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Abstract

Social chatbots, also known as chit-chat chat-
bots, evolve rapidly with large pretrained lan-
guage models. Despite the huge progress, pri-
vacy concerns have arisen recently: training
data of large language models can be extracted
via model inversion attacks. On the other hand,
the datasets used for training chatbots contain
many private conversations between two indi-
viduals. In this work, we further investigate the
privacy leakage of the hidden states of chatbots
trained by language modeling which has not
been well studied yet. We show that speakers’
personas can be inferred through a simple neu-
ral network with high accuracy. To this end, we
propose effective defense objectives to protect
persona leakage from hidden states. We con-
duct extensive experiments to demonstrate that
our proposed defense objectives can greatly re-
duce the attack accuracy from 37.6% to 0.5%.
Meanwhile, the proposed objectives preserve
language models’ powerful generation ability.

1 Introduction

Social chatbots have been widely used to benefit
many applications from answering factual ques-
tions to showing emotional companionship. With
recent progress in large pretrained language mod-
els (Radford et al., 2019; Yang et al., 2019), some
attempts (Wolf et al., 2019; Zhang et al., 2020;
Ham et al., 2020; Shen et al., 2021; Sevegnani et al.,
2021; Gu et al., 2021b) are made to build chatbots
based on large generative language models (LMs).
To train such LM-based chatbots, private conversa-
tions are collected. Unfortunately, large language
models tend to memorize training data and some
private data can be recovered from models (Pan
et al., 2020; Carlini et al., 2021). Besides such
memorization problems, “overlearning” on simple
training objectives can reveal sensitive attributes
indirectly related to the learning task (Song and
Shmatikov, 2020). LM-based social chatbots es-
sentially inherit the privacy issues of general LMs

and the overlearning problem.
For example, as Figure 1 shows, when using a

fine-tuned GPT-2 as the encoder and decoder of
an LM-based social chatbot, if the learned repre-
sentation of each utterance can be obtained by an
adversary, then the adversary can build a classifier
to predict the persona information based on the
representation. As shown by the example, for five
out of 14 utterances, the attacker can successfully
predict the persona, which can be harmful if the
users (speakers of the utterances) do not prefer to
reveal the persona information. Thus, in practice,
when deploying such kinds of chatbots in real ap-
plications, we should first make sure that no private
information can be leaked by the models.

To systematically study the privacy issues in LM-
based social chatbots, there are several challenges.
First, there is no existing data that can be used to
quantify how much private information is revealed
by an LM. Second, there has been no existing work
showing how to attack utterance-level representa-
tions to obtain sensitive information. Third, there
has been no existing LM-based chatbot that can
defend against persona inference attacks, and no
study shows how to protect both known and un-
known persona attributes.

In this paper, to address the above challenges,
we use the fine-tuned GPT-2 as our chatbot. We
first collect a dataset by aligning personas with
corresponding utterances in PersonaChat dataset
(Zhang et al., 2018). Then we show that “overlearn-
ing” can happen for LM-based chatbots to reveal
personas of speakers. We build a single external
multi-layer perception (MLP) attacker model to
perform black-box persona inference attacks on
the utterance-level embeddings. With no access
to parameters of the chatbot, the attacker model
can infer speakers’ personas with 37.59% accu-
racy over 4,332 personas. The high accuracy of
the attacker model implies that the utterance-level
embeddings have potential vulnerabilities to reveal
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Context Attacks on LM Attacks on the defensed LM

Human A Hello, how are you tonight? I take things very literally I am engaged to be married

Human B Hello my friend. I am well. I am a happy person I like to go shopping with my daughters

Human A Good, glad to hear it. What do you do for fun? I do whatever it takes to get what I want My favorite color is blue

Human B I ride around the town on my cool bicycle. I love to ride my bike on the weekend My favorite color is blue

Human A Really? I really like mountain bike too. I also like to mountain bike My favorite color is blue

Human B I wish I lived in the mountains. I have never been out of the country My favorite color is blue

Human A Do you like nature? I have been to 12 national 
parks.

I like to visit national parks My favorite color is blue

Human B I love nature. I like looking at plants. I really love plants My favorite color is blue

Human A I love plants too, and hiking. In fact, I am 
actually an environmental activist.

