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Abstract

Conditional random fields and other graphi-
cal models have achieved state of the art re-
sults in a variety of tasks such as coreference,
relation extraction, data integration, and pars-
ing. Increasingly, practitioners are using mod-
els with more complex structure—higher tree-
width, larger fan-out, more features, and more
data—rendering even approximate inference
methods such as MCMC inefficient. In this
paper we propose an alternative MCMC sam-
pling scheme in which transition probabilities
are approximated by sampling from the set
of relevant factors. We demonstrate that our
method converges more quickly than a tradi-
tional MCMC sampler for both marginal and
MAP inference. In an author coreference task
with over 5 million mentions, we achieve a 13
times speedup over regular MCMC inference.

1 Introduction

Conditional random fields and other graphical mod-
els are at the forefront of many natural language
processing (NLP) and information extraction (IE)
tasks because they provide a framework for discrim-
inative modeling while succinctly representing de-
pendencies among many related output variables.
Previously, most applications of graphical models
were limited to structures where exact inference is
possible, for example linear-chain CRFs (Lafferty
et al., 2001). More recently, there has been a de-
sire to include more factors, longer range depen-
dencies, and more sophisticated features; these in-
clude skip-chain CRFs for named entity recogni-
tion (Sutton and McCallum, 2004), probabilistic

DBs (Wick et al., 2010), higher-order models for
dependency parsing (Carreras, 2007), entity-wise
models for coreference (Culotta et al., 2007; Wick
et al., 2009), and global models of relations (Hoff-
mann et al., 2011). The increasing sophistication of
these individual NLP components compounded with
the community’s desire to model these tasks jointly
across cross-document considerations has resulted
in graphical models for which inference is compu-
tationally intractable. Even popular approximate in-
ference techniques such as loopy belief propagation
and Markov chain Monte Carlo (MCMC) may be
prohibitively slow.

MCMC algorithms such as Metropolis-Hastings
are usually efficient for graphical models because
the only factors needed to score a proposal are those
touching the changed variables. However, MCMC
is slowed in situations where a) the model exhibits
variables that have a high-degree (neighbor many
factors), b) proposals modify a substantial subset of
the variables to satisfy domain constraints (such as
transitivity in coreference), or c) evaluating a single
factor is expensive, for example when features are
based on string-similarity. For example, the seem-
ingly innocuous proposal changing the entity type of
a single entity requires examining all its mentions,
i.e. scoring a linear number of factors (in the num-
ber of mentions of that entity). Similarly, evaluating
coreference of a mention to an entity also requires
scoring factors to all the mentions of the entity. Of-
ten, however, the factors are somewhat redundant,
for example, not all mentions of the “USA” entity
need to be examined to confidently conclude that it
is a COUNTRY, or that it is coreferent with “United
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States of America”.
In this paper we propose an approximate MCMC

framework that facilitates efficient inference in high-
degree graphical models. In particular, we approx-
imate the acceptance ratio in the Metropolis Hast-
ings algorithm by replacing the exact model score
with a stochastic approximation that samples from
the set of relevant factors. We explore two sampling
strategies, a fixed proportion approach that samples
the factors uniformly, and a dynamic alternative that
samples factors until the method is confident about
its estimate of the model score.

We evaluate our method empirically on both syn-
thetic and real-world data. On synthetic classi-
fication data, our approximate MCMC procedure
obtains the true marginals faster than a traditional
MCMC sampler. On real-world tasks, our method
achieves 7 times speedup on citation matching, and
13 times speedup on large-scale author disambigua-
tion.

2 Background

2.1 Graphical Models
Factor graphs (Kschischang et al., 2001) succinctly
represent the joint distribution over random vari-
ables by a product of factors that make the depen-
dencies between the random variables explicit. A
factor graph is a bipartite graph between the vari-
ables and factors, where each (log) factor f ∈ F is
a function that maps an assignment of its neighbor-
ing variables to a real number. For example, in a
linear-chain model of part-of-speech tagging, transi-
tion factors score compatibilities between consecu-
tive labels, while emission factors score compatibil-
ities between a label and its observed token.

