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Abstract

Code LLMs have the potential to make it easier
for non-experts to understand and write code.
However, current CodeLLM benchmarks rely
on a single expert-written prompt per problem,
making it hard to generalize their success to
non-expert users. In this paper, we present a
new natural-language-to-code benchmark of
prompts written by a key population of non-
experts: beginning programmers. STUDEN-
TEVAL contains 1,749 prompts written by 80
students who have only completed one intro-
ductory Python course. STUDENTEVAL con-
tains numerous non-expert prompts describing
the same problem, enabling exploration of key
factors in prompt success. We use STUDEN-
TEVAL to evaluate 12 Code LLMs and find
that STUDENTEVAL is a better discriminator of
model performance than existing benchmarks.
Our analysis of student prompting strategies
reveals that nondeterministic LLM sampling
can mislead students about the quality of their
descriptions, a finding with key implications
for Code LLMs in education.

1 Introduction

Large language models trained on code (Code
LLMs) have the potential to democratize program-
ming by enabling less-experienced programmers
to write code in natural language. A growing body
of work shows their utility to professional program-
mers (Vaithilingam et al., 2022; Ziegler et al., 2022;
Barke et al., 2023), but to broaden the accessibility
of programming, models must also work well for
non-experts. Code LLM benchmarks (Kulal et al.,
2019; Hendrycks et al., 2021; Chen et al., 2021;
Austin et al., 2021; Lai et al., 2023) are largely mod-
elled after experts, both in the choice of task, and
by having professionals write benchmark prompts.
Achieving good performance on these benchmarks
indicates that a model will perform well if the user
can write prompts equally as well as the expert.

Our goal is to facilitate research on how to bet-
ter align Code LLMs with non-expert program-
mers, who may talk about code differently than
experts. Towards this goal, we present STUDEN-
TEVAL, a dataset with 1,749 prompts written by
beginning CS students and validated with expert-
written test cases. Prompts were collected using
48 beginner-appropriate problems, with numerous
different prompts for each problem. Our prompts
exhibit the variation in technical vocabulary and
lack of familiarity with how to describe code that
are common with non-experts.

While other work explores Code LLM use in
classrooms (Leinonen et al., 2023; Kazemitabaar
et al., 2023; Prather et al., 2023), STUDENTEVAL

is the first benchmark based on student interac-
tions. It differs from existing benchmarks in three
key ways: 1) Other benchmarks have prompts au-
thored by experienced programmers, whereas STU-
DENTEVAL has prompts authored by students who
have only completed one computer science course.
2) Other benchmarks contain tricky problems de-
signed to stress-test the problem solving capabili-
ties of Code LLMs. In contrast, STUDENTEVAL

has problems that are easily solved with expert de-
scriptions, but often fail with student descriptions.
3) Other benchmarks only have a single prompt per
problem, whereas STUDENTEVAL has on average
36 prompts per problem, representing a variety of
prompting skill levels. This diversity lets us explore
what it means to write a “good” prompt.

Our key contributions are:

• STUDENTEVAL, a benchmark consisting of
1,749 student-written descriptions of natural-
language-to-code tasks.

• Using four key subsets of the STUDENTE-
VAL benchmark, consisting of descriptions
that pass (fail) on the first (last) attempt by a
student, we evaluate 12 state-of-the-art Code
LLMs. Our results show that STUDENTEVAL
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is better able to discriminate between models
than the popular HumanEval benchmark.

• We conduct an in-depth analysis of the
prompts and find that even successful student
prompts lead models to generate multiple se-
mantically distinct programs.

2 Background

Although Code LLMs allow both code and natu-
ral language prompting, we focus on the natural-
language-to-code task. Liang et al. (2023) report
that this is a popular and effective strategy for Code
LLM use among experts; it is also more accessible
to non-experts than code prompting.

Existing benchmarks pair natural language de-
scriptions of code with test cases to check the
validity of generated programs. The two most
widely used benchmarks, HumanEval (Chen et al.,
2021) and MBPP (Austin et al., 2021), are in
Python. There are also multi-language benchmarks
that translate problems from one language to an-
other (Athiwaratkun et al., 2023; Cassano et al.,
2023). Finally, there are alternate formats, includ-
ing multi-turn evaluation (Nijkamp et al., 2023)
and docstring generation (Lu et al., 2021).

General-purpose benchmarks Most existing
benchmarks have a single natural language descrip-
tion of a problem, typically written by an expert
programmer. There are a few exceptions that scrape
the web or crowdsource (Hendrycks et al., 2021;
Lai et al., 2023; Amini et al., 2019), but expert-
written benchmarks predominate. These bench-
marks provide wide coverage, but come with limita-
tions. First, they have a single prompt per problem.
Consider this HumanEval prompt:

Imagine a road that’s a perfectly straight in-
finitely long line. n cars are driving left to right;
simultaneously, a different set of n cars are driving
right to left. The two sets of cars start out being
very far from each other. All cars move in the same
speed. Two cars are said to collide when a car
that’s moving left to right hits a car that’s mov-
ing right to left. However, the cars are infinitely
sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide. This
function outputs the number of such collisions.

While the correct solution is simply n2, the
prompt is designed to be confusing. Models suc-
ceed or fail based on this specific phrasing. Hav-
ing a single prompt precludes explorations of how

crucial word choice, grammar, etc. is to model suc-
cess. STUDENTEVAL’s non-expert, multi-prompt
construction enables us to analyze what makes a
successful prompt: each problem has at least 14
prompts that describe the task in a different way.

Second, existing benchmarks contain problems
at widely varying difficulty levels. Compare
the problem above, which requires mathemati-
cal reasoning that may challenge many program-
mers, with a trivial problem from the same bench-
mark (Chen et al., 2021): Return length of given
string. Although these benchmarks cover a wide
range of programming tasks, it is difficult to inter-
pret their results as evidence that a model will or
won’t suit a particular group of programmers, since
they aggregate over very different skill levels.

Domain-specific benchmarks There are also a
handful of domain-specific benchmarks, such as
DS-1000 (Lai et al., 2023) and MathQA (Austin
et al., 2021). Like these domain-specific bench-
marks, we target a specific population of program-
mers; however, we target a particular skill level
rather than an application area. In addition, we pro-
vide numerous non-expert prompts per problem.

Scalable oversight Our study is related to the
problem of scalable oversight (Bowman et al.,
2022). Models are capable of solving our problems,
since we selected ones for which reliable prompts
exist. However, models are unaligned with students.
The students understand the task at hand (we re-
move cases where they did not), but they do not
have the prompt-writing skills to guide the model.
Our work is thus a first step towards aligning Code
LLMs with non-expert programmers.