I am an environmental engineer My favorite color is blue

Human B Cool, I am a vegan. I am a vegan My favorite color is blue

Human A Nice, do you have a favorite food? I love ham and cheese sandwiches I have my own salon

Human B My favorite dish is lentil curry. My favorite meal is chicken and rice My favorite color is blue

Human A I have never had that, but I want to try it now. I am a great cook I am a doctor

Human B What do you like to do the most? I do whatever it takes to get what I want I am studying to be a dentist










































Figure 1: Black-box persona inference attacks (over 4,332 personas) on a dialog. Every representation of the
utterance, which is based on the last hidden state of GPT-2, is attacked without defense (column of “Attacks on
LM”) and with defense (column of “Attacks on the defensed LM”). If the model can predict the persona of the
speaker based on the observed representation, then we regard it as a successful attack; otherwise, unsuccessful. In
practice, when deploying a model, a robust model which will reveal nothing of the encoded utterances is expected.

speakers’ private persona attributes. Thus, it is nec-
essary to improve training algorithms to address
such overlearning issues. Finally, we apply defense
learning strategies on the GPT-2 to prevent such
black-box attacks. We combine proposed KL diver-
gence loss (KL loss) with mutual information loss
(MI loss) (Song et al., 2019) as additional defense
objectives to train the GPT-2 and decrease the at-
tacker’s persona inference accuracy to 0.53%. Our
contributions can be summarized as follows:1

1): To the best of our knowledge, we are the first
to disclose and analyze the persona inference attack
for LM-based chatbots and treat it as a privacy risk.

2): We propose an effective defensive training
algorithm to prevent dialog representations from
leaking personas of the corresponding speakers by
uniform distribution approximation and mutual in-
formation minimization.

3): We conduct extensive experiments to quan-
tify both privacy and utility of proposed defense
mechanisms. Besides solving the persona leakage
issue, the proposed training algorithm has nearly
no negative influence on utility.

2 Related Work

Language models trained on private data suffer pri-
vacy risks of revealing sensitive information. Pre-
vious researches mainly considered black-box at-
tacks that assumed attackers only had access to

1Code is publicly available at https://github.
com/HKUST-KnowComp/Persona_leakage_and_
defense_in_GPT-2.

inputs and outputs of language models. Carlini
et al. (2021) performed black-box model inversion
attack on GPT-2 through descriptive prompts with
beam search. Lehman et al. (2021) examined
BERT pretrained on Electronic Health Records via
blank filling and model probing to recover Personal
Health Information. Furthermore, given black-box
access to a language model’s pre-train and fine-
tune stages, Zanella-Béguelin et al. (2020) showed
that sensitive sequences of the fine-tuning dataset
can be extracted. For the distributed client-server
setup, Malekzadeh et al. (2021) considered the sen-
sitive attribute leakage from the server side with
honest-but-curious (HBC) classifiers.

What is worse, for an LM-based chatbot, its train-
ing conversations are prone to include more private
attributes than other commonly-used corpora for
language modeling like BooksCorpus (Zhu et al.,
2015) and Wikipedia. Tigunova et al. (2019) pro-
posed Hidden Attribute Model (HAM) to extract
professions and genders of speakers from various
dialog datasets. Wu et al. (2020) further applied
Attribute Extractor to generate speakers’ attribute
triplets flexibly and suggested downstream tasks
based on the triplets. Pan et al. (2020) exploited
embeddings of language models to recover inputs’
digits and keywords. Though the setup of this work
is similar to ours, they merely consider simple cases
of data recovery with given rules and suffer great
utility degradation to obtain optimal defense per-
formance. For our work, there is no fixed pattern
or rule for the model input. Instead of finding key-
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words or recovering digits, we aim to infer more
complicated private attributes from such embed-
dings. Moreover, our proposed defenses have al-
most no influence on the utility.

3 Attacking on Language Models

In this section, we illustrate black-box persona in-
ference attacks on GPT-2 and our defense strategies.
In Section 3.1, we first give the problem formula-
tion. Then we describe the attack in Section 3.2.

