
Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning, pp. 600–609, Prague, June 2007. c©2007 Association for Computational Linguistics

Japanese Dependency Analysis Using the Ancestor-Descendant Relation

Akihiro Tamura †∗ Hiroya Takamura †† Manabu Okumura††
† Common Platform Software Research Laboratories NEC Corporation

a-tamura@ah.jp.nec.com
†† Precision and Intelligence Laboratory, Tokyo Institute of Technology, Japan

{takamura,oku }@pi.titech.ac.jp

Abstract

We propose a novel method for Japanese de-
pendency analysis, which is usually reduced
to the construction of a dependency tree. In
deterministic approaches to this task, depen-
dency trees are constructed by series of ac-
tions of attaching a bunsetsu chunk to one of
the nodes in the tree being constructed. Con-
ventional techniques select the node based
on whether the new bunsetsu chunk and each
node in the trees are in a parent-child rela-
tion or not. However, tree structures include
relations between two nodes other than the
parent-child relation. Therefore, we use
ancestor-descendant relations in addition to
parent-child relations, so that the added re-
dundancy helps errors be corrected. Ex-
perimental results show that the proposed
method achieves higher accuracy.

1 Introduction

Japanese dependency analysis has been recognized
as one of the basic techniques in Japanese process-
ing. A number of techniques have been proposed
for years. Japanese dependency is usually repre-
sented by the relation between phrasal units called
‘bunsetsu’ chunks, which are the smallest meaning-
ful sequences consisting of an independent word and
accompanying words (e.g., a noun and a particle).
Hereafter, a ‘chunk’ means a bunsetsu chunk in this
paper. The relation between two chunks has a di-

∗Akihiro Tamura belonged to Tokyo Institute of Technology
when this work was done.

Figure 1: Example of a dependency tree

rection from the modifier to the modifiee. All de-
pendencies in a sentence are represented by a de-
pendency tree, where a node indicates a chunk, and
nodeB is the parent of nodeA when chunkB is the
modifiee of chunkA. Figure 1 shows an example of
a dependency tree. The task of Japanese dependency
analysis is to find the modifiee for each chunk in a
sentence. The task is usually regarded as construc-
tion of a dependency tree.

In primitive approaches, the probabilities of de-
pendencies are given by manually constructed rules
and the modifiee of each chunk is determined. How-
ever, those rule-based approaches have problems in
coverage and consistency. Therefore, a number of
statistical techniques using machine learning algo-
rithms have recently been proposed. In most con-
ventional statistical techniques, the probabilities of
dependencies between two chunks are learned in the
learning phase, and then the modifiee of each chunk
is determined using the learned models in the anal-
ysis phase. In terms of dependency trees, the parent
node of each node is determined based on the likeli-
ness of parent-child relations between two nodes.

We here take notice of the characteristics of de-
pendencies which cannot be captured well only by

600

the parent-child relation. Consider, for example,
Figure 1. In Figure 1, ID3(pizza-and) and ID
4(salad-accusative) are in a parallel structure. In the
structure, node4 is a child of node5(ate), but node
3 is not a child of5, although3 and4 are both foods
and should share a tendency of being subcategorized
by the verb “eat”. A number of conventional models
use the pair of3(pizza-and) and5(ate) as a nega-
tive instance because3 does not modify5. Conse-
quently, those models cannot learn and use the sub-
categorization preference of verbs well in the paral-
lel structures.

We focus on ancestor-descendant relations to
compensate for the weakness. Two nodes are in the
ancestor-descendant relation when one of the two
nodes is included in the path from the root node to
the other node. The upper node of the two nodes
is called an ‘ancestor node’ and the lower node a
‘descendant node’. When the ancestor-descendant
relation is used, both of the above two instances
for nodes3 and4 can be considered as positive in-
stances. Therefore, it is expected that the ancestor-
descendant relation helps the algorithm capture the
characteristics that cannot be captured well by the
parent-child relation.

We aim to improve the performance of Japanese
dependency analysis by taking the ancestor-
descendant relation into account. In exploiting
ancestor-descendant information, it came to us that
redundant information is effectively utilized in a
coding problem in communications (Mackay, 2003).
Therefore, we propose a method in which the prob-
lem of determining the modifiee of a chunk is re-
garded as a kind of a coding problem: dependency is
expressed as a sequence of values, each of which de-
notes whether a parent-child relation or an ancestor-
descendant relation holds between two chunks.