3 The STUDENTEVAL Dataset

In this section we describe STUDENTEVAL, a
many-prompt-per-problem benchmark that targets
a specific programmer skill level. The dataset con-
sists of 1,749 English-language prompts for 48 pro-
gramming problems, with at least 14 prompts per
problem. All prompts were written by university
students who had completed a single semester of
computer science in Python (CS1). These students
represent a population of programmers with a uni-
form knowledge base, allowing us to choose prob-
lems that they all should be able to solve.

Problem Selection and Format Given our goal
of collecting many non-expert descriptions for each
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Function signature (visible) def convert(lst):

Expert tests (visible to stu-
dent; hidden from model; au-
tomatically run on generated
code)

Input Expected Output

[0,1,2,3] [’ABCD’]
[0,-1,1,-1,2] [’A’,’B’,’C’]
[1,1,1,-1,25,25,-1,0,1,2] [’BBB’,’ZZ’,’ABC’]

Student description
(pass@1 = 0.8)

takes a list of numbers. Create a ABC list with the capital letters in the
alphabet and create an answer string. Iterate through the input list, if
there is "-1" then add ’ ’ to the answer string, or otherwise, add the letter
with the corresponding index of the answer string. Split the answer string
at ’ ’. return the answer string.

Student description
(pass@1 = 0.0)

Assign a number from 0~25 to each alphabet, and create a list of string
of alphabetical letters based on their assigned numbers in the lst. When
there is -1 in the lst, create a new string and add it to the list. Return a
list of created strings.

Figure 1: An example STUDENTEVAL problem. Our web-based experiment platform shows students the signature
and expert-written tests. When students submit their description, we use a Code LLM to generate code, test it, and
flag failed tests for the students. STUDENTEVAL has numerous student-written descriptions of each problem.

problem, we compiled a suite of 48 tasks at an ap-
propriate level for students. The majority were
pulled directly from CS1 course materials, with
light editing to avoid publishing answers to assign-
ments still in use. Thus, we expect participants to
be able to understand and solve the problems in
Python themselves. We explore whether they can
also describe them in natural language so that Code
LLMs can solve them. The problems exercise a
variety of Python features. For topic diversity, we
define 8 core concepts: lists, loops, strings, condi-
tionals, math, nested data, sorting, and dictionaries.

Each STUDENTEVAL problem consists of three
components: a function signature, a reference im-
plementation, and 3+ test cases (Figure 1). When
we gather student data, which we describe below,
we show participants the function’s signature and
test cases. From this information, they produce a
description, which we we automatically validate
using the problem’s test cases.

Our participants had taken a CS1 course that
routinely uses input/output pairs and signatures to
present tasks, so this problem format is familiar to
them. Since this format does not show students nat-
ural language descriptions, it avoids biasing student
prompts with expert descriptions. Thus it mimics a
realistic situation in which a student has a task to
solve and tries to describe it in natural language to
a Code LLM.

Problem Validation We validated our problems
in several ways. For common problems (e.g. facto-
rial), LLMs can produce working implementations
from the function name alone. To weed out these
problems, we produced Codex (Chen et al., 2021)
generations from each function signature with no
docstring and measured mean pass@1 rate. Over-
all, the mean pass@1 for our signatures without
docstrings is 0.0519 with a variance of 0.0364. The
maximum pass@1 is 0.925, for the problem exp.

We also validated the test suites for each prob-
lem. The test cases serve two purposes: helping
students understand the problem, and ensuring that
the generated code is correct. Liu et al. (2023)
show that the test cases for widely-used Code LLM
benchmarks frequently miss important corner cases.
To avoid this, we use test coverage and mutation
testing of the reference implementation to validate
the STUDENTEVAL test cases. Unlike in Liu et al.
(2023), the STUDENTEVAL tests need to be under-
stood by beginners. We strive for a balance be-
tween exhaustiveness and comprehensibility: each
problem has 3-4 tests that achieve 100% code cov-
erage. Mutation testing (Jia and Harman, 2010) is
a more rigorous measure of test suite quality; we
used MutPy (Hałas, 2013) to compute mutation
scores. All mutation scores below 90 are the result
of MutPy only producing trivial mutants that are
semantically identical to the reference solution.
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Subset Items Word Count

First Failure 450 28.8 (25.5) ± 16.7
First Success 187 28.8 (25.0) ± 17.4
Last Failure 205 35.9 (30.0) ± 22.6
Last Success 185 37.8 (35.0) ± 18.4

(a) Sizes and word counts.
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Figure 2: The four subsets of STUDENTEVAL.

Gathering 1,749 Student-Written Prompts We
recruited 80 beginning CS students from three U.S.
higher education institutions to build the STUDEN-
TEVAL benchmark. The IRB-approved study was
conducted over Zoom, using a web-based platform
designed for STUDENTEVAL (see Appendix). The
platform presents the function signature and tests
for one problem at a time. Students enter a problem
description into a text box. Our server constructs a
prompt with the function signature and their prob-
lem description formatted as a Python docstring,
and sends this prompt to Codex to produce the
function body. The server then tests the function
in a sandbox and presents the test results to the
participant. Students had the option to reattempt
the problem or move on. Participants completed
3 tutorial and 8 STUDENTEVAL problems in 75
minutes, receiving a $50 gift card for participation.

Dataset Subsets and Basic Statistics Students
generated 1,749 prompts, with an average of 36
prompts per problem. There is significant variation
in how prompts differ from each other: some are
small, iterative changes (+/- a few words) whereas
a student’s first, last, and successful prompts tend
to be very different. To refine the dataset for evalua-
tion, we partition STUDENTEVAL into four disjoint
subsets (Figure 2a): students most frequently failed
to solve problems on their first attempt, and this is
the largest subset of problems (First Failure); about
half as many first attempts were successful (First
Success); slightly fewer students gave up after mul-
tiple attempts (Last Failure); and others succeeded
after multiple attempts (Last Success).

These subsets omit “Middle” prompts (Fig-
ure 2b), which are intermediate failures. When
a student succeeded on their first try, or gave up af-

ter their first try, we classified that prompt as a First
Success and First Failure respectively. Students
never resubmitted after all tests passed. Figure 2a
shows that Last descriptions are significantly longer
than First, which suggests students add detail even
when starting afresh might be better.

Filtering Prompts A prompt may fail not be-
cause the model could not understand the descrip-
tion, but because the student did not understand the
problem. We had two expert annotators with ex-
tensive CS1 teaching experience label each failing
prompt independently. We asked the annotators to
determine Reading the prompt, is it clear that the
student understood the problem?1 We removed 74
prompts (11%) from the Failure subsets using this
criterion.

4 Results

We evaluate 12 Code LLMs. We focus our compar-
ison on gpt-3.5-turbo, the three “Python specialist”
Code Llama models (Baptiste Rozière et al., 2023),
the four StarCoderBase models (Li et al., 2023),
and Phi-1 (Gunasekar et al., 2023). Appendix H
presents results for several other models. We con-
firm that none of the STUDENTEVAL prompts ap-
pear in The Stack, the open training dataset for
StarCoderBase and other models.