3.1 Problem Formulation

We assume that there is a GPT-2 based chatbot f
pretrained on private conversations D. Only lan-
guage modeling is used to train the chatbot:

Lf (u; θf ) = −
|u|∑

i=1

log(Pr(wi|c, w0, w1, ..., wi−1)), (1)

where f refers to the LM-based chatbot with
given utterance u = {w0, w1, ..., w|u|−1} and
previous context c. An adversary owns
one external annotated dialog dataset Da =
{(U1, s1), (U2, s2), ..., (Un, sn)} with n conver-
sations where Ui indicates a list of utter-
ances {ui1, ui2, ..., uini} of i-th conversation and
si corresponds to a list of sensitive personas
{si1, si2, ..., sini} for corresponding utterance.
Each persona skj is an integer that can be mapped
to its persona according to a predefined dictionary
and 0 ≤ skj ≤ C − 1 where C is the total number
of predefined persona attributes. The goal of the
adversary is to infer speakers’ personas s from ut-
terances’ embeddings f(u) where u and s refer to
any utterance and its persona label.

3.2 Black-box Persona Inference Attack

The persona inference attack can be viewed as a
supervised classification task. For the black-box at-
tack setup, the adversary can only query the target
dialog model f with access to embeddings of adver-
sary’s inputs and cannot access or modify model
parameters θf . As shown in the left part of Fig-
ure 2, the adversary tries to build its attacker model
A with its external data Da and dialog model f .
The persona predictor’s output A(f(u)) is the es-
timated probability distribution over C persona at-
tributes. Its loss function LA exploits cross-entropy
between the predicted distribution and ground truth
distribution that can be formulated as:

LA(ukj , skj ; θA) = CE(A(f(ukj)), skj), (2)

where CE refers to cross-entropy loss between per-
sona label skj and A(f(ukj)).

A well-performed persona predictor A can cause
great privacy threats. For machine learning as a
service (MLaaS), A can be applied to perform a
man-in-the-middle attack on the application pro-
gramming interfaces. Moreover, even if the raw
data are protected and the transmission channel
is secure, a curious service provider can train its
attacker A to collect personas of service users.

4 Defense Learning Strategies

The LM training objective in Equation 1 only con-
siders the utility of chatbots. In later experiment
sections, we show that LM brings severe overlearn-
ing issues. Ideally, to achieve an optimal privacy-
preserving chatbot against persona inference at-
tacks, the probability distribution of the attacker
model A should be close to the uniform distribu-
tion. That is, the adversary cannot improve its infer-
ence accuracy from posterior estimation A(f(u))
and the accuracy is no better than making random
guesses on the persona attributes. Moreover, the
constraints on privacy should have minor degrada-
tion on the utility to maintain the strong generation
ability of chatbots.

Following the intuition that the adversary cannot
obtain better results than a random guess, in Sec-
tion 4.1, we propose KL loss that aims to flatten the
persona predictor’s estimated distribution. Based
on minimizing the mutual information between
hidden states f(u) of chatbots and private persona
attributes s, we propose MI loss in Section 4.2.
Lastly, we show the overall training objective in
Section 4.3.

4.1 KL Loss
KL loss aims to minimize the Kullback–Leibler
divergence between A(f(u)) and the uniform dis-
tribution. It flattens the distribution of A(f(u)) so
that the adversary cannot gain any useful knowl-
edge after training attacker model A. The KL
divergence between the uniform distribution and
A(f(u)) can be formulated as:

DKL(UNI||A(f(u))) = − 1

C

C−1∑

k=0

log(CPr(k|f(u), θA)),

(3)

where UNI indicates the uniform distribution and
k indicates the k-th persona label of C labels. For
optimization, we can leave out constant terms and
the logarithm (Mireshghallah et al., 2021) to obtain
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Attacker: I live in Seattle Attacker: My favorite color is blue

𝐿 + 𝐿

Sorry I meant Seattle .

Utterance TokensContext

… … … … … …

,… [EOS]

……

Attacker

…

Sorry I meant Seattle .

Utterance TokensContext

… … … … … …

,… [EOS]

……

Attacker

…

Context: Speaker A: I am a resident of settle. 
Speaker B: Where is settle? My life started in a trailer park.

Current Utterance: Speaker A: Sorry, I meant Seattle.