In Section 2, we present the related work. In Sec-
tion 3, we explain our method. In Section 4, we de-
scribe our experiments and their results, where we
show the effectiveness of the proposed method. In
Section 5, we discuss the results of the experiments.
Finally, we describe the summary of this paper and
the future work in Section 6.

2 Conventional Statistical Methods for
Japanese Dependency Analysis

First, we describe general formulation of the
probability model for dependency analysis. We
denote a sequence of chunks, “b1, b2, ..., bm”,
by B, and a sequence of dependency pat-
terns, “Dep(1), Dep(2), ..., Dep(m)”, by D, where
Dep(i) = j means thatbi modifiesbj . Given the se-
quenceB of chunks as an input, dependency analy-
sis is defined as the problem of finding the sequence
D of the dependency patterns that maximizes the
conditional probabilityP (D | B). A number of
the conventional methods assume that dependency
probabilities are independent of each other and ap-
proximateP (D | B) with

∏m−1
i=1 P (Dep(i) | B).

P (Dep(i) | B) is estimated using machine learn-
ing algorithms. For example, Haruno et al. (1999)
used Decision Trees, Sekine (2000) used Maximum
Entropy Models, Kudo and Matsumoto (2000) used
Support Vector Machines.

Another notable method is Cascaded Chunking
Model by Kudo and Matsumoto (2002). In their
model, a sentence is parsed by series of the fol-
lowing processes: whether or not the current chunk
modifies the following chunk is estimated, and if it
is so, the two chunks are merged together. Sassano
(2004) parsed a sentence efficiently using a stack.
The stack controls the modifier being analyzed.

These conventional methods determine the mod-
ifiee of each chunk based on the likeliness of de-
pendencies between two chunks (in terms of depen-
dency tree, the likeliness of parent-child relations
between two nodes). The difference between the
conventional methods and the proposed method is
that the proposed method determines the modifiees
based on the likeliness of ancestor-descendant re-
lations in addition to parent-child relations, while
the conventional methods tried to capture charac-
teristics that cannot be captured by parent-child re-
lations, by adding ad-hoc features such as features
of “the chunk modified by the candidate modifiee”
to features of the candidate modifiee and the mod-
ifier. However, these methods do not deal with
ancestor-descendant relations between two chunks
directly, while our method uses that information di-
rectly. In Section 5, we empirically show that our
method uses the ancestor-descendant relation more

601

effectively than the conventional ones and explain
that our method is justifiable in terms of a coding
problem.

3 Proposed Method

The methods explained in this section construct a
dependency tree by series of actions of attaching
a node to one of the nodes in the trees being con-
structed. Hence, when the parent node of a certain
node is being determined, it is required that the par-
ent node should already be included in the tree being
constructed. To satisfy the requirement, we note the
characteristic of Japanese dependencies: dependen-
cies are directed from left to right. (i.e., the par-
ent node is closer to the end of a sentence than its
child node). Therefore, our methods analyze a sen-
tence backwards as in Sekine (2000) and Kudo and
Matsumoto (2000). Consider, for example, Figure
1. First, our methods determine the parent node of
ID 4(salad-accusative), and then that of ID3(pizza-
and) is determined. Next, the parent node of ID2(at
lunchtime), and finally, that of ID1(he-nominative)
is determined and dependencies in a sentence are
identified. Please note that our methods are applica-
ble only to dependency structures of languages that
have a consistent head-direction like Japanese.

We explain three methods that are different in
the information used in determining the modifiee of
each chunk. In Section 3.1, we explain PARENT
METHOD and ANCESTOR METHOD, which de-
termine the modifiee of each chunk based on the
likeliness of only one type of the relation. PARENT
METHOD uses the parent-child relation, which is
used in conventional Japanese dependency analy-
sis. ANCESTOR METHOD is novel in that it
uses the ancestor-descendant relation which has not
been used in the existing methods. In Section
3.2, we explain our method, PARENT-ANCESTOR
METHOD, which determines the modifiees based
on the likeliness of both ancestor-descendant and
parent-child relations.