As with other benchmarks, we use hidden unit
tests to evaluate the correctness of model-generated
code. To account for their nondeterminism, we use
the standard pass@1 metric (Chen et al., 2021),
which estimates the probability that the Code LLM
produces a solution that passes all hidden unit tests
in one shot, calculated over 200 samples.

1The annotators studied the gold solution and test cases to
understand the task themselves before labeling any prompts.
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Table 1: Mean pass@1 for the models that we evaluate on the four subsets of STUDENTEVAL.

Model (Size) First Failure Last Failure First Success Last Success HumanEval

GPT-3.5-Turbo-0301 (?) 11.76 13.90 44.84 47.40 48.1
Phi-1 (1.3B) 12.59 9.64 59.16 36.36 51.22
Replit-Code-v1 (2.7B) 4.25 3.24 33.62 18.33 21.09
SantaCoder (1.1B) 2.32 2.42 30.87 21.71 17.81
StarChat-Alpha (15.5B) 11.23 10.07 63.58 51.06 30.03
StarCoderBase-1B (1B) 1.98 1.39 24.86 13.00 15.17
StarCoderBase-3B (3B) 6.60 6.52 51.73 32.20 21.46
StarCoderBase-7B (7B) 6.13 7.86 62.35 46.42 28.37
StarCoderBase (15.5B) 8.70 7.73 65.28 51.74 30.40
Code-Llama-Py-7B (7B) 7.26 9.88 66.88 55.36 40.48
Code-Llama-Py-13B (13B) 10.66 10.71 70.22 62.26 42.89
Code-Llama-Py-34B (34B) 12.65 11.68 73.51 64.65 53.29

4.1 Evaluating Models On STUDENTEVAL

Table 1 reports the mean pass@1 rate for every
model on the four subsets of STUDENTEVAL. We
include HumanEval pass@1 rates for comparison.

Code Llama models perform best We find that
the Code Llama models significantly outperform
all other models on the First/Last Success prompts.
The 13B model outperforms StarCoderBase-15B,
the closest competing model, by 5-10% (absolute).
The 34B model performs even better.

STUDENTEVAL reveals performance differences
between small and large models HumanEval
is the de facto standard code benchmark; many
Code LLM developers focus on HumanEval scores.
However, we observe that the difference between
pass@1 rates for large and small models is more
substantial with STUDENTEVAL. 1) For the Star-
CoderBase models, pass@1 on Last Success is
almost 4x higher with the 15B model vs the 1B
model, but the gap is much smaller (2x) on Hu-
manEval. 2) Phi-1 (1.3B) approaches Code Llama
(34B) on HumanEval, but Code Llama is 1.7x bet-
ter on Last Success than Phi-1. One possibility
is that Phi-1’s textbook training data helps with
HumanEval’s expert-written prompts, but not on
STUDENTEVAL: non-experts do not write textbook
quality prompts. This shows that small models may
perform competitively on expert-written prompts
while still struggling with student-written prompts.

4.2 Variation in Pass@1

Most Code LLM papers only report mean pass@1
for a benchmark, averaging over problems with

widely varying pass rates. Because STUDENTE-
VAL contains multiple prompts per problem, it il-
luminates the extent to which luck plays a role in
whether a Code LLM produces the right answer for
a user. In Figure 3, we group prompts by problem,
so the plots show the percentage of problems (Y )
with pass@1 lower than the indicated value (X).

For a given model, we define a reliable failure as
a First/Last Failure with pass@1 above 0.8 (to the
right of the 0.8 dashed line in the CDF). These are
unlucky cases: the prompt failed for the student,
but turned out to be reliable. We find that GPT-3.5-
Turbo-0301 and StarCoderBase have one and two
reliable failures. Similarly, we define an unreliable
success as a First/Last Success prompt with pass@1
less than 0.2. These are lucky cases: the prompt
worked once, but that success is hard to replicate.

We find that nearly 10% of successful prompts
are unreliable for small models, but less than 3%
are unreliable with larger models (Appendix Ta-
ble 7). This has implications for model selection. It
is not adequate to optimize a model to achieve high
pass@1 on any benchmark (including STUDEN-
TEVAL). Instead, an ideal Code LLM would both
maximize pass@1 and minimize its variability.

4.3 Participant Success Rates

Examining prompt success rates by participant re-
veals a wide spectrum of prompting ability among
participants (Figure 4). Although some achieve suc-
cess rates over 50% with StarCoderBase, a large
number struggle to write reliable prompts.
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Figure 3: CDFs of mean per-problem pass@1 for Code LLMs on the four subsets of STUDENTEVAL. The y-axis
shows the fraction of problems in each subset. The x-axis shows by-problem mean pass@1 for student prompts.

5 What Makes a Successful Prompt?

A participant may have a low success rate for var-
ious reasons: their prompting skills may be bad,
their descriptions may be wrong (we filter these
from the benchmark), or they may be writing clear
explanations in a style the model does not under-
stand. A low success rate indicates a miscommu-
nication between the model and the user, which is
an opportunity to improve the robustness of Code
LLM understanding of how beginners describe
code. In this section, we explore the factors that
impact the success of non-expert-written prompts.
Our findings have implications for teaching with
Code LLMs, since they highlight successful and
unsuccessful student strategies. We use StarCoder-
Base as an example model in our discussion, but
we have replicated key results with Code Llama.

5.1 Trends in Student Word Choice
To explore the relative importance of different
words, we computed TF-IDF values, treating each
prompt as a document. We used a tokenization ap-

proach that supports a mix of Python and English
(see Appendix G.1). We computed the mean TF-
IDF values calculated across documents in each of
the four subsets for the top 25 features (words) in
each. Figure 5 shows a heatmap of the overlaps.
The top words are a mix of English and Python
terms, including many related to types, sequencing,
or choice (Figure 5). The inclusion of “return” may
be related to the fact that Codex seems to default to
printing output, causing tests to fail; students may
learn to specify “return” through experience. We
see a similar trend for parameter names.

5.2 Statistical Significance of Prompt Wording

We fit mixed-effects regression models to the data
to test the impact of prompt length and wording.
All models include random effects for problems
and use StarCoderBase pass@1 rates as the re-
sponse variable. For vocabulary features, we use
indicator variables: 1 if the prompt uses the word,
else 0. Appendix G.3 provides full estimate tables.
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Figure 4: Participant mean pass@1 rates with
StarCoderBase

Figure 5: Mean TF-IDF values for overlapping
words in the top 25 words for each subset.

Length Contrary to our expectations, we ob-
served a statistically significant positive effect of
prompt length on pass@1 rates (β̂=0.06, p=0.008).
However, this finding seems driven by last sub-
missions, where successful prompts are on average
longer; the average length is similar for passing and
failing first prompts (Figure 2a). Qualitatively, we
have observed that students tend to add text instead
of modifying earlier text, which is likely a factor.2

Input/output word choice We found a signif-
icant positive effect of mentioning “return” in
the prompt (β̂=0.07, p=0.00002). This likely re-
solves the problematic ambiguity associated with
prompts that mention “output” rather than speci-
fying whether the function should return or print
(Figure 6b).