LM Head LM Head Defender

…Sorry , … Sorry , …

 

②① ① ①②

Figure 2: Scenarios for attacks without defense (left) and with defense (right). The GPT-2’s training stage is marked
by 1⃝ and the attacking stage is marked by 2⃝. Both language modeling and defender objectives are jointly trained
for the defense to optimize the GPT-2 model. After GPT-2’s training stage 1⃝ is finished, parameters of GPT-2 are
all frozen and then the attacking stage 2⃝ starts. The defender shares the same architecture as the attacker and uses
Lkl with Lmi as defense objectives.

the following loss function:

LD(u; θA) = − 1

C

C−1∑

k=0

Pr(k|f(u), θA). (4)

However, from the perspective of defenders, they
have no access to attacker model A and its param-
eters. Instead, they can build their own persona
predictor as a fake attacker. More specifically, they
may mimic the adversary to annotate a dataset D′

a

and a persona predictor Ap. Then the KL loss be-
comes:

Lkl(u; θAp , θf ) = − 1

C

C−1∑

k=0

Pr(k|f(u), θAp), (5)

where parameters of the chatbot θf and the fake
attacker θAp are updated via KL loss. The intuition
is to train the chatbot together with a fake attacker
to prevent model overlearning by flattening the
attacker model’s distribution.

4.2 MI Loss
The privacy constraint requires that hidden repre-
sentations should not reveal the persona attributes.
In other words, given any utterance u and persona
s behind the utterance u, we want to minimize the
mutual information between f(u) and s:

min
θf

I(f(u); s). (6)

Following the derivation in Song et al. (2019) and
Li et al. (2020), the upper bound can be formulated

as:

I(f(u); s) ≤ Eq(f(u)) DKL(q(s|f(u))||p(s)), (7)

where p(s) can be any distribution for s, q(x) refers
to probability distribution of model f parameter-
ized by θf and f(u) is assumed to be sampled from
the conditional distribution q(f(u)|x, s). However,
q(s|f(u)) is hard to estimate. Instead, we use
pΨ(s|f(u)) to approximate q(s|f(u)) via minimiz-
ing their KL divergence and then we can obtain the
following lower bound (Song et al., 2019):

Eq(f(u)) DKL(q(s|f(u))||p(s))
≥ Eq(f(u))[log pΨ(s|f(u))− log p(s)].

(8)

Therefore, our objective in Equation 6 can be for-
mulated as an adversarial training objective:

min
θf

max
Ψ

Eq(f(u))[log pΨ(s|f(u))− log p(s)]. (9)

log p(s) is independent of f(u), and we may leave
this term out in Equation 9:

min
θf

max
Ψ

Eq(f(u))[log pΨ(s|f(u))]. (10)

Then, Equation 10 illustrates an adversarial game
between an adversary pΨ who manages to infer
s from f(u) and a defender who modifies θf to
protect s from persona inference attack. Adver-
sarial training is widely used to protect sensitive
features in natural language processing (Elazar and
Goldberg, 2018; Coavoux et al., 2018; Li et al.,
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2018). Using the persona predictor model Ap with
softmax activation to learn pΨ, we obtain the final
objective for the defender:

min
θAp

max
θf

CE(Ap(f(u)), s). (11)

We can rewrite Equation 11 into two losses:
Lmi1(ukj , skj ; θAp) = CE(Ap(f(ukj)), skj) and
Lmi2(ukj , skj ; θf ) = −CE(Ap(f(ukj)), skj) for
the fake adversary and the chatbot respectively.
Then our MI loss can be formulated as:

Lmi = λ0Lmi1 + Lmi2, (12)

where λ0 controls the ratio between two the fake
attacker Ap and the defensed chatbot f .

4.3 Overall Objective
The right part of Figure 2 illustrates how the chatbot
is trained to address the black-box attack. The loss
function for the defender combines KL loss, MI
loss and LM loss. Notice that the fake adversary
objective in MI loss violates KL loss which tries to
make the distribution of Ap flatten. Our proposed
loss assigns more weights to the KL loss:

L = Lf + λ1Lkl + λ2Lmi, (13)

where λ1 and λ2 are hyper-parameters and λ1 ≥
10λ2 to flatten the distribution of Ap. Though the
chatbot trained with overall loss L still cannot inter-
fere training process of A during black-box attacks,
L aims to mitigate persona overlearning issues of
f to address such persona inference attacks.