When the modifiee is determined using the
ancestor-descendant relation, it is necessary to take
into account the relations with every node in the tree.
Consider, for example, the case that the modifiee
of ID 1(he-nominative) is determined in Figure 1.
When using the parent-child relation, the modifiee

can be determined based only on the relation be-
tween ID1 and5. On the other hand, when using the
ancestor-descendant relation, the modifiee cannot be
determined based only on the relation between ID
1 and 5. This is because if one of ID2, 3 and 4
is the modifiee of ID1, the relation between ID1
and 5 is ancestor-descendant. ID5 is determined
as the modifiee of ID1 only after the relations with
each node of ID2, 3 and 4 are recognized not to
be ancestor-descendant. An elegant way to use the
ancestor-descendant relation, which we propose in
this paper, is to represent a dependency as a code-
word where each bit indicates the relation with a
node in the tree, and determine the modifiee based
on the relations with every node in the tree (for de-
tails to the next section).

3.1 Methods with a single relation: PARENT
METHOD and ANCESTOR METHOD

Figure 2 shows the pseudo code of the algo-
rithm to construct a dependency tree using PAR-
ENT METHOD or ANCESTOR METHOD. As
mentioned above, the two methods analyze a sen-
tence backwards. We should note thatnode1 to
noden in the algorithm respectively correspond to
the last chunk to the first chunk of a sentence.
MODEL PARENT(nodei,nodej) indicates the pre-
diction whethernodej is the parent ofnodei or
not, which is the output of the learned model.
MODEL ANCESTOR(nodei,nodej) indicates the
prediction whethernodej is the ancestor ofnodei or
not.String output indicates the sequence of thei−
1 predictions stored in step 3. The codeword denoted
by string[k] is the binary sequence given to the ac-
tion thatnodei is attached tonodek. Parent[nodei]
indicates the node to whichnodei is attached, and
Dis indicates a distance function. Thus, our method
predicts the correct actions by measuring the dis-
tance between the codewordstring[k] and the pre-
dicted binary (later extended to real-valued) se-
quencesstring output. In other words, our method
selects the action that is the closest to the outputs of
the learned model.

Both models are learned from dependency trees
given as training data as shown in Figure 3. Each
relation is learned from ordered pairs of two nodes
in the trees. However, our algorithm in Figure 2
targets at dependencies directed from left to right.

602

1:for i = 1, 2, ..., n do
2: for j = 1, 2, ..., i − 1 do
3: resultparent[j]=MODEL PARENT(nodei,nodej)
(in case of PARENT and PARENT-ANCESTOR METHOD)
3: resultancestor[j]=MODEL ANCESTOR(nodei,nodej)
(in case of ANCESTOR and PARENT-ANCESTOR METHOD)
4: end
5: Parent[nodei]=argmink Dis(string[k], string output)
6:end

Figure 2: Pseudo code of PARENT, ANCESTOR,
and PARENT-ANCESTOR METHODS

Figure 3: Example of training instances

Therefore, the instances with a right-to-left depen-
dency are excluded from the training data. For ex-
ample, the instance withnode4 being the candi-
date parent (or ancestor) ofnode1 is excluded in
Figure 3. MODELPARENT uses ordered pairs
of a parent node and a child node as positive in-
stances and the other ordered pairs as negative in-
stances. MODELANCESTOR uses ordered pairs
of an ancestor node and a descendant node as
positive instances and the other ordered pairs as
negative instances. From the above description
and Figure 3, the number of training instances
used in learning MODELPARENT is the same
as the number of training instances used in learn-
ing MODEL ANCESTOR. However, the number of
positive instances in learning MODELANCESTOR
is larger than in learning MODELPARENT be-
cause the set of parent-child relations is a subset of
ancestor-descendant relations.

As mentioned above, the two methods analyze a
sentence backwards. We should note thatnode1 to
noden in the algorithm respectively correspond to
the last chunk to the first chunk of a sentence.

Next, we illustrate the process of determining the
parent node of a certain nodenodem(with Figures 4
and 5). Hereafter,nodem is called atarget node.
The parent node is determined based on the like-
liness of a relation; the parent-child and ancestor-

descendant relation are used in PARENT METHOD
and ANCESTOR METHOD respectively.