The probability distribution expressed by the fac-
tor graph is given as a normalized product of the fac-
tors, which we rewrite as an exponentiated sum:

p(y) =
expψ(y)

Z
(1)

ψ(y) =
∑
f∈F

f(yf ) (2)

Z =
∑
y∈Y

expψ(y) (3)

Intuitively, the model favors assignments to the ran-
dom variables that yield higher factor scores and will

assign higher probabilities to such configurations.
The two common inference problems for graphi-

cal models in NLP are maximum a posterior (MAP)
and marginal inference. For models without latent
variables, the MAP estimate is the setting to the
variables that has the highest probability under the
model:

yMAP = argmax
y

p(y) (4)

Marginal inference is the problem of finding
marginal distributions over subsets of the variables,
used primarily in maximum likelihood gradients and
for max marginal inference.

2.2 Markov chain Monte Carlo (MCMC)
Often, computing marginal estimates of a model is
computationally intractable due to the normalization
constant Z, while maximum a posteriori (MAP) is
prohibitive due to the search space of possible con-
figurations. Markov chain Monte Carlo (MCMC) is
important tool for performing sample- and search-
based inference in these models. A particularly suc-
cessful MCMC method for graphical model infer-
ence is Metropolis-Hastings (MH). Since sampling
from the true model p(y) is intractable, MH instead
uses a simpler distribution q(y′|y) that conditions
on a current state y and proposes a new state y′ by
modifying a few variables. This new assignment is
then accepted with probability α:

α = min

(
1,
p(y′)

p(y)

q(y|y′)
q(y′|y)

)
(5)

Computing this acceptance probability is often
highly efficient because the partition function can-
cels, as do all the factors in the model that do not
neighbor the modified variables. MH can be used
for both MAP and marginal inference.

2.2.1 Marginal Inference
To compute marginals with MH, the variables are

initialized to an arbitrary assignment (i.e., randomly
or with some heuristic), and sampling is run until the
samples {yi|i = 0, · · · , n} become independent of
the initial assignment. The ergodic theorem provides
the MCMC analog to the law-of-large-numbers, jus-
tifying the use of the generated samples to compute
the desired statistics (such as feature expectations or
variable marginals).

1105



2.2.2 MAP Inference

Since MCMC can efficiently explore the high
density regions for a given distribution, the distri-
bution p can be modified such that the high-density
region of the new distribution represents the MAP
configuration of p. This is achieved by adding a tem-
perature term τ to the distribution p, resulting in the
following MH acceptance probability:

α = min

(
1,

(
p(y′)

p(y)

) 1
τ

)
(6)

Note that as τ → 0, MH will sample closer to the
MAP configuration. If a cooling schedule is imple-
mented for τ then the MH sampler for MAP infer-
ence can be seen as an instance of simulated anneal-
ing (Bertsimas and Tsitsiklis, 1993).

3 Monte Carlo MCMC

In this section we introduce our approach for ap-
proximating the acceptance ratio of Metropolis-
Hastings that samples the factors, and describe two
sampling strategies.

3.1 Stochastic Proposal Evaluation

Although one of the benefits of MCMC lies in its
ability to leverage the locality of the proposal, for
some information extraction tasks this can become a
crucial bottleneck. In particular, evaluation of each
sample requires computing the score of all the fac-
tors that are involved in the change, i.e. all fac-
tors that neighbor any variable in the set that has
changed. This evaluation becomes a bottleneck for
tasks in which a large number of variables is in-
volved in each proposal, or in which the model con-
tains a number of high-degree variables, resulting in
a large number of factors, or in which computing
the factor score involves an expensive computation,
such as string similarity between mention text.

Instead of evaluating the log-score ψ of the model
exactly, this paper proposes a Monte-Carlo estima-
tion of the log-score. In particular, if the set of fac-
tors for a given proposal y→ y′ is F(y,y′), we use
a sampled subset of the factors S ⊆ F(y,y′) as an
approximation of the model score. In the following

we use F as an abbreviation for F(y,y′). Formally,

ψ(y) =
∑
f∈F

f(yf ) = |F| · EF [f(yf )]

ψS(y) = |F| · ES [f(yf )] (7)

We use the sample log-score (ψS) in the acceptance
probability α to evaluate the samples. Since we are
using a stochastic approximation to the model score,
in general we need to take more MCMC samples
before we converge, however, since evaluating each
sample will be much faster (O(|S|) as opposed to
O(|F|)), we expect overall sampling to be faster.

