-
tween entities. With the help of tree-based position
feature, our model is capable of evaluating the im-
portance of different parts of dependency trees and
tends to pay relatively more attention to SDP.

Some methods enhancing their performances by
proposing dataset-specific strategies. dos Santos et
al. (2015) treat the class Other as a special class and
omit its embedding. Xu et al. (2015a) take the re-
lation dimensionality into account and introduce a
negative sampling strategy to double the number of
training samples, which can be regarded as data aug-
mentation. These strategies do not conflict with our
model, but we decide not to integrate them into our
methods as we aim to offer a general and effective
feature extraction model for relation classification.

4 Experiments

4.1 Dataset and Evaluation Metric

To evaluate our method, we conduct experiments on
the SemEval2010 Task 8 dataset which is a widely
used benchmark for relation classification. The
dataset contains 8, 000 training sentences and 2, 717
test sentences. In each sentence, two entities are
marked as target entities.

The predefined target relations include 9 directed
relations and an undirected Other class. The 9
directed relations are Cause-Effect, Component-
Whole, Content-Container, Entity- Destination,
Entity-Origin, Instrument-Agency, Member-
Collection, Message-Topic and Product-Producer.

“Directed” here means, for example, Cause-
Effect(e1, e2) and Cause-Effect(e2, e1) are two
different relations. In another word, the direction-
ality of relation also matters. And sentences that
do not belong to any directed relation are labelled
as Other. Therefore, relation classification on this
dataset is a 19-class classification problem.

Following previous studies, we use the official
evaluation metric, macro-averaged F1-score with di-
rectionality taken into account and the Other class
ignored.

4.2 Training Details

Since there is no official validation set, 10% of the
training sentences are taken out for hyperparameter
tuning and early stopping.

When converting sentences to dependency trees,
we note that some prepositions such as “by”, “in”
and “of”, might be important clues to relation clas-
sification. To reserve these valuable information, we
use the Stanford Parser without the collapsed op-
tion.

In the dataset, there are some entities consisting of
multiple words, which make the calculation of rela-
tive position ambiguous. To solve this problem, we
take the last word as the representation of an entity,
as the last word is usually the predominant word.

For word embeddings, we initialize them using
the 300-dimensional word2vec vectors1. The vec-
tors are trained on 100 billion words from Google
News. Words not present in the word2vec vectors
are initialized by sampling each dimension from a
uniform distribution (Kim, 2014). Tree-based posi-
tion features are 50-dimensional and initialized ran-
domly. Therefore the representation of each word
has dimensionality of 400.

We use ReLU as the activation function. The
number of convolution kernels is 500 for each kind,
1, 000 in total. The dropout rate is 0.5, and the co-
efficient of l2 penalty of fully connected layer is set
to 10−6. These parameters are selected through grid
search on validation set. The network is trained with
the Adadelta update rule (Zeiler, 2012). The net-
work is implemented with Theano (Theano Devel-
opment Team, 2016).

1https://code.google.com/p/word2vec/

70

Classifier Features F1

Without External Lexical Features
MVRNN word embedding, constituency tree 79.1

CNN word embedding, position feature 78.9

CR-CNN
word embedding 82.8∗

word embedding, position feature 84.1∗

depLCNN
word embedding, dependency tree 81.9
word embedding, dependency tree 84.0◦

SDP-LSTM word embedding, dependency tree 83.0
PECNN word embedding, dependency tree, tree-based position feature 84.0

With External Lexical Features

SVM
POS, prefixes, morphological, WordNet, dependency parse

82.2Levin classes, PropBankFrameNet, NomLex-Plus, Google n-gram
paraphrases, TextRunner

MVRNN word embedding, constituency tree, POS, NER, WordNet 82.4
CNN word embedding, position feature, WordNet 82.7

DepNN
word embedding, dependency tree, WordNet 83.0
word embedding, dependency tree, NER 83.6

depLCNN
word embedding, dependency tree, WordNet 83.7
word embedding, dependency tree, WordNet 85.6◦

SDP-LSTM
word embedding, dependency tree, POS embedding

83.7
WordNet embedding, grammar relation embedding

PECNN
word embedding, dependency tree, tree-based position feature, POS 84.6
NER, WordNet

Table 1: Comparison of different relation classification models. The symbol ∗ indicates the results with special treatment of the

class Other. The symbol ◦ indicates the results with data augmentation strategy.