Our methods regard a dependency between the
target node and its parent node as a set of relations
between the target node and each node in the tree.
Each relation corresponds to one bit, which becomes
1 if the relation holds,−1 otherwise. For example,
a sequence(−1,−1,−1, 1) represents that the par-
ent ofnode5 is node4 in PARENT METHOD (Fig-
ure 4), since the relation holds only between nodes
4 and 5.

First, the learned model judges whether the tar-
get node and each node in the current tree are in
a certain relation or not; PARENT METHOD uses
MODEL PARENT as the learned model and AN-
CESTOR METHOD uses MODELANCESTOR.
The sequence of them−1 predictions by the learned
model is stored instring output.

The codewordstring[k] is the binary (−1 or 1)
sequence that is to be output when the target node
is attached to thenodek. In Figures 4 and 5, the
set ofstring[k] (for node5) is in the dashed square.
For example,string[2] in ANCESTOR METHOD
(Figure 5) is(1, 1,−1,−1) since nodes 1 and 2 are
the ancestor ofnode5 if node5 is attached tonode2.

Next, among the set ofstring[k], the codeword
that is the closest to thestring output is selected.
The target node is then attached to the node cor-
responding to the selected codeword. In Figure 4,
the string[4],(−1,−1,−1, 1), is selected and then
node5 is attached tonode4.

Japanese dependencies have the non-crossing
constraint: dependencies do not cross one another.
To satisfy the constraint, we remove the nodes that
will break the non-crossing constraint from the can-
didates of a parent node in step 5 of the algorithm.

PARENT METHOD differs from conventional
methods such as Sekine (2000) or Kudo and Mat-
sumoto (2000), in the process of determining the
parent node. These conventional methods select the
node given byargmaxjP (nodej | nodei) as the
parent node ofnodei, setting the beam width to 1.
However, their processes are essentially the same as
the process in PARENT METHOD.

603

Figure 4: Analysis example using PARENT
METHOD

Figure 5: Analysis example using ANCESTOR
METHOD

3.2 Proposed method: PARENT-ANCESTOR
METHOD

The proposed method determines the parent node of
a target node based on the likeliness of ancestor-
descendant relations in addition to parent-child
relations. The use of ancestor-descendant rela-
tions makes it possible to capture the character-
istics which cannot be captured by parent-child
relations alone. The pseudo code of the pro-
posed method, PARENT-ANCESTOR METHOD,
is shown in Figure 2. MODELPARENT and
MODEL ANCESTOR are learned as described in
Section 3.1. String output is the concatenation
of the predictions by both MODELPARENT and
MODEL ANCESTOR. In addition,string[k] is
provided based not only on parent-child relations but
also on ancestor-descendant relations. An analysis
example using PARENT-ANCESTOR METHOD is
shown in Figure 6.

Figure 6: Analysis example using PARENT-
ANCESTOR METHOD

4 Experiment

4.1 Experimental settings

We used Kyoto University text corpus (Version
2.0) (Kurohashi and Nagao, 1997) for training and
test data. The articles on January 1st through 8th
(7,958 sentences) were used as training data, and the
articles on January 9th (1,246 sentences) as test data.
The dataset is the same as in leading works (Sekine,
2000; Kudo and Matsumoto, 2000; Kudo and Mat-
sumoto, 2002; Sassano, 2004).

We used SVMs as the algorithm of learning and
analyzing the relations between nodes. We used the
third degree polynomial kernel function and set the
soft margin parameterC to 1, which is exactly the
same setting as in Kudo and Matsumoto (2002). We
can obtain the real-valued score in step 3 of the al-
gorithm, which is the output of the separating func-
tion. The score can be regarded as likeliness of the
two nodes being in the parent-child (or the ancestor-
descendant). Therefore, we used the sequence of
the outputs of SVMs asstring output, instead of
converting the scores into binary values indicating
whether a certain relation holds or not.