In the next sections we describe several alternative
strategies for sampling the set of factors S. The pri-
mary restriction on the set of samples S is that their
mean should be an unbiased estimator of EF[f ]. Fur-
ther, time taken to obtain the set of samples should
be negligible when compared to scoring all the fac-
tors in F. Note that there is an implicit minimum of
1 to the number of the sampled factors.

3.2 Uniform Sampling
The most direct approach for subsampling the set
of F is to perform uniform sampling. In particular,
given a proportion parameter 0 < p ≤ 1, we select a
random subset Sp ⊆ F such that |Sp| = p · |F|. Since
this approach is agnostic as to the actual factors
scores, ES[f ] ≡ EF[f ]. A low p leads to fast evalua-
tion, however it may require a large number of sam-
ples due to the substantial approximation. On the
other hand, although a higher p will converge with
fewer samples, evaluating each sample is slower.

3.3 Confidence-Based Sampling
Selecting the best value for p is difficult, requiring
analysis of the graph structure, and statistics on the
distribution of the factors scores; often a difficult
task in real-world applications. Further, the same
value for p can result in different levels of approxi-
mation for different proposals, either unnecessarily
accurate or problematically noisy. We would prefer
a strategy that adapts to the distribution of the scores
in F.

Instead of sampling a fixed proportion of factors,
we can sample until we are confident that the cur-
rent set of samples Sc is an accurate estimate of the
true mean of F. In particular, we maintain a run-
ning count of the sample mean ESc [f ] and variance
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σSc , using them to compute a confidence interval IS
around our estimate of the mean. Since the num-
ber of sampled factors S could be a substantial frac-
tion of the set of factors F,1 we also incorporate fi-
nite population control (fpc) in our sample variance
computation. We compute the confidence interval as
follows:

σ2
S =

1

|S| − 1

∑
f∈S

(f − ES [f ])2 (8)

IS = 2z
σS√
|S|

√
|F| − |S|
|F| − 1

(9)

where we set the z to 1.96, i.e. the 95% confidence
interval. This approach starts with an empty set of
samples, S = {}, and iteratively samples factors
without replacement to add to S, until the confidence
interval around the estimated mean falls below a user
specified maximum interval width threshold i. As a
result, for proposals that contain high-variance fac-
tors, this strategy examines a large number of fac-
tors, while proposals that involve similar factors will
result in fewer samples. Note that this user-specified
threshold is agnostic to the graph structure and the
number of factors, and instead directly reflects the
score distribution of the relevant factors.

4 Experiments

In this section we evaluate our approach for both
marginal and MAP inference.

4.1 Marginal Inference on Synthetic Data
Consider the task of classifying entities into a set of
types, for example, POLITICIAN, VEHICLE, CITY,
GOVERMENT-ORG, etc. For knowledge base con-
struction, this prediction often takes place on the
entity-level, as opposed to the mention-level com-
mon in traditional NLP. To evaluate the type at the
entity-level, the scored factors examine features of
all the entity mentions of the entity, along with the
labels of all relation mentions for which it is an ar-
gument. See Yao et al. (2010) and Hoffmann et al.
(2011) for examples of such models. Since a sub-
set of the mentions can be sufficiently informative
for the model, we expect our stochastic MCMC ap-
proach to work well.

1Specifically, the fraction may be higher than > 5%
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Figure 1: Synthetic Model for Classification
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Figure 2: Marginal Inference Error for Classification
on Synthetic Data

We use synthetic data for such a model to evaluate
the quality of marginals returned by the Gibbs sam-
pling form of MCMC. Since the Gibbs algorithm
samples each variable using a fixed assignment of
its neighborhood, we represent generating a single
sample as classification. We create star-shaped mod-
els with a single unobserved variable (entity type)
that neighbors many unary factors, each represent-
ing a single entity- or a relation-mention factor (See
Figure 1a for an example). We generate a synthetic
dataset for this model, creating 100 variables con-
sisting of 100 factors each. The scores of the fac-
tors are generated from gaussians, N(0.5, 1) for the
positive label, and N(−0.5, 1) for the negative label
(note the overlap between the weights in Figure 1b).
Although each structure contains only a single vari-
able, and no cycles, it is a valid benchmark to test
our sampling approach since the effects of the set-
ting of burn-in period and the thinning samples are
not a concern.