Datatype mentions We explored the effect of
mentioning dictionaries, lists, and number types, as
well as including instances of lists and dictionaries
in the prompt. We found a reliable positive effect of
mentioning “list” (β̂=0.04, p=0.02), and a border-
line negative effect of mentioning “array” (β̂=-0.07,
p=0.048). This suggests that StarCoderBase is sen-
sitive to Python terminology conventions.

2CS1 students have exhibited the same tendency when
writing code (Norris et al., 2008; Spacco et al., 2015).

Function and parameter names We found no
reliable effect of mentioning the parameter names
in the prompt, but a significant negative effect of
mentioning the function name (β̂=-0.07, p=0.02).

5.3 Inspecting Visual Representations

We generated embeddings of each prompt from
the last-layer attention weights of StarCoderBase
and Code Llama 34B in order to explore prompt
similarities and differences. Figure 6 shows key
clusters with StarCoderBase embeddings plotted
using t-SNE (Van der Maaten and Hinton, 2008);
Appendix G.4 contains a plot of all clusters and
Code Llama results, which exhibit the same trends.

Multiple prompt formulations exist Some prob-
lems form multiple clusters comprised of differ-
ent prompting strategies. The combine problem
prompts form two clusters (Figure 6c). The top
right cluster contains succinct prompts, like Prompt
2: Combine lists from 11 to lists from 12. The bot-
tom left ones provide step-by-step directions: Takes
an input of two lists, l1 and l2, each of which also
contains lists. It combines the first list in l1 with the
first one in l2, then continues for all items in l1 and
l2. It outputs this final list which is a combination
of l1 and l2 (Prompt 1). Both approaches can gen-
erate passing programs; future work could explore
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Figure 6: Prompt embeddings generated using StarCoderBase and reduced using t-SNE.

whether there are style differences between the pro-
grams generated by different prompting methods.

Errors and ambiguities pattern together Ex-
amining problem sub-clusters gives insight into fail-
ure patterns (Figure 6b). One sub-cluster contains
prompts that do not say whether the function should
print or return the desired value. Another consists
of prompts that contain the string “aspen” (lower-
case) rather than “Aspen” (upper-case), causing the
generated code to fail test cases.

Certain prompting styles are challenging Most
prompt embeddings cluster by problem, but some
clusters contain prompts for multiple problems, rep-
resenting cases where the model struggles to distin-
guish prompts for distinct problems. One such clus-
ter consists of prompts that describe the function’s
behavior in terms of expected input/output pairs
(Figure 6a). Although there are passing examples
in this style, it does not seem to work for complex
data, such as nested lists or dictionaries; the em-
beddings for prompts that describe several distinct
problems in this way are clustered together. This
style of prompt is easy for humans to understand,
but appears to challenge current Code LLMs.

5.4 Semantic Ambiguity in Prompts
Most work on Code LLMs asks if models produce
correct code for a given prompt. However, it is pos-
sible for an ambiguous prompt to generate seman-
tically different functions. Semantic equivalence is
undecidable, but we can compute a lower bound on
the number of semantically different functions: for
each prompt completion, we use the test case inputs
as a vector of examples. We run each completion
to collect a vector of outputs: the function’s test
signature (Udupa et al., 2013). When two functions
have distinct test signatures, they are semantically
distinct; identical results are inconclusive.

Subset #Functions

failure (first attempt) 2.2 (2.0) ± 1.6
failure (last attempt) 2.4 (2.0) ± 1.6
success (first attempt) 1.9 (1.0) ± 1.3
success (last attempt) 2.2 (2.0) ± 1.3

(a) Mean (median) & standard deviation of the number of
functions produced by StarCoderBase for each prompt.

The function takes a string of text as an input.
For words in the string with an odd number of
letters, every other letter is capitalized starting
with the first letter. For words in the string with
an even number of letters, every other letter is
capitalized starting with the second letter.

(b) A First Success prompt that produces 7 functions.

Figure 7: StudentEval prompts can be ambiguous to
LLMs and produce several distinct functions.

Figure 7a summarizes results for each STUDEN-
TEVAL subset. Overall, prompts generate a surpris-
ing number of distinct functions, and even prompts
that are relatively clear to humans can generate
many distinct functions (Figure 7b). This high-
lights the importance of evaluating prompt reliabil-
ity. Though the Figure 7b prompt produced a pass-
ing function during the experiment, it was likely
to fail. This has key implications for Code LLMs
as teaching tools (see Finnie-Ansley et al. (2022);
Leinonen et al. (2023)): reliability issues may mis-
lead students into thinking their descriptions are
better than they are or into over-complicating de-
scriptions that are actually high-quality.

6 Conclusion

We present STUDENTEVAL, a large Code LLM
benchmark of prompts written by students who
have taken a single CS1 course. A key feature of
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STUDENTEVAL is the numerous natural language
descriptions per problem, written by beginning pro-
grammers with varying levels of prompting skill.

We show that larger models are more capable of
following student-written instructions than smaller
models. We also find that many student-written
prompts are unreliable (have low pass@1): stu-
dents get lucky (or unlucky) when using Code
LLMs, an issue for educational use of Code LLMs.
Finally, we investigate the question of what makes
a good prompt from several angles, finding that
models struggle to understand some valid strate-
gies, such as giving examples of complex data.

We hope that STUDENTEVAL will make it easier
to evaluate how well Code LLMs work for natural
language instructions written by non-experts, lead-
ing to the development of models that are better
aligned with this key group of users.

Acknowledgements

We thank our colleagues who helped us recruit
participants and for the problems that we adapted,
Northeastern Research Computing and the New
England Research Cloud for providing comput-
ing resources, Loubna ben Allal for help integrat-
ing StudentEval into the BigCode Evaluation Har-
ness, and the ARR reviewers for their thoughtful
feedback. This work is partially supported by the
National Science Foundation (SES-2326173, SES-
2326174, and SES-2326175).

Limitations

Although our findings shed light on how well Code
LLMs work with descriptions written by one key
group of non-experts, there is more work to be
done. We study only one group of non-experts (be-
ginning students); moreover, our participants were
recruited from three selective institutions within
the US. Other groups of students or other popula-
tions of non-experts may use different strategies
to describe code. Moreover, because there are few
multilingual Code LLM models, we look only at
prompting in English. This highlights the need for
more work exploring how diverse populations of
non-experts might interact with Code LLMs.

Our participants wrote their prompts interac-
tively while using a single model (Codex). It is
possible that they would have revised their prob-
lems differently with a different model. This is one
reason we do not emphasize comparisons between
Codex and other Code LLMs in our evaluation.