4.3 Results

The performances of our proposed model and other
state-of-the-art methods are shown in Table 1.

First, we compare PECNN with the following
baselines when no external lexical feature is used.

Socher et al. (2012) assign a vector and a matrix
to each word for the purpose of semantic composi-
tion, and build recursive neural network along con-
stituency tree (MVRNN). It is noteworthy that this
work is the first one who confirms the feasibility of
applying neural network to relation classification.

Following the ideas of (Collobert et al., 2011),
Zeng et al. (2014) first solve relation classifica-
tion using convolutional neural network (CNN). The
position feature introduced by them proves effec-
tive. dos Santos et al. (2015) build a similar CNN
called CR-CNN but replace the objective function
with a pairwise ranking loss. By treating the noisy
class Other as a special class, this method achieves

an F1 of 84.1. The F1 score is 82.7 if no special
treatment is applied.

The rest two baselines focus on modeling the
Shortest Dependency Paths (SDP) between marked
entities. Xu et al. (2015a)) (depLCNN) integrate the
relation directionality into CNN and achieve an F1
of 84.0 with a data augmentation strategy called
negative sampling. Without such data augmenta-
tion, their F1 score is 81.9. Xu et al. (2015b) (SDP-
LSTM) represent heterogeneous features as embed-
dings and propose a multichannel LSTM based re-
current neural network for picking up information
along the SDP. Their F1 score is 83.0 when only
word embedding is used as the word representation.

Without considering any external lexical feature
and dataset-specific strategy, our model achieve an
F1 of 84.0, suggesting that tree-based position fea-
tures and kernels are effective. Comparing with the
CNN based on plain text, our model benefits from
dependency tree based network and obtain a notable

71

[Convulsions] that occur after DTaP are caused by a [fever]
Word

0.00

0.05

0.10

0.15

0.20

0.25

P
ro

p
o
rt

io
n

No Postion Feature

Tree-based Position Feature

Figure 4: Visualization of the effect of tree-based position feature. The proportions of words change with the use of tree-based

position feature.

improvement.
When external lexical features are available, we

take two more baselines into account. The first one
(SVM) is a typical example of traditional feature-
based methods which rely largely on hand-crafted
features. Benefitting from various features and re-
sources, this method won the SemEval 2010 Task 8
by a large margin (Hendrickx et al., 2010). Liu et al.
(2015) (DepNN) reserve the subtrees attached to the
SDP and propose an augmented SDP based CNN.

Most of these baselines concatenate external lex-
ical features to features extracted by neural network
and directly pass the combined vector to classifier.
SDP-LSTM represents lexical features as embed-
dings and enhances its word representation. For fair
comparison, we add three features (POS tags, NER
tags and WordNet hypernyms of marked entities) to
the vector extracted by our model and retrain the net-
work. Thus, our model achieves an F1 of 84.6 and
outperforms all existing baselines in a fair condition
where no data augmentation strategy is adopted. The
enhancement we gain from external features is less,
comparing with other baselines. This implies that
our model is able to mine useful features from lim-
ited resources, even no extra information is avail-
able.

4.4 Effect of Different Position Features

Position Feature F1

plain text PF 83.21
TPF1 83.99
TPF2 83.90

Table 2: Comparison of different position features.

Table 2 summarizes the performances of proposed
model when different position features are exploited.
To concentrate on studying the effect of position fea-
tures, we do not involve lexical features in this sec-
tion. As the table shows, the position feature on
plain text is still effective in our model and we ac-
credit its satisfactory result to the dependency in-
formation and tree-based kernels. The F1 scores of
tree-based position features are higher since they are
“specially designed” for our model.