We perform standard Gibbs sampling, and com-
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pare the marginals obtained during sampling with
the true marginals, computed exactly. We evalu-
ate the previously described uniform sampling and
confidence-based sampling, with several parameter
values, and plot the L1 error to the true marginals
as more factors are examined. Note that here, and
in the rest of the evaluation, we shall use the num-
ber of factors scored as a proxy for running time,
since the effects of the rest of the steps of sam-
pling are relatively negligible. The error in compar-
ison to regular MCMC (p = 1) is shown in Fig-
ure 2, with standard error bars averaging over 100
models. Initially, as the sampling approach is made
more stochastic (lowering p or increasing i), we see
a steady improvement in the running time needed
to obtain the same error tolerance. However, the
amount of relative improvements slows as stochas-
ticity is increased further; in fact for extreme values
(i = 0.05, p = 0.1) the chains perform worse than
regular MCMC.

4.2 Entity Resolution in Citation Data

To evaluate our approach on a real world dataset,
we apply stochastic MCMC for MAP inference on
the task of citation matching. Given a large number
of citations (that appear at the end of research pa-
pers, for example), the task is to group together the
citations that refer to the same paper. The citation
matching problem is an instance of entity resolution,
in which observed mentions need to be partitioned
such that mentions in a set refer to the same under-
lying entity. Note that neither the identities, or the
number of underlying entities is known.

In this paper, the graphical model of entity reso-
lution consists of observed mentions (mi), and pair-
wise binary variables between all pairs of mentions
(yij) which represent whether the corresponding ob-
served mentions are coreferent. There is a local
factor for each coreference variable yij that has a
high score if the underlying mentions mi and mj

are similar. For the sake of efficiency, we only in-
stantiate and incorporate the variables and factors
when the variable is true, i.e. if yij = 1. Thus,
ψ(y) =

∑
e

∑
mi,mj∈e f(yij). The set of possible

worlds consists of all settings of the y variables that
are consistent with transitivity, i.e. the binary vari-
ables directly represent a valid clustering over the
mentions. An example of the model defined over 5

m2
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m5

m4

1

1

1 1

y12

y23

y13

y45

Figure 3: Graphical Model for Entity Resolution:
defined over 5 mentions, with the setting of the vari-
ables resulting in 2 entities. For the sake of brevity,
we’ve only included variables set to 1; binary vari-
ables between mentions that are not coreferent have
been omitted.

mentions is given in Figure 3. This representation
is equivalent to Model 2 as introduced in McCal-
lum and Wellner (2004). As opposed to belief prop-
agation and other approximate inference techniques,
MCMC is especially appropriate for the task as it
can directly enforce transitivity.

When performing MCMC, each sample is a set-
ting to all the y variables that is consistent with tran-
sitivity. To maintain transitivity during sampling,
Metropolis Hastings is used to change the binary
variables in a way that is consistent with moving in-
dividual mentions. Our proposal function selects a
random mention, and moves it to a random entity,
changing all the pairwise variables with mentions in
its old entity, and the pairwise variables with men-
tions in its new entity. Thus, evaluation of such a
proposal function requires scoring a number of fac-
tors linear in the size of the entities, which, for large
datasets, can be a significant bottleneck. In prac-
tice, however, these set of factors are often highly
redundant, as many of the mentions that refer to the
same entity contain redundant information and fea-
tures, and entity membership may be efficiently de-
termined by observing a subset of its mentions.

We evaluate on the Cora dataset (McCallum et
al., 1999), used previously to evaluate a number
of information extraction approaches (Pasula et al.,
2003), including MCMC based inference (Poon and
Domingos, 2007; Singh et al., 2009). The dataset
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Figure 4: Citation Resolution Accuracy Plot for uni-
form and variance-based sampling compared to reg-
ular MCMC (p = 1)

consists of 1295 mentions, that refer to 134 true un-
derlying entities. We use the same features for our
model as (Poon and Domingos, 2007), using true
author, title, and venue segmentation for features.
Since our focus is on evaluating scalability of in-
ference, we combine all the three folds of the data,
and train the model using Samplerank (Wick et al.,
2011).