Two feature sets are used: static features and dy-
namic features. The static features used in the ex-
periments are shown in Table 1. The features are the
same as those used in Kudo and Matsumoto (2002).
In Table 1,HeadWord means the rightmost con-
tent word in the chunk whose part-of-speech is not
a functional category.FunctionalWord means the

604

Table 1: Static features used in experiments

Head Word (surface-form, POS, POS-subcategory,
inflection-type, inflection-form),Functional Word (

Modifier / surface-form, POS, POS-subcategory, inflection-type,
Modifiee inflection-form), brackets, quotation-marks,

punctuation-marks, position in sentence (beginning, end)
Between two distance (1,2-5,6-), case-particles, brackets,
chunks quotation-marks, punctuation-parks

Figure 7: Dynamic features

rightmost functional word or the inflectional form of
the rightmost predicate if there is no functional word
in the chunk.

Next, we explain the dynamic features used in
the experiments. Three types of dynamic features
were used in Kudo and Matsumoto (2002): (A)
the chunks modifying the current candidate modi-
fiee, (B) the chunk modified by the current candidate
modifiee, and (C) the chunks modifying the current
candidate modifier. The type C is not available in the
proposed method because the proposed method an-
alyzes a sentence backwards unlike Kudo and Mat-
sumoto (2002). Therefore, we did not use the type
C. We used the type A’ and B’ which are recursive
expansion of type A and B as the dynamic features
(Figure 7). The form of functional words or inflec-
tion was used as a type A’ feature and POS and POS-
subcategory ofHeadWord as a type B’ feature.

4.2 Experimental results

In this section, we show the effectiveness of the pro-
posed method. First, we compare the three methods
described in Section 3: PARENT METHOD, AN-
CESTOR METHOD, and PARENT-ANCESTOR
METHOD. The results are shown in Table 2. Here,
dependency accuracyis the percentage of correct
dependencies (correct parent-child relations in trees
in test data), andsentence accuracyis the percent-
age of the sentences in which all the modifiees are
determined correctly (correctly constructed trees in
test data).

Table 2 shows that PARENT-ANCESTOR
METHOD is more accurate than the other two

Table 2: Result of dependency analysis using meth-
ods described in Section 3

Method
Dependency Sentence

Accuracy Accuracy
PARENT 88.95% 44.87%

ANCESTOR 87.64% 43.74%
PARENT-ANCESTOR 89.54% 47.38%

Table 3: Comparison to conventional methods
Feature Method

Dependency Sentence
Accuracy Accuracy

Only Proposed method 88.88% 46.33%
static Kudo and Matsumoto (2002) 88.71% 45.19%

Static + Proposed method 89.43% 47.94%
Dynamic A,B Kudo and Matsumoto (2002) 89.19% 46.64%

Original

Proposed method 89.54% 47.38%
Sekine (2000) 87.20% 40.76%

Kudo and Matsumoto (2000) 89.09% 46.17%
Kudo and Matsumoto (2002) 89.29% 47.53%

Sassano (2004) 89.56% 48.35%
w/o Rich

Sassano (2004)
89.19% 47.05%

w/o Conj 89.41% 47.86%

methods. In other words, the accuracy of depen-
dency analysis improves by utilizing the redundant
information. The improvement is statistically sig-
nificant in the sign-test with 1% significance-level.

Next, we compare the proposed method with
conventional methods. We compare the proposed
method particularly with Kudo and Matsumoto
(2002) with the same feature set. The reasons are
that Cascaded Chunking Model proposed in Kudo
and Matsumoto (2002) is used in a popular Japanese
dependency analyzer, CaboCha1, and the compari-
son can highlight the effectiveness of our approach
because we can experiment under the same condi-
tions (e.g., dataset, feature set, learning algorithm).
A summary of the comparison is shown in Table 3.

Table 3 shows that the proposed method
outperforms conventional methods except Sas-
sano (2004)2, while Sassano (2004) used richer fea-
tures which are not used in the proposed method,
such as features for conjunctive structures based on
Kurohashi and Nagao (1994), features concerning
the leftmost content word in the candidate modi-
fiee. The comparison of the proposed method with
Sassano (2004)’s method without the features of

1http://chasen.org/˜taku/software/
cabocha/

2We have not tested the improvement statistically because
we do not have access to the conventional methods.