When we piloted in November 2022, the Codex
model we used (code-davinci-002) was the most
capable Code LLM available. Despite being “old,”
it remains as good as gpt-3.5-turbo on established
benchmarks: gpt-3.5-turbo and code-davinci-002
score 48% and 46% respectively on HumanEval.
Code Llama 34B scores 48%. This suggests that
the Codex model we use is as capable at code com-
pletion as many newer models.

The capabilities of Code LLMs also vary by pro-
gramming language (Cassano et al., 2023, 2024).
Our results may not generalize to languages other
than Python.

Ethics Statement

There are two main ethical concerns for this work:
(1) ethical concerns about the involvement of stu-
dent research participants and (2) concerns about
how the dataset could be used in future work.

Our work was conducted in accordance with the
Brandeis University Human Research Protection
Program. Potential harms to student participants
were a first-class consideration in the design. We
sought to address power dynamics and protect par-
ticipant autonomy with a number of measures. We
collected data in an opt-in manner, outside of the
classroom, and with informed consent. The re-
searcher conducting the study was not affiliated
with the participant’s institution. Students were
asked to complete programming assignments with
familiar content and were alerted to potential dis-
comfort associated with using an AI-based tool.

All identifying information has been removed
from the dataset. We have released the full dataset
via the Open Science Framework; participants con-
sented to the release of their anonymized data. The
Appendix also contains a “Datasheet for Dataset”
outlining pertinent dataset information. We pro-
vide pertinent screenshots and text illustrating the
experimental platform in the Appendix. The full ex-
perimental protocol is available through the Open
Science Framework.

Our second ethical concern is that releasing this
dataset may lead to the development of technology
that we would not build ourselves, such as attempts
to automate education in a way that negatively im-
pacts the educational experience of students. We
feel that the benefits of providing this data, which
we hope will lead to Code LLMs that work better
for non-expert users, outweigh this risk.

It is also possible that future users may general-
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ize results from the dataset beyond what is appro-
priate; our study involves early CS students in a
particular educational context (selective US institu-
tions) and may not generalize to other populations.

Finally, this research was only possible due to
model access and funding. To obtain the bench-
mark results from the 12 LLMs, we used around
2 weeks of GPU time on an H100 GPU. There are
ongoing ethical concerns about access to models
and infrastructure. The evaluation of the dataset in
this paper centers both open-source and small-scale
models, but fully addressing these issues should be
a priority for the broader community.
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A Access

The dataset can be accessed on the Open Science
Framework (https://doi.org/10.17605/OSF.
IO/WDPSX). Analysis and evaluation code are avail-
able through Github (github.com/Wellesley-
EASEL-lab/StudentEval). The benchmark prob-
lems are also part of the BigCode Evaluation Har-
ness (github.com/bigcode-project/bigcode-
evaluation-harness) and available on the Hug-
ging Face Hub (huggingface.co/datasets/
wellesley-easel/StudentEval).

B Author Statement

As authors, we acknowledge that we bear all re-
sponsibility in case of violation of rights, etc. Our
dataset is licensed under an OpenRAIL-D license.

C Hosting, Licensing, and Maintenance
Plan

Our dataset is hosted on the Open Science Founda-
tion and licensed under an OpenRAIL-D license.
We plan to maintain public access to the dataset,
but we do not plan to accept new contributions to
it. For more details, see our Datasheet (below).

D Datasheet for Dataset

D.1 Motivation

For what purpose was the dataset created? Was
there a specific task in mind? Was there a spe-
cific gap that needed to be filled? This dataset
was created as a benchmark for code generation
models. It was created with the goal of filling two
gaps in the existing benchmarks: 1) the need for a
benchmark with multiple natural language descrip-
tions per problem and 2) the need for a benchmark
targeting a specific programmer skill level.

Who created the dataset and on behalf of which
entity? This dataset was created by researchers
at Northeastern University, Wellesley College, and
Oberlin College: Drs. Arjun Guha, Carolyn An-
derson, and Molly Feldman, along with students in
their labs. Dr. Arjun Guha is also affiliated with
Roblox Research.

Who funded the creation of the dataset? This
work was funded by the National Science Foun-
dation (SES-2326173, SES-2326174, and SES-
2326175).
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D.2 Composition

What do the instances that comprise the dataset
represent? Are there multiple types of in-
stances? The dataset consists of programming
tasks where each task has the following compo-
nents: a function signature; a test suite; an expert-
written implementation; an expert-written prompt;
and a set of student-written prompts (minimum 14).

How many instances are there in total? There
are 48 programming tasks and 1,749 student-
written prompts.

Does the dataset contain all possible instances
or is it a sample of instances from a larger set?
The dataset is not a sample of a larger set, but
it does not contain all possible instances, since
additional programming tasks or prompts could be
devised.

What data does each instance consist of? “Raw”
data or features? Each instance consists of text.
The dataset as a whole is stored in CSV format.

Is there a label or target associated with each
instance? Each prompt is labeled with the name
of the programming task it is associated with.

Is any information missing from individual in-
stances? If so, please provide a description, ex-
plaining why this information is missing. This
does not include intentionally removed informa-
tion, but might include, e.g., redacted text. We
have intentionally de-identified the dataset so that
prompts cannot be traced back to the students who
wrote them.

Are relationships between individual instances
made explicit? If so, please describe how these
relationships are made explicit. Yes. Each
prompt is associated with the programming task
it described, and we have also provided an ID link-
ing together prompts written by the same student.

Are there recommended data splits? If so, please
provide a description of these splits, explaining
the rationale behind them. No.

Are there any errors, sources of noise, or re-
dundancies in the dataset? Some prompts may
appear multiple times in the dataset, either because
multiple students described the problem in the same
way, or because a student re-submitted a prompt
without editing it.

Is the dataset self-contained, or does it link to
or otherwise rely on external resources? The
dataset is self-contained and does not link to or rely
on external resources.

Does the dataset contain data that might be con-
sidered confidential? No.

Does the dataset contain data that, if viewed di-
rectly, might be offensive, insulting, threatening,
or might otherwise cause anxiety? No.

Does the dataset relate to people? Yes.

Does the dataset identify any subpopulations?
No.

Is it possible to identify individuals, either di-
rectly or indirectly from the dataset? If so,
please describe how. We believe that this is not
possible. We have de-identified the dataset, remov-
ing participant usernames and replacing them with
randomly generated numeric IDs. We have also
manually reviewed the dataset to ensure that there
is no personally-identifying information that could
link prompts back to participants.

Does the dataset contain data that might be con-
sidered sensitive in any way? No.

D.3 Collection Process

How was the data associated with each in-
stance acquired? Was the data directly ob-
servable, reported by subjects, or indirectly in-
ferred/derived from other data? If data was re-
ported by subjects or indirectly inferred/derived
from other data, was the data validated/verified?
The data was collected during a human-subjects
experiment, where participants wrote prompts to
describe a function. Participants were then pre-
sented with a solution generated by the Codex code
generation model (Chen et al., 2021), as well as
the results of running a suite of test cases on the
solution. Participants could submit any number of
prompts for a particular problem (within the time
limit of the experiment).