We run MCMC on the entity resolution model us-
ing the proposal function described above, running
our approach with different parameter values. Since
we are interested in the MAP configuration, we use
a temperature term for annealing. As inference pro-
gresses, we compute BCubed2 F1 of the current
sample, and plot it against the number of scored fac-
tors in Figure 4. We observe consistent speed im-
provements as stochasticity is improved, with uni-
form sampling and confidence-based sampling per-
forming competitively. To compute the speedup, we
measure the number of factors scored to obtain a de-
sired level of accuracy (90% F1), shown for a di-
verse set of parameters in Table 1. With a very
large confidence interval threshold (i = 20) and
small proportion (p = 0.1), we obtain up to 7 times
speedup over regular MCMC. Since the average en-
tity size in this data set is < 10, using a small pro-
portion (and a wide interval) is equivalent to picking
a single mention to compare against.

2B3 is a coreference evaluation metric, introduced by Bagga
and Baldwin (1998)

Method Factors Examined Speedup
Baseline 57,292,700 1x
Uniform Sampling
p = 0.75 34,803,972 1.64x
p = 0.5 28,143,323 2.04x
p = 0.3 17,778,891 3.22x
p = 0.2 12,892,079 4.44x
p = 0.1 7,855,686 7.29x
Variance-Based Sampling
i = 0.001 52,522,728 1.09x
i = 0.01 51,547,000 1.11x
i = 0.1 47,165,038 1.21x
i = 0.5 32,828,823 1.74x
i = 1 18,938,791 3.02x
i = 2 11,134,267 5.14x
i = 5 9,827,498 5.83x
i = 10 8,675,833 6.60x
i = 20 8,295,587 6.90x

Table 1: Speedups on Cora to obtain 90% B3 F1

4.3 Large-Scale Author Coreference

As the body of published scientific work continues
to grow, author coreference, the problem of clus-
tering mentions of research paper authors into the
real-world authors to which they refer, is becoming
an increasingly important step for performing mean-
ingful bibliometric analysis. However, scaling typi-
cal pairwise models of coreference (e.g., McCallum
and Wellner (2004)) is difficult because the number
of factors in the model grows quadratically with the
number of mentions (research papers) and the num-
ber of factors evaluated for every MCMC proposal
scales linearly in the size of the clusters. For author
coreference, the number of author mentions and the
number of references to an author entity can often be
in the millions, making the evaluation of the MCMC
proposals computationally expensive.

We use the publicly available DBLP dataset3 of
BibTex entries as our unlabeled set of mentions,
which contains nearly 5 million authors. For eval-
uation of accuracy, we also include author mentions
from the Rexa corpus4 that contains 2, 833 mentions

3http://www.informatik.uni-trier.de/

˜ley/db/
4http://www2.selu.edu/Academics/Faculty/

aculotta/data/rexa.html

1109



10000000 100000000 1000000000 10000000000

Number of Factors Examined

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

B
C

u
b

ed
 F

1

p:1. p:0.5 p:0.2 p:0.1

p:0.01 i:10. i:1. i:0.1

(a) Accuracy versus Number of Factors scored

10000000 100000000

Number of Samples

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

B
C

u
b

ed
 F

1

p:1. p:0.5 p:0.2 p:0.1

p:0.01 i:10. i:1. i:0.1

(b) Accuracy versus Number of Samples

Figure 5: Performance of Different Sampling Strategies and Parameters for coreference over 5 million
mentions. Plot with p refer to uniform sampling with proportion p of factors picked, while plots with i
sample till confidence intervals are narrower than i.

labeled for coreference.
We use the same Metropolis-Hastings scheme that

we employ in the problem of citation matching. As
before, we initialize to the singleton configuration
and run the experiments for a fixed number of sam-
ples, plotting accuracy versus the number of factors
evaluated (Figure 5a) as well as accuracy versus the
number of samples generated (Figure 5b). We also
tabulate the relative speedups to obtain the desired
accuracy level in Table 2. Our proposed method
achieves substantial savings on this task: speedups
of 13.16 using the variance sampler and speedups
of 9.78 using the uniform sampler. As expected,
when we compare the performance using the num-
ber of generated samples, the approximate MCMC
chains appear to converge more slowly; however, the
overall convergence for our approach is substantially
faster because evaluation of each sample is signif-
icantly cheaper. We also present results on using
extreme approximations (for example, p = 0.01),
resulting in convergence to a low accuracy.