605

Table 4: Accuracy of dependency analysis on paral-
lel structures

Parallel structures
Other than

parallel structures
PARENT 74.18% 91.21%

ANCESTOR 73.24% 90.01%
PARENT-ANCESTOR 76.29% 91.63%

conjunctive structures (w/o Conj) and without the
richer features derived from the words in chunks
(w/o Rich) suggests that the proposed method is bet-
ter than or comparable to Sassano (2004)’s method.

5 Discussion

5.1 Performance on parallel structures

As mentioned in Section 1, the ancestor-descendant
relation is supposed to help to capture parallel struc-
tures. In this section, we discuss the performance of
dependency analysis on parallel structures. Parallel
structures such as those of nouns (e.g., Tom and Ken
eat hamburgers.) and those of verbs (e.g., Tom eats
hamburgers and drinks water.), are marked in Kyoto
University text corpus. We investigate the accuracy
of dependency analysis on parallel structures using
the information.

Table 4 shows that the accuracy on parallel struc-
tures improves by adding the ancestor-descendant
relation. The improvement is statistically significant
in the sign-test with 1% significance-level. Table 4
also shows that error reduction rate on parallel struc-
tures by adding the ancestor-descendant relation is
8.3% and the rate on the others is 4.7%. These show
that the ancestor-descendant relation work well es-
pecially for parallel structures.

In Table 4, the accuracy on parallel structures
using PARENT METHOD is slightly better than
that using ANCESTOR METHOD, while the dif-
ference is not statistically significant in the sign-
test. It shows that the parent-child relation is also
necessary for capturing the characteristics of paral-
lel structures. Consider the following two instances
in Figure 1 as an example: the ordered pair of ID
3(pizza-and) and ID5(ate), and the ordered pair of
ID 4(salad-accusative) and ID5. In ANCESTOR
METHOD, both instances are positive instances. On
the other hand, only the ordered pair of ID4 and
ID 5 is a positive instance in PARENT METHOD.

Table 5: Comparison between usages of the
ancestor-descendant relation

Dependency Sentence
Accuracy Accuracy

Feature 88.57% 44.71%
Model 88.88% 46.33%

Hence, PARENT METHOD can learn appropriate
case-particles in a modifier of a verb. For exam-
ple, the particle which means “and” does not mod-
ify verbs. However, it is difficult for ANCESTOR
METHOD to learn the characteristic. Therefore,
both parent-child and ancestor-descendant relations
are necessary for capturing parallel structures.

5.2 Discussion on usages of the
ancestor-descendant relation

In the proposed method, MODELANCESTOR,
which judges whether the relation between two
nodes is ancestor-descendant or not, is prepared,
and the information on the ancestor-descendant re-
lation is directly utilized. On the other hand,
conventional methods add the features regarding
the ancestor or descendant chunk to capture the
ancestor-descendant relation. In this section, we
empirically show that the proposed method utilizes
the information on the ancestor-descendant rela-
tion more effectively than conventional methods.
The results in the previous sections could not show
the effectiveness because MODELPARENT and
MODEL ANCESTOR in the proposed method use
the features regarding the ancestor-descendant rela-
tion.

Table 5 shows the result of dependency analy-
sis using two types of usages of the information
on the ancestor-descendant relation. “Feature” indi-
cates the conventional usage and “Model” indicates
our usage. Please note that MODELPARENT and
MODEL ANCESTOR used in “Model” do not use
the features regarding the ancestor-descendant rela-
tion. Table 5 shows that our usage is more effec-
tive than the conventional usage. This is because
our usage takes advantage of redundancy in terms
of a coding problem as described in the next sec-
tion. Moreover, the learned features through the pro-
posed method would include more information than

606

ad-hoc features that were manually added.

5.3 Proposed method in terms of a coding
problem

In a coding problem, redundancy is effectively uti-
lized so that information can be transmitted more
properly (Mackay, 2003). This idea is the same as
the main point of the proposed method. In this sec-
tion, we discuss the proposed method in terms of a
coding problem.