Participants submitted the data using our web-
based experiment platform. There was no valida-
tion of their submissions, but the experiment was
overseen in real time by an experimenter, who was
available to answer questions and intervene when
participants ran into issues with the task.
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What mechanisms or procedures were used to
collect the data? How were these mechanisms
or procedures validated? The experiment was
conducted on a web-based experiment platform
built by the research team. We conducted a small-
scale pilot study to assess the functionality of the
platform.

If the dataset is a sampled from a larger set,
what was the sampling strategy? The dataset is
not sampled.

Who was involved in the data collection process
and how were they compensated? We recruited
participants who had taken an introductory Python
programming course at Northeastern, Wellesley, or
Oberlin within the past two years. Each participant
was given a $50 Amazon gift card for particpating
in the approximately 75 minute task.

Over what timeframe was the data collected?
Does this timeframe match the creation time-
frame of the data associated with the instances?
The data was collected between November 2022
and May 2023.

Were any ethical review processes conducted?
If so, please provide a description of these re-
view processes, including the outcomes, as well
as a link or other access point to any supporting
documentation. The study was conducted under
supervision of the Brandeis Human Research Pro-
tection Program, which acts as Wellesley College’s
IRB. Northeastern and Oberlin entered into autho-
rization agreements with Brandeis. If you have
questions or concerns about this project, you can
contact the Brandeis HRPP: hrpp@brandeis.edu.

Does the dataset relate to people? Yes.

Did you collect the data from the individuals in
question directly, or obtain it via third parties
or other sources? We collected the data directly
from participants as part of a lab-based study.

Were the individuals in question notified about
the data collection? If so, please describe how
notice was provided, and provide a link or other
access point to, or otherwise reproduce, the ex-
act language of the notification itself. Partici-
pants submitted an informed consent form prior to
participating. They verbally affirmed their ongoing
consent at the beginning of the study.

Did the individuals in question consent to the
collection and use of their data? If so, please
describe how consent was requested and pro-
vided, and provide a link or other access point
to, or otherwise reproduce, the exact language
to which the individuals consented. Yes. The
informed consent form is available to view on the
Open Science Framework site for this dataset.

If consent was obtained, were the consenting in-
dividuals provided with a mechanism to revoke
their consent in the future or for certain uses?
If so, please provide a description, as well as
a link or other access point to the mechanism.
Participants were allowed to retract their data prior
to its public release, by contacting the researchers.

Has an analysis of the potential impact of the
dataset and its use on data subjects been con-
ducted? Yes, the impact of releasing this data
was considering during the IRB process.

D.4 Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling of the
data done? If so, please provide a description. If
not, you may skip the remainder of the questions
in this section. The dataset was de-identified to
preserve participant anonymity; we removed all
usernames and replaced them with randomly gener-
ated numeric IDs. We filtered out 74 prompts from
the benchmark (section 3).

Tokenization was done to facilitate the analysis
presented in the paper, but the released dataset con-
tains the submitted responses, not the tokenized
ones. The tokenization script is available on the
Github for this dataset.

We had two expert annotators with extensive
CS1 teaching experience assess each of the prompts
in the failing subset. We asked the annotators to
determine whether it was clear from the prompt that
the student understood the problem. We removed
74 prompts (11%) from the Failure subsets using
this criterion.

Was the “raw” data saved in addition to the
preprocessed/cleaned/labeled data? If so, please
provide a link or other access point to the “raw”
data. We will only release the de-identified
dataset, not the raw dataset. This is in order to
preserve participant anonymity.

Is the software used to preprocess/clean/label
the instances available? Yes. All code is avail-
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able at the Github repository linked at github.
com/Wellesley-EASEL-lab/StudentEval.

D.5 Uses

Has the dataset been used for any tasks already?
No.

Is there a repository that links to any or all pa-
pers or systems that use the dataset? No.

What (other) tasks could the dataset be used
for? The primary intended use for this dataset is
as a benchmark. However, it could also be used to
fine-tune machine learning models. We imagine
that it could be useful to fine-tune a code generation
model to better handle the way students talk about
code. It could also be used in tandem with pass@k
rates to fine-tune a prompt classification model.

Is there anything about the composition of the
dataset or the way it was collected and prepro-
cessed/cleaned/labeled that might impact future
uses? For example, is there anything that a fu-
ture user might need to know to avoid uses that
could result in unfair treatment of individuals
or groups or other undesirable harms. If so,
please provide a description. Is there anything
a future user could do to mitigate these undesir-
able harms? Although a diverse population of
students was involved in this research, represent-
ing many dialects of English, we have not exam-
ined how representative it is of the population of
English-speaking students. As a result, benchmark
results calculated with this dataset might not gener-
alize to all populations of potential code generation
users.

Are there tasks for which the dataset should
not be used? If so, please provide a description.
This dataset should not be used to build artifical
intelligence that aims to deceive humans (e.g. by
spreading misinformation or by impersonating a
human). Certain uses are also restricted by the
OpenRAIL license under which this dataset has
been released.

D.6 Distribution

Will the dataset be distributed to third parties
outside of the entity on behalf of which the
dataset was created? The de-identified dataset
will be made public.

How will the dataset will be distributed? Does
the dataset have a digital object identifier

(DOI)? The dataset is distributed through the
Open Science Framework, available at https://
doi.org/10.17605/OSF.IO/WDPSX.

When will the dataset be distributed? The
dataset is currently available.

Will the dataset be distributed under a copy-
right or other intellectual property (IP) license,
and/or under applicable terms of use (ToU)? If
so, please describe this license and/or ToU, and
provide a link or other access point to, or other-
wise reproduce, any relevant licensing terms or
ToU, as well as any fees associated with these
restrictions. The dataset is licensed under an
OpenRAIL-D License Agreement. The license can
be found on the Open Science Framework project
associated with the dataset.

Have any third parties imposed IP-based or
other restrictions on the data associated with
the instances? If so, please describe these re-
strictions, and provide a link or other access
point to, or otherwise reproduce, any relevant
licensing terms, as well as any fees associated
with these restrictions. No.

Do any export controls or other regulatory re-
strictions apply to the dataset or to individual
instances? No.

D.7 Maintenance

Who will be supporting/hosting/maintaining the
dataset? The Open Science Framework will host
the dataset.

How can the owner/curator/manager of
the dataset be contacted (e.g., email ad-
dress)? Questions or concerns about this
dataset can be directed to Arjun Guha
(a.guha@northeastern.edu); Carolyn Ander-
son (carolyn.anderson@wellesley.edu); or Molly
Feldman (mfeldman@oberlin.edu).

Is there an erratum? No, but if errors are dis-
covered, we will post one to the Open Science
Framework project.