Contrary to our expectation, the more fine-grained
TPF2 does not yield a better performance than
TPF1, and two kinds of TPF give fairly close results.
One possible reason is that the influence of a more
elaborated definition of relative position is minimal.
As most sentences in this dataset are of short length
and their dependency trees are not so complicated,
replacing TPF1 with TPF2 usually brings little new
structural information and thus results in a similar
F1 score.

However, though the performances of different
position features are close, tree-based position fea-
ture is an essential part of our model. The F1 score
is severely reduced to 75.22 when we remove the
tree-based position feature in PECNN.

4.5 Effect of Tree-based Position Feature

For shallow CNN in NLP, visualization offers clear
and convincing explanations for the mechanism of
neural networks (dos Santos and Gatti, 2014; Mou
et al., 2015). Moreover, it is easy to implement.

Note that in the max-pooling step, for each ker-
nel, we select the feature which has the largest value.
This feature corresponds to 3 words in the convolu-

72

tion step, and we regard them as the most relevant
words extracted by this kernel, with respect to the
sentence . Since there are 1, 000 kernels in total, we
count 3, 000 words (0 will be ignored) and calculate
the proportion of each different word. Intuitively,
the more important a word is in this task, the larger
its proportion will be.

In Figure 4, we compare the proportions of words
in the example sentence when tree-based position
feature (TPF) is used and not. As we can see, the
proportions of two entities, Convulsions and fever,
and the phrase caused by all increase visibly with
the presence of TPF, suggesting that TPF is effec-
tive in helping the neural network pay more atten-
tion to the crucial words and phrases in a sentence.
The word occur is also picked up by our model since
it is an important candidate clue to relation classifi-
cation. Meanwhile, the influence of irrelevant entity
DTaP is remarkably diminished as expected.

5 Conclusion

This work presents a dependency parse tree based
convolutional neural network for relation classifica-
tion. We propose tree-based position features to en-
code the relative positions of words in a dependency
tree. Meanwhile, tree-based convolution kernels are
designed to gather semantic and syntactic informa-
tion in dependency trees. Experimental results prove
the effectiveness of our model. Comparing with
plain text based CNN, our proposed kernels and po-
sition features boost the performance of network by
utilizing dependency trees in a new perspective.

6 Acknowledgements

This work is partially supported by the National
High Technology Research and Development Pro-
gram of China (Grant No. 2015AA015403) and
the National Natural Science Foundation of China
(Grant No. 61170091). We would also like to
thank the anonymous reviewers for their helpful
comments.

References
Razvan C Bunescu and Raymond J Mooney. 2005. A

shortest path dependency kernel for relation extrac-
tion. In Proceedings of the conference on Human Lan-
guage Technology and Empirical Methods in Natural

Language Processing, pages 724–731. Association for
Computational Linguistics.

Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. 2014. Learning phrase represen-
tations using RNN encoder-decoder for statistical ma-
chine translation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2014, October 25-29, 2014, Doha,
Qatar, A meeting of SIGDAT, a Special Interest Group
of the ACL, pages 1724–1734.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
The Journal of Machine Learning Research, 12:2493–
2537.

Cıcero Nogueira dos Santos and Maıra Gatti. 2014. Deep
convolutional neural networks for sentiment analysis
of short texts. In Proceedings of the 25th International
Conference on Computational Linguistics (COLING),
Dublin, Ireland.

Cı́cero Nogueira dos Santos, Bing Xiang, and Bowen
Zhou. 2015. Classifying relations by ranking with
convolutional neural networks. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing of the
Asian Federation of Natural Language Processing,
ACL 2015, July 26-31, 2015, Beijing, China, Volume
1: Long Papers, pages 626–634.

Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva, Preslav
Nakov, Diarmuid Ó Séaghdha, Sebastian Padó, Marco
Pennacchiotti, Lorenza Romano, and Stan Szpakow-
icz. 2010. Semeval-2010 task 8: Multi-way classi-
fication of semantic relations between pairs of nom-
inals. In Proceedings of the 5th International Work-
shop on Semantic Evaluation, pages 33–38. Associa-
tion for Computational Linguistics.