In a coding problem, when encoding information,
the redundant bits are attached so that the added re-
dundancy helps errors be corrected. Moreover, the
following fact is known (Mackay, 2003):

the error-correcting ability is higher when the dis-
tances between the codewords are longer. (1)

For example, consider the following three types
of encodings: (A) two events are encoded respec-
tively into the codewords−1 and 1 (the simplest
encoding), (B) into the codewords(−1,−1, 1) and
(1, 1, 1) (hamming distance:2), and (C) into the
codewords(−1,−1,−1) and (1, 1, 1) (hamming
distance:3). Please note that the hamming distance is
defined as the number of bits that differ between two
codewords. In (A), the correct information is not
transmitted if a one-bit error occurs. In (B), if an er-
ror occurs in the third bit, the error can be corrected
by assuming that the original codeword is closest
to the received codeword. In (C), any one-bit error
can be corrected. Thus, (B) has the higher error-
correcting ability than (A), and (C) has the higher
error-correcting ability than (B).

We explain the problem of determining the par-
ent node of a target node in the proposed method in
terms of the coding theory. A sequence of numbers
corresponds to a codeword. It is assumed that the
codeword which expresses the correct parent node
of the target node is transmitted. The codeword is
transmitted through the learned model through chan-
nels to the receiver. The receiver infers the parent
node from the received sequence (string output) in
consideration of the codewords that can be transmit-
ted (string[k]). Therefore, error-correcting ability,
the ability of correcting the errors in predictions in
step 3, is dependent on the distances between the
codewords (string[k]).

The codewords in PARENT-ANCESTOR
METHOD are the concatenation of the bits based on
both parent-child relations and ancestor-descendant
relations. Consequently, the distances between
codewords in PARENT-ANCESTOR METHOD are
longer than those in PARENT METHOD or AN-
CESTOR METHOD. From (1), the error-correcting
ability is expected to be higher. In terms of a coding
problem, the proposed method exploits the essence
of (1), and utilizes ancestor-descendant relations
effectively.

We assume that every bit added as redundancy is
correctly transmitted for the above-mentioned dis-
cussion. However, some of these added bits may be
transmitted wrongly in the proposed method. In that
case, the added redundancy may not help errors be
corrected than cause an error. In the experiments of
dependency analysis, the advantage prevails against
the disadvantage because accuracy of each bit of the
codeword is 94.5%, which is high value.

Discussion on applicability of existing codes

A number of approaches use Error Correcting
Output Coding (ECOC) (Dietterich and Bakiri,
1995; Ghani, 2000) for solving multiclass classifica-
tion problems as a coding problem. The approaches
assign a uniquen-bit codeword to each class, and
thenn classifiers are trained to predict each bit. The
predicted class is the one whose codeword is clos-
est to the codeword produced by the classifiers. The
codewords in these approaches are designed to be
well-separated from one another and have sufficient
error-correcting ability (e.g., BCH code).

However, these existing codewords are not ap-
plicable to the proposed method. In the proposed
method, we have two models respectively derived
from the parent-child and ancestor-descendant rela-
tion, which can be interpreted in terms of both lin-
guistic aspects and tree structures. If we use ECOC,
however, pairs of nodes are divided into positive and
negative instances arbitrarily. Since this division
lacks linguistic or structural meaning, training in-
stances will lose consistency and any proper model
will not be obtained. Moreover, we have to prepare
different models for each stage in tree construction,
because the length of the codewords vary according
to the number of nodes in the current tree.

607

Table 6: Result of dependency analysis using vari-
ous distance functions

Distance
Method

Dependency Sentence
Function Accuracy Accuracy

Hamming

PARENT(n) 85.05% 35.35%
PARENT(f) 85.48% 39.87%

ANCESTOR(n) 87.54% 43.42%
ANCESTOR(f) 86.97% 43.18%

Proposed method(n) 88.36% 43.74%
Proposed method(f) 88.45% 44.79%

PARENT 88.95% 44.87%
Cosine / ANCESTOR 87.64% 43.74%

Euclidean Proposed method 89.54% 47.38%

Manhattan

PARENT(n) 88.74% 44.63%
PARENT(f) 88.90% 44.79%
ANCESTOR 87.64% 43.74%

Proposed method 89.24% 46.89%

5.4 Influence of distance functions

In this section, we compare the performance of de-
pendency analysis with various distance functions:
hamming distance, euclidean distance, cosine dis-
tance, and manhattan distance. These distance func-
tions between sequencesX=“x1 x2 ... xn” and
Y =“y1 y2 ... yn” are defined as follows:

• Ham(X, Y) =
∑n

i=1(1 − δ(xi, yi)),

• Euc(X,Y) =
√∑n

i=1(xi − yi)2,

• Cos(X, Y) = 1 −
∑n

i=1
xi·yi√∑n

i=1
x2

i

√∑n

i=1
y2

i

,

• Man(X, Y) =
∑n

i=1 | xi − yi |.