Will the dataset be updated? No. The dataset
is stable.

If the dataset relates to people, are there applica-
ble limits on the retention of the data associated
with the instances? If so, please describe these
limits and explain how they will be enforced.
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Figure 8: The screen that students see when entering a
problem description.

Participants were informed that their de-identified
data would be published online and remain acces-
sible in perpetuity. All identifying information will
be destroyed, as outlined in the IRB protocol.

Will older versions of the dataset continue to be
supported/hosted/maintained? We do not plan
to update this dataset.

If others want to extend/augment/build on/con-
tribute to the dataset, is there a mechanism for
them to do so? If so, will these contributions be
validated/verified? If not, why not? We wel-
come replications of our work, but we think these
should be published as separate datasets in order
to make the population and data collection times
clear. Students are a dynamic population, and their
experience with writing prompts is likely to change
in the near future.

E Details of Web Application for Data
Collection

We collected data via a purpose-built web-based ap-
plication. See Figures 8, 9, and 10 for screenshots
of the interface. Students encountered 8 different
problems selected from the 48 overall as part of the
study. The interface remained the same for each
problem.

E.1 Eligibility Criteria

STUDENTEVAL is built from problems selected
from three undergraduate, introduction to comput-
ing courses. Specifically, the problems were cho-
sen from previous instances of CS111 at Wellesley
College, CS150 at Oberlin College, and DS2000
at Northeastern University. All three courses are

Figure 9: We run expert tests automatically and high-
light ones they fail.

taught using Python and cover the same basic top-
ics.

Students were eligibility for the study if they
were currently an undergraduate student at one of
the three institutions and had completed one of
the above courses over five possible terms (Fall
2021 through Spring 2023). Students could be
currently enrolled in a subsequent course, but were
not eligible for the study if they had completed
subsequent courses.

E.2 Tutorial/Training Information

Instructions for how study participants should in-
teract with the Code LLM were provided via three
tutorial problems. Each problem was chosen specif-
ically to exhibit the range of possible Code LLM
interactions. We provided a working prompt along-
side the first problem (to showcase model success),
the second problem was an “impossible” problem
(to showcase model failure), and the third was an
easy-to-solve problem that modeled the full par-
ticipant interaction. Relevant text describing each
tutorial problem is provided below:

• Problem 1: “The inputs and expected out-
puts are examples of what the function should
do, and the text box is where you’ll describe
the function’s behavior. Try copy and past-
ing: “Takes in a string, and returns an inte-
ger representing the maximum number that
the same letter appears consecutively in the
string.” then click SUBMIT DESCRIPTION.”
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Figure 10: The screen students see when all tests pass.

• Problem 2: “Looking at the inputs and ex-
pected outputs below, try to figure out what
the function apply_operations should do,
and type it in the text box below.”

• Problem 3: “Try writing a description for
this function on your own based on the inputs
and expected outputs, then click SUBMIT DE-
SCRIPTION.”

E.3 Study Timing Information
Participants completed the tutorial, provided de-
scriptions, and performed an exit survey & inter-
view over approximately 75 minutes. During the
main experiment, students were randomly assigned
eight problems out of the total 48 problems in
STUDENTEVAL. The first four problems were un-
timed and students had, at maximum, 5 minutes
to work on each of the second set of four prob-
lems. Throughout the study, students were given
the option to “Try Again” or “Move On” to the next
problem at will. This is one of the causes of the
variation in the number of responses per user, per
problem in STUDENTEVAL.

F Dataset Details

F.1 Dataset Examples
To illustrate the variety of student-written de-
scriptions, we show three descriptions of the
generateCardDeck problem that are in the Last
Success subset:

1. For each character in suits, create a list that ap-
pends each of the suits with each of the values

in vals. Sort each card in deck by alphabetical
order of suit character.

2. There are two lists of strings. Combine the
first element with the first list with the first
element in the second list and add that to a
new list, which will be returned [ex, if the first
element of the first list is F and an element
of the second list is 7, combine them like F7].
Keep adding the first element of the first list to
each element of the second list and add each
addition to the new list. Reorder the new list
to make it in alphabetical and numerical order,
then return

3. when given two lists containing strings, the
function will return 1 list. Each individual
string within the first list will be combined
with each string in the other list, with letters
appearing first and numbers appearing second.
the new strings in the new list will appear in
alphabetical order. if multiple strings have
the same first letter, then they will appear in
numerical order.

And three descriptions of the same problem in
the Last Failure subset:

1. This function inputs two lists. The letter that
comes first within the alphabet in the first list
adds on the lowest number of the second list
and then the letters in the alphabet. This keeps
going and forms a new list with all the com-
bined letters and numbers.

2. Enter two arrays of characters. Reverse the
order of the first array. Print an array with the
the first array multiplied by the second array.

3. there are two lists, both with strings. you
should use a nested for loop to concatenate
the two strings and then add them to a list
in decreasing order. Increasing order means
spades (S) are greater than hearts (H), and
hearts are greater than diamonds (D). “J” is
smaller than “Q”, which is smaller than “A”.
suit takes precedence over rank. when you
concatenate the letter should be before the
number.

F.2 Prompt reliability
Table 7 shows the number of reliable and unreli-
able prompts in each subset for all benchmarked
models.
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G Prompt Analysis Details

G.1 Tokenization & Pre-Processing

As a pre-processing step, we replace functionally
equivalent words with placeholders. This pre-
processing was done as, across all problems in
STUDENTEVAL, there are 48 different function
names (e.g., convert, fib) and 57 different argu-
ment names (e.g., val, meetings). Therefore, we
replace references to functions and parameters with
*FUNCTIONNAME* and *PARAM*, respectively.
Our approach does not handle capital function or
argument names, as their meaning is ambiguous
(e.g., “Convert” is a verb, but convert is a func-
tion name). We also replace “return”/“returns” with
*RETURN*.

Student prompts consist of a mix of Python ter-
minology (including code snippets) and English
words. Therefore, standard English tokenization
libraries were insufficient. We perform a best-effort
tokenization using a regex-based Python function
that performs multiple passes. The overall goal
was to maintain meaningful code-related items as
single terms. Specifically, we treat list indexing,
lists, dictionaries, single/double quote strings, num-
bers, and comparison operators as single tokens.
There may be possessives and/or contractions that
are tokenized as strings rather than separate terms
in the dataset. Terms were additionally lowercased
and basic stopwords which are not meaningful in a
programming context were filtered out.

G.2 TF-IDF Analysis

We used scikitlearn’s TfidfVectorizer with
our tokenizer to generate the TF-IDF values pre-
sented in this paper. The list of all prompts was
provided to fit_transform. Figure 14 presents
the mean values for each of the top 25 words for
each of the four subsets.