5 Experiments

In this section, we conduct experiments to evaluate
the performance of privacy and utility for the pro-
posed defense learning strategies. In Section 5.1,
we give our experimental settings in detail. In Sec-
tion 5.2, we show the attacking performance with
and without defense. In Section 5.3, we perform
ablation study on defense objectives. In Section
5.4, we use automatic metrics to evaluate chatbots’
utility. We conduct various attack setups in Section
5.5 and perform a case study in Section 5.6.

5.1 Experimental Settings
Dataset. To train the GPT-2 as our chatbot, we use
the DialoGPT (Zhang et al., 2020) pretrained on
Reddit comment chains. Then we use PersonaChat
dataset (Zhang et al., 2018) to fine-tune the GPT-
2. To obtain annotated dataset Da for the adver-
sary, we align personas to corresponding utterances

Stat Type Value
Dialogs 10,907
Utterances (turns) 162,064
Unique personas 4,332
Total personas 98,056
Labeled turns 32,147
Avg. turns per dialog 14.86
Avg. labeled turns per dialog 2.95
Avg. words per turn 11.71

Table 1: Statistics of the aligned dataset.

through positive (utterance,persona) pairs provided
in Dialogue NLI (Welleck et al., 2019) dataset. For
those utterances with no annotations, we assign la-
bel −1 to them. We reshuffle the dataset to balance
the label distribution among train/val/test datasets
with the ratio of 8 : 1 : 1. We first let the attacker
and defender share the same training data. In later
sections, we will separate the annotated data for
the adversary and defender with no overlap. A
summary statistics of Da is shown in Table 1.

Attacker model. In our experiment, we use a
2-layer neural network with cross-entropy loss as
the attacker model. The attacker model exploits the
final layer embedding of the last token “<|endof-
text|>” from the GPT-2 as model input. We also
try other attacker model architectures (transformer
block based attackers) and input embeddings (aver-
age of all embeddings in the final layer of GPT-2),
but the attacking performance is worse than the
2-layer model mentioned above.

Evaluation Metrics. The evaluation metrics
are based on privacy and utility. For privacy, we
use persona inference accuracy and weighted F1-
score to evaluate the attacker’s performance. We
also use Bayesian Privacy (BP) (Gu et al., 2021a)
to quantify the attacker’s privacy loss for the es-
timated persona distribution. Top-k accuracy is
reported in the Appendix. For utility, we apply
BERTScore (Zhang* et al., 2020), Distinct (Li
et al., 2016), BLEU (Papineni et al., 2002) and per-
plexity (PPL) as evaluation metrics. BERTScore
and BLEU measure similarity between generated
outputs and ground truth while Distinct (Dist) fo-
cuses on diversity. Perplexity shows the uncertainty
when the LM model fits the data.

5.2 Privacy

Attacks without Defense. We list the attacking
performance of A in multiple scenarios shown in
Table 2. To demonstrate the overlearning issue of
GPT-2, we consider 2 baseline attacks. If the ad-
versary has no knowledge about persona attributes
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Acc F1 Max-Ratio

Random Pred 0 0 0.02
Best Guess 0.72 1.02e-3 100
LM 37.59 3.65e-1 1.34
LM+KL+MI 0.53 6.78e-5 81.87

LM+KL 14.43 1.13e-1 10.60
LM+MI 0.53 5.57e-5 99.84

Table 2: Evaluation on the privacy over 4,332 per-
sona labels. Acc and Max-Ratio are measured in %.
Acc refers to test persona inference accuracy. F1 uses
weighted average F1-score. Max-Ratio indicates the
ratio that the most frequent prediction shares among all
predictions. The worse the attack model performs, the
better privacy protection can be achieved.

distribution, then it can randomly guess over 4,332
labels (Random Pred). Otherwise the adversary
can perform Best Guess that only guesses the most
frequent persona in the dataset. LM indicates the
attacker performance that only language modeling
objective is applied to train the chatbot without
any defense mechanism. From the table, the test
persona inference accuracy on the LM achieves
37.59% while guessing on the label with most oc-
currences merely has 0.72% accuracy. That is, the
black-box persona inference attack has 52× the
accuracy of guessing. The huge performance gap
between the attacker model and the baseline guess
method indicates that simple language modeling
objective has serious overlearning issues that unin-
tentionally capture private personas of speakers.