In the hamming distance,string output is con-
verted to a binary sequence with their elements be-
ing of −1 or 1. The cosine distance is equivalent to
the Euclidean distance under the condition that the
absolute value of every component ofstring[k] is
1.

The results of dependency analysis using these
distance functions are shown in Table 6. In Table
6, ‘(n)’ means that the nearest chunk in a sentence
is selected as the modifiee in order to break a tie,
which happens when the number of sequences satis-
fying the condition in step 5 is two or more, while
‘(f)’ means that the furthest chunk is selected. If the
results in case of (n) and (f) are the same, (n) and (f)
are omitted and only one result is shown.

Table 6 shows that the proposed method out-
performs PARENT METHOD and ANCESTOR

METHOD in any distance functions. It means that
the effectiveness of the proposed method does not
depend on distance functions. The result using the
hamming distance is much worse than using the
other distance functions. It means that using the
scores output by SVMs as the likeliness of a certain
relation improves the accuracy. The results of (n)
and (f) in the hamming distance are different. It is
because the hamming distances are always positive
integers and ties are more likely to happen. Table
6 also shows that the result of the cosine or the eu-
clidean distance is better than that of the manhattan
distance.

6 Conclusions

We proposed a novel method for Japanese depen-
dency analysis, which determines the modifiee of
each chunk based on the likeliness not only of
the parent-child relation but also of the ancestor-
descendant relation in a dependency tree. The
ancestor-descendant relation makes it possible to
capture the parallel structures in more depth. In
terms of a coding theory, the proposed method
boosts error-correcting ability by adding the redun-
dant bits based on ancestor-descendant relations and
increasing the distance between two codewords. Ex-
perimental results showed the effectiveness of the
proposed method. In addition, the results showed
that the proposed method outperforms conventional
methods.

Future work includes the following. In this pa-
per, we use the features proposed in Kudo and Mat-
sumoto (2002). By extracting new features that are
more suitable for the ancestor-descendant relation,
we can further improve our method. The features
used by Sassano (2004) are promising as well. We
are also planning to apply the proposed method to
other tasks which need to construct tree structures.
For example, (zero-) anaphora resolution is consid-
ered as a good candidate task for application.

References

Thomas G. Dietterich and Ghulum Bakiri. 1995. Solving
Multiclass Learning Problems via Error-Correcting
Output Codes.Journal of Artificial Intelligence Re-
search, 2:263–286.

Rayid Ghani. 2000. Using Error-Correcting Codes For

608

Text Classification. InProc. of ICML-2000, pages
303–310.

Masahiko Haruno, Satoshi Shirai, and Yoshifumi
Ooyama. 1999. Using Decision Trees to Construct
a Practical Parser.Machine Learning, 34:131–149.

Taku Kudo and Yuji Matsumoto. 2000. Japanese Depen-
dency Analysis Based on Support Vector Machines. In
Proc. of EMNLP/VLC 2000, pages 18–25.

Taku Kudo and Yuji Matsumoto. 2002. Japanese Depen-
dency Analysis using Cascaded Chunking. InProc. of
CoNLL 2002, pages 63–69.

Sadao Kurohashi and Makoto Nagao. 1994. A syntactic
analysis method of long Japanese sentences based on
the detection of conjunctive structures.Computational
Linguistics, 20(4):507–534.

Sadao Kurohashi and Makoto Nagao. 1997. Kyoto Uni-
versity text corpus project. InProc. of ANLP, pages
115–118, Japan.

David J. C. Mackay. 2003.Information Theory, Infer-
ence, and Learning Algorithms. Cambridge Univer-
sity Press.

Manabu Sassano. 2004. Linear-Time Dependency Anal-
ysis for Japanese. InProc. of COLING 2004, pages
8–14.

Satoshi Sekine. 2000. Japanese dependency analysis us-
ing a deterministic finite state transducer. InProc. of
COLING 2000, pages 761–767.

609