5 Discussion and Related Work

MCMC is a popular method for inference amongst
researchers that work with large and dense graphi-
cal models (Richardson and Domingos, 2006; Poon
and Domingos, 2006; Poon et al., 2008; Singh et al.,
2009; Wick et al., 2009). Some of the probabilistic

Method Factors Examined Speedup
Baseline 1,395,330,603 1x
Uniform
p = 0.5 689,254,134 2.02x
p = 0.2 327,616,794 4.26x
p = 0.1 206,157,705 6.77x
p = 0.05 152,069,987 9.17x
p = 0.02 142,689,770 9.78x
Variance
i = 0.00001 1,442,091,344 0.96x
i = 0.0001 1,419,110,724 0.98x
i = 0.001 1,374,667,077 1.01x
i = 0.1 1,012,321,830 1.38x
i = 1 265,327,983 5.26x
i = 10 179,701,896 7.76x
i = 100 106,850,725 13.16x

Table 2: Speedups on DBLP to reach 80% B3 F1

programming packages popular amongst NLP prac-
titioners also rely on MCMC for inference and learn-
ing (Richardson and Domingos, 2006; McCallum et
al., 2009). Although most of these methods apply
MCMC directly, the rate of convergence of MCMC
has become a concern as larger and more densely-
factored models are being considered, motivating
the need for more efficient sampling that uses par-
allelism (Singh et al., 2011; Gonzalez et al., 2011)
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and domain knowledge for blocking (Singh et al.,
2010). Thus we feel providing a method to speed up
MCMC inference can have a significant impact.

There has also been recent work in designing
scalable approximate inference techniques. Belief
propagation has, in particular, has gained some re-
cent interest. Similar to our approach, a number
of researchers propose modifications to BP that per-
form inference without visiting all the factors. Re-
cent work introduces dynamic schedules to priori-
tize amongst the factors (Coughlan and Shen, 2007;
Sutton and McCallum, 2007) that has been used to
only visit a small fraction of the factors (Riedel and
Smith, 2010). Gonzalez et al. (2009) utilize these
schedules to facilitate parallelization.

A number of existing approaches in statistics
are also related to our contribution. Leskovec and
Faloutsos (2006) propose techniques to sample a
graph to compute certain graph statistics with asso-
ciated confidence. Christen and Fox (2005) also pro-
pose an approach to efficiently evaluate a proposal,
however, once accepted, they score all the factors.
Murray and Ghahramani (2004) propose an approx-
imate MCMC technique for Bayesian models that
estimates the partition function instead of comput-
ing it exactly.

Related work has also applied such ideas for
robust learning, for example Kok and Domingos
(2005), based on earlier work by Hulten and Domin-
gos (2002), uniformly sample the groundings of an
MLN to estimate the likelihood.

6 Conclusions and Future Work

Motivated by the need for an efficient inference tech-
nique that can scale to large, densely-factored mod-
els, this paper considers a simple extension to the
Markov chain Monto Carlo algorithm. By observ-
ing that many graphical models contain substantial
redundancy among the factors, we propose stochas-
tic evaluation of proposals that subsamples the fac-
tors to be scored. Using two proposed sampling
strategies, we demonstrate improved convergence
for marginal inference on synthetic data. Further,
we evaluate our approach on two real-world entity
resolution datasets, obtaining a 13 times speedup on
a dataset containing 5 million mentions.

Based on the ideas presented in the paper, we will

consider additional sampling strategies. In partic-
ular, we will explore dynamic sampling, in which
we sample fewer factors during the initial, burn-
in phase, but sample more factors as we get close
to convergence. Motivated by our positive results,
we will also study the application of this approach
to other approximate inference techniques, such as
belief propagation and variational inference. Since
training is often a huge bottleneck for information
extraction, we will also explore its applications to
parameter estimation.