G.3 Regression Analysis

We fitted mixed-effects regression models to pre-
dict STUDENTEVAL pass@1 rates estimated with
completions obtained from StarCoderBase. Mod-
els were fitted using the lme4 library in R. All
models included random intercepts for problems;
random slopes were omitted due to model complex-
ity. For vocabulary-level features, we use indicator
variables: a 1 if the prompt uses the word and a 0
otherwise. Values that are statistically significant
with a threshold of p = 0.5 are displayed in bold.

Prompt length Prompt length was calculated by
number of tokens using the tokenizer discussed in
Section G.1. The raw token count was divided by
100 for scaling purposes. The full estimates are
shown in Table 3.

Fixed effects β̂ z p

Intercept 0.15 (+/-0.04) 3.5 0.001
totalLength 0.06 (+/- 0.02) 2.8 0.008

Table 3: Mixed-effects regression results for problem
length

Input/output wording We explored the impact
of mentioning “return”, “input”, “print”, and “out-
put”. We counted all stemmed mentions. The full
estimates are shown in Table 4.

Fixed effects β̂ z p

Intercept 0.20 (+/- 0.03) 6.2 < 0.0001
returnInd 0.07 (+/- 0.02) 4.2 < 0.0001
inputInd 0.022 (+/- 0.03) 0.8 0.45
printInd -0.008 (+/- 0.03) -0.3 0.76
outputInd 0.025 (+/- 0.02) 1.1 0.27

Table 4: Mixed-effects regression results for input/out-
put terms

Datatype mentions We explored the impact of
mentioning “list”, “dictionary”, “array”, “variable”,
“number”, “int”, as well as giving example lists and
dictionaries (indicated by use of square or curly
braces). The full estimates are shown in Table 5.

Fixed effects β̂ z p

Intercept 0.22 (+/- 0.03) 6.9 < 0.0001
list 0.042 (+/- 0.02) 2.3 0.02
dict 0.006 (+/- 0.05) 0.13 0.90
squareBrace -0.21 (+/- 0.4) -0.6 0.57
curlyBrace 0.37 (+/- 0.2) 1.7 0.08
array -0.07 (+/- 0.04) -2.0 0.048
variable 0.03 (+/- 0.04) 0.7 0.49
number 0.009 (+/- 0.02) 0.48 0.63
int 0.023 (+/- 0.02) 1.2 0.24

Table 5: Mixed-effects regression results for datatype
mentions

Function and parameter names We explored
the effect of mentioning the function name and the
name of parameters. The full estimates are shown
in Table 6.
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Model (Size) First Failure Last Failure First Success Last Success HumanEval

Code-Llama-Py-13B (13B) 9.56 9.33 70.22 62.26 42.89
Code-Llama-Py-34B (34B) 11.40 10.14 73.51 64.65 53.29
Code-Llama-Py-7B (7B) 6.51 8.59 66.88 55.36 40.48
GPT-3.5-Turbo-0301 (?) 10.86 12.41 44.84 47.40 48.1
Phi-1 (1.3B) 11.28 8.37 59.16 36.36 51.22
Replit-Code-v1 (2.7B) 3.84 2.83 33.62 18.33 21.09
SantaCoder (1.1B) 2.08 2.11 30.87 21.71 17.81
StarChat-Alpha (15.5B) 10.10 8.78 63.58 51.06 30.03
StarCoderBase (15.5B) 7.82 6.74 65.28 51.74 30.40
StarCoderBase-1B (1B) 1.77 1.21 24.86 13.00 15.17
StarCoderBase-3B (3B) 5.91 5.66 51.73 32.20 21.46
StarCoderBase-7B (7B) 5.49 6.82 62.35 46.42 28.37

Table 2: Results from evaluation on additional models.

Fixed effects β̂ z p

Intercept 0.25 (+/- 0.03) 8.3 < 0.001
param 0.01 (+/- 0.02) 0.5 0.62
functionname -0.07 (+/- 0.03) -2.3 0.02

Table 6: Mixed-effects regression results for function
name and parameter name mentions

G.4 Embedding Plot

Figures 11- 13 are analoguous to Figure 6, but with
Code Llama 34B instead of StarCoderBase. See
Figures 15 and 16 for a plot of the t-SNE (Van der
Maaten and Hinton, 2008) projection for student
description embeddings.

H Results on More Models

Table 2 reports mean pass@1 with STUDENTEVAL

on 12 models.
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Figure 11: Prompt embeddings generated using Code
Llama 34B and reduced using t-SNE: Test case cluster

Figure 12: Prompt embeddings generated us-
ing Code Llama 34B and reduced using t-SNE:
check_for_aspen prompts

Figure 13: Prompt embeddings generated using Code
Llama 34B and reduced using t-SNE: combine prompts
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Figure 14: TF-IDF values for top 25 words in each prompt subset category.
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Figure 15: t-SNE projections of student prompt embeddings with colored by problems. Filled and hollow circles
represent passed and failed prompts, respectively.
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Figure 16: t-SNE projections of student prompt embeddings with Code Llama 34B, colored by problems. Filled and
hollow circles represent passed and failed prompts, respectively.
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Table 7: Number of reliable and unreliable prompts by model and subset.

Rate pass@1 < 0.2 pass@1 > 0.8
Model Subset

Code-Llama-Py-13B failure (first attempt) 38 -
failure (last attempt) 34 1
success (first attempt) 6 19
success (last attempt) 3 12

Code-Llama-Py-34B failure (first attempt) 36 -
failure (last attempt) 34 3
success (first attempt) 5 16
success (last attempt) - 13

Code-Llama-Py-7B failure (first attempt) 41 -
failure (last attempt) 36 1
success (first attempt) 8 15
success (last attempt) 3 10

GPT-3.5-Turbo-0301 failure (first attempt) 42 -
failure (last attempt) 31 2
success (first attempt) 9 6
success (last attempt) 5 7

Phi-1 failure (first attempt) 35 -
failure (last attempt) 37 -
success (first attempt) 7 7
success (last attempt) 13 4

Replit-Code-v1 failure (first attempt) 43 -
failure (last attempt) 40 -
success (first attempt) 18 2
success (last attempt) 25 -

SantaCoder failure (first attempt) 45 -
failure (last attempt) 42 -
success (first attempt) 21 3
success (last attempt) 23 1

StarChat-Alpha failure (first attempt) 38 -
failure (last attempt) 37 -
success (first attempt) 7 11
success (last attempt) 5 6

StarCoderBase failure (first attempt) 41 -
failure (last attempt) 37 1
success (first attempt) 8 12
success (last attempt) 4 7

StarCoderBase-1B failure (first attempt) 45 -
failure (last attempt) 41 1
success (first attempt) 26 2
success (last attempt) 32 1

StarCoderBase-3B failure (first attempt) 40 -
failure (last attempt) 38 -
success (first attempt) 15 8
success (last attempt) 17 3

StarCoderBase-7B failure (first attempt) 44 -
failure (last attempt) 39 1
success (first attempt) 9 9
success (last attempt) 10 8
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