Nanda Kambhatla. 2004. Combining lexical, syntactic,
and semantic features with maximum entropy mod-
els for extracting relations. In Proceedings of the
ACL 2004 on Interactive poster and demonstration
sessions, page 22. Association for Computational Lin-
guistics.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar, A meeting of SIGDAT, a Special
Interest Group of the ACL, pages 1746–1751.

Dan Klein and Christopher D Manning. 2003. Ac-
curate unlexicalized parsing. In Proceedings of the
41st Annual Meeting on Association for Computa-

73

tional Linguistics-Volume 1, pages 423–430. Associ-
ation for Computational Linguistics.

Jiwei Li, Thang Luong, Dan Jurafsky, and Eduard H.
Hovy. 2015. When are tree structures necessary for
deep learning of representations? In Proceedings of
the 2015 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2015, Lisbon, Portu-
gal, September 17-21, 2015, pages 2304–2314.

Yang Liu, Furu Wei, Sujian Li, Heng Ji, Ming Zhou,
and Houfeng Wang. 2015. A dependency-based neu-
ral network for relation classification. In Proceed-
ings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing of
the Asian Federation of Natural Language Processing,
ACL 2015, July 26-31, 2015, Beijing, China, Volume
2: Short Papers, pages 285–290.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representations
of words and phrases and their compositionality. In
C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani,
and K.Q. Weinberger, editors, Advances in Neural In-
formation Processing Systems 26, pages 3111–3119.
Curran Associates, Inc.

Raymond J Mooney and Razvan C Bunescu. 2005. Sub-
sequence kernels for relation extraction. In Advances
in neural information processing systems, pages 171–
178.

Lili Mou, Hao Peng, Ge Li, Yan Xu, Lu Zhang, and
Zhi Jin. 2015. Discriminative neural sentence mod-
eling by tree-based convolution. In Proceedings of
the 2015 Conference on Empirical Methods in Natu-
ral Language Processing, EMNLP 2015, Lisbon, Por-
tugal, September 17-21, 2015, pages 2315–2325.

Richard Socher, Brody Huval, Christopher D Manning,
and Andrew Y Ng. 2012. Semantic compositional-
ity through recursive matrix-vector spaces. In Pro-
ceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning, pages 1201–
1211. Association for Computational Linguistics.

Richard Socher, Andrej Karpathy, Quoc V Le, Christo-
pher D Manning, and Andrew Y Ng. 2014. Grounded
compositional semantics for finding and describing
images with sentences. Transactions of the Associa-
tion for Computational Linguistics, 2:207–218.

Richard Socher. 2014. Recursive Deep Learning for
Natural Language Processing and Computer Vision.
Ph.D. thesis, Stanford University.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Kai Sheng Tai, Richard Socher, and Christopher D. Man-
ning. 2015. Improved semantic representations from
tree-structured long short-term memory networks. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing of the Asian Federation of Natural Lan-
guage Processing, ACL 2015, July 26-31, 2015, Bei-
jing, China, Volume 1: Long Papers, pages 1556–
1566.

Theano Development Team. 2016. Theano: A Python
framework for fast computation of mathematical ex-
pressions. arXiv e-prints, abs/1605.02688, May.

Kun Xu, Yansong Feng, Songfang Huang, and Dongyan
Zhao. 2015a. Semantic relation classification via
convolutional neural networks with simple negative
sampling. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Process-
ing, EMNLP 2015, Lisbon, Portugal, September 17-
21, 2015, pages 536–540.

Yan Xu, Lili Mou, Ge Li, Yunchuan Chen, Hao Peng,
and Zhi Jin. 2015b. Classifying relations via long
short term memory networks along shortest depen-
dency paths. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Process-
ing, EMNLP 2015, Lisbon, Portugal, September 17-
21, 2015, pages 1785–1794.

Matthew D. Zeiler. 2012. ADADELTA: an adaptive
learning rate method. CoRR, abs/1212.5701.

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou, and
Jun Zhao. 2014. Relation classification via convolu-
tional deep neural network. In Proceedings of COL-
ING, pages 2335–2344.

74