Acknowledgements

This work was supported in part by the Center for
Intelligent Information Retrieval, in part by ARFL
under prime contract number is FA8650-10-C-7059,
and the University of Massachusetts gratefully ac-
knowledges the support of Defense Advanced Re-
search Projects Agency (DARPA) Machine Read-
ing Program under Air Force Research Laboratory
(AFRL) prime contract no. FA8750-09-C-0181.
The U.S. Government is authorized to reproduce
and distribute reprint for Governmental purposes
notwithstanding any copyright annotation thereon.
Any opinions, findings and conclusions or recom-
mendations expressed in this material are those of
the authors and do not necessarily reflect those of
the sponsor.

References

[Bagga and Baldwin1998] Amit Bagga and Breck Bald-
win. 1998. Algorithms for scoring coreference
chains. In International Conference on Language Re-
sources and Evaluation (LREC) Workshop on Linguis-
tics Coreference, pages 563–566.

[Bertsimas and Tsitsiklis1993] D. Bertsimas and J. Tsit-
siklis. 1993. Simulated annealing. Statistical Science,
pages 10–15.

[Carreras2007] Xavier Carreras. 2007. Experiments
with a higher-order projective dependency parser. In
Proceedings of the CoNLL Shared Task Session of
EMNLP-CoNLL 2007, pages 957–961.

[Christen and Fox2005] J. Andrés Christen and Colin
Fox. 2005. Markov chain monte carlo using an ap-
proximation. Journal of Computational and Graphi-
cal Statistics, 14(4):pp. 795–810.

[Coughlan and Shen2007] James Coughlan and Huiying
Shen. 2007. Dynamic quantization for belief propa-

1111



gation in sparse spaces. Computer Vision and Image
Understanding, 106:47–58, April.

[Culotta et al.2007] Aron Culotta, Michael Wick, and An-
drew McCallum. 2007. First-order probabilistic mod-
els for coreference resolution. In North American
Chapter of the Association for Computational Linguis-
tics - Human Language Technologies (NAACL HLT).

[Gonzalez et al.2009] Joseph Gonzalez, Yucheng Low,
and Carlos Guestrin. 2009. Residual splash for op-
timally parallelizing belief propagation. In Artificial
Intelligence and Statistics (AISTATS).

[Gonzalez et al.2011] Joseph Gonzalez, Yucheng Low,
Arthur Gretton, and Carlos Guestrin. 2011. Paral-
lel gibbs sampling: From colored fields to thin junc-
tion trees. In Artificial Intelligence and Statistics (AIS-
TATS), Ft. Lauderdale, FL, May.

[Hoffmann et al.2011] Raphael Hoffmann, Congle
Zhang, Xiao Ling, Luke Zettlemoyer, and Daniel S.
Weld. 2011. Knowledge-based weak supervision
for information extraction of overlapping relations.
In Annual Meeting of the Association for Computa-
tional Linguistics (ACL), pages 541–550, Portland,
Oregon, USA, June. Association for Computational
Linguistics.

[Hulten and Domingos2002] Geoff Hulten and Pedro
Domingos. 2002. Mining complex models from ar-
bitrarily large databases in constant time. In Interna-
tional Conference on Knowledge Discovery and Data
Mining (KDD), pages 525–531, New York, NY, USA.
ACM.

[Kok and Domingos2005] Stanley Kok and Pedro
Domingos. 2005. Learning the structure of markov
logic networks. In International Conference on
Machine Learning (ICML), pages 441–448, New
York, NY, USA. ACM.

[Kschischang et al.2001] Frank R. Kschischang, Bren-
dan J. Frey, and Hans Andrea Loeliger. 2001. Factor
graphs and the sum-product algorithm. IEEE Transac-
tions of Information Theory, 47(2):498–519, Feb.

[Lafferty et al.2001] John D. Lafferty, Andrew McCal-
lum, and Fernando Pereira. 2001. Conditional ran-
dom fields: Probabilistic models for segmenting and
labeling sequence data. In International Conference
on Machine Learning (ICML).

[Leskovec and Faloutsos2006] Jure Leskovec and Chris-
tos Faloutsos. 2006. Sampling from large graphs.
In International Conference on Knowledge Discovery
and Data Mining (KDD), pages 631–636, New York,
NY, USA. ACM.

[McCallum and Wellner2004] Andrew McCallum and
Ben Wellner. 2004. Conditional models of identity
uncertainty with application to noun coreference. In
Neural Information Processing Systems (NIPS).

[McCallum et al.1999] Andrew McCallum, Kamal
Nigam, Jason Rennie, and Kristie Seymore. 1999.
A machine learning approach to building domain-
specific search engines. In International Joint
Conference on Artificial Intelligence (IJCAI).

[McCallum et al.2009] Andrew McCallum, Karl Schultz,
and Sameer Singh. 2009. FACTORIE: Probabilistic
programming via imperatively defined factor graphs.
In Neural Information Processing Systems (NIPS).

[Murray and Ghahramani2004] Iain Murray and Zoubin
Ghahramani. 2004. Bayesian learning in undirected
graphical models: Approximate MCMC algorithms.
In Uncertainty in Artificial Intelligence (UAI).

[Pasula et al.2003] H. Pasula, B. Marthi, B. Milch,
S. Russell, and I. Shpitser. 2003. Identity uncertainty
and citation matching. In Neural Information Process-
ing Systems (NIPS).

[Poon and Domingos2006] Hoifung Poon and Pedro
Domingos. 2006. Sound and efficient inference with
probabilistic and deterministic dependencies. In AAAI
Conference on Artificial Intelligence.

[Poon and Domingos2007] Hoifung Poon and Pedro
Domingos. 2007. Joint inference in informa-
tion extraction. In AAAI Conference on Artificial
Intelligence, pages 913–918.

[Poon et al.2008] Hoifung Poon, Pedro Domingos, and
Marc Sumner. 2008. A general method for reduc-
ing the complexity of relational inference and its ap-
plication to MCMC. In AAAI Conference on Artificial
Intelligence.

[Richardson and Domingos2006] Matthew Richardson
and Pedro Domingos. 2006. Markov logic networks.
Machine Learning, 62(1-2):107–136.

[Riedel and Smith2010] Sebastian Riedel and David A.
Smith. 2010. Relaxed marginal inference and its ap-
plication to dependency parsing. In North American
Chapter of the Association for Computational Linguis-
tics - Human Language Technologies (NAACL HLT),
pages 760–768.

[Singh et al.2009] Sameer Singh, Karl Schultz, and An-
drew McCallum. 2009. Bi-directional joint in-
ference for entity resolution and segmentation us-
ing imperatively-defined factor graphs. In Machine
Learning and Knowledge Discovery in Databases
(Lecture Notes in Computer Science) and European
Conference on Machine Learning and Principles
and Practice of Knowledge Discovery in Databases
(ECML PKDD), pages 414–429.

[Singh et al.2010] Sameer Singh, Michael L. Wick, and
Andrew McCallum. 2010. Distantly labeling data for
large scale cross-document coreference. Computing
Research Repository (CoRR), abs/1005.4298.

[Singh et al.2011] Sameer Singh, Amarnag Subramanya,
Fernando Pereira, and Andrew McCallum. 2011.

1112



Large-scale cross-document coreference using dis-
tributed inference and hierarchical models. In Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies (ACL HLT).

[Sutton and McCallum2004] Charles Sutton and Andrew
McCallum. 2004. Collective segmentation and label-
ing of distant entities in information extraction. Tech-
nical Report TR#04-49, University of Massachusetts,
July.

[Sutton and McCallum2007] Charles Sutton and Andrew
McCallum. 2007. Improved dynamic schedules for
belief propagation. In Uncertainty in Artificial Intelli-
gence (UAI).

[Wick et al.2009] Michael Wick, Aron Culotta, Khasha-
yar Rohanimanesh, and Andrew McCallum. 2009.
An entity-based model for coreference resolution.
In SIAM International Conference on Data Mining
(SDM).

[Wick et al.2010] Michael Wick, Andrew McCallum, and
Gerome Miklau. 2010. Scalable probabilistic
databases with factor graphs and mcmc. International
Conference on Very Large Databases (VLDB), 3:794–
804, September.

[Wick et al.2011] Michael Wick, Khashayar Rohani-
manesh, Kedar Bellare, Aron Culotta, and Andrew
McCallum. 2011. Samplerank: Training factor graphs
with atomic gradients. In International Conference on
Machine Learning (ICML).

[Yao et al.2010] Limin Yao, Sebastian Riedel, and An-
drew McCallum. 2010. Collective cross-document
relation extraction without labelled data. In Empirical
Methods in Natural Language Processing (EMNLP).

1113