Attacks on the Defensed LM. To avoid the per-
sona overlearning issue, we use additional defense
objectives illustrated in Section 4. LM+KL+MI
utilizes language modeling, KL loss and MI loss in
Equation 13 to train the GPT-2. As demonstrated in
Table 2, the attacker performance on LM+KL+MI
significantly reduces the attacking accuracy from
37.59% to 0.53% and F1-score drops from 0.37 to
nearly 0. This defense mechanism can even out-
perform Best Guess in terms of privacy protection.
That is, even if the adversary annotates its own
dataset to train an attacker model, the attacking
performance is still worse than simply guessing
the most frequent label. As a result, the black-box
persona prediction attack becomes useless after ap-
plying the defenses for the chatbot. The adversary
cannot obtain any speaker’s persona from the em-
bedding f(u) by training A.

To learn why the proposed defenses work so
well, we further examine the ratio of the most fre-
quent predicted label (Max-Ratio) among all pre-

dictions. The accuracy of Best Guess reveals that
the most frequent label in the test set has a ratio
of 0.72%. After applying KL loss and MI loss,
the attacker model tends to make predictions on a
single label. For LM+KL+MI, the Max-Ratio even
occupies 81.87% predictions. This implies that the
proposed defense strategies may have the potential
to fool the attacker model to make wrong predic-
tions on a single slot. We will further investigate
this implication in later sections.

Overall, the above experiment demonstrates that
our proposed defense learning strategies can effec-
tively mitigate the persona overlearning issue and
avoid black-box persona inference attacks.

5.3 Ablation Study
To show the effectiveness of proposed KL loss and
MI loss and how they affect the performance of
black-box persona inference attacks, we consider
the inclusion and exclusion of proposed defense
objectives. The result is shown in Table 2. LM+KL
indicates the GPT-2 is trained with language mod-
eling and KL loss. LM+MI applies language mod-
eling and MI loss. From the table, it can be seen
that LM+KL, LM+MI and LM+KL+MI are all able
to reduce the test accuracy of the attacks. The KL
loss is weaker from the perspective of defense, but
it tends to flatten the estimated persona distribu-
tion with much smaller Max-Ratio. The LM+MI
shares similar test accuracy and F1-score with
LM+KL+MI, but nearly all predictions are made on
a single persona label with a ratio of 99.84%. This
suggests that MI loss causes the attacker model to
predict all labels on a single persona attribute. After
KL loss is applied on LM+KL+MI, the Max-Ratio
drops to 81.87%.

As discussed earlier, high Max-Ratio may also
cause privacy leakage. Suppose the adversary
knows the persona with Max-Ratio, then it can
improve its guess by not predicting this persona,
which is a threat for fewer persona labels (for ex-
ample, binary classification). These results verify
that KL loss introduces flatter estimation and MI
loss is more effective against persona overlearning,
which conforms to our intuition of their objectives
in Section 4.

5.4 Utility
Besides privacy, utility is another key objective to
train a chatbot. Several automatic metrics are con-
sidered to evaluate the generation performance. For
generation, we use GPT-2 to generate responses of
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PPL Distinct BLEU BERTScore
Dist-1 Dist-2 BLEU-1 BLEU-2 BLEU-4 Precision Recall F1

LM 14.821 0.952 0.879 0.121 0.0551 0.0123 0.860 0.843 0.851
LM+KL 28.926 0.954 0.880 0.121 0.0558 0.0130 0.859 0.844 0.851
LM+MI 18.740 0.953 0.880 0.118 0.0531 0.0121 0.859 0.843 0.851
LM+KL+MI 19.674 0.953 0.880 0.119 0.0525 0.0105 0.858 0.842 0.850

Table 3: Evaluation on the utility over 4,332 persona labels.

Unseen (0-2) Overall (0-7)

Acc F1 Max-Ratio BPu Acc F1 Max-Ratio BPu

Random Pred 34.42 0.35 33.90 0 13.21 0.14 13.35 0
Best Guess 56.84 0.41 100 2.60e-1 22.67 0.08 100 2.60e-1
LM 86.83 0.91 50.72 2.11e-3 72.37 0.72 20.94 3.04e-3
LM+KL+MI 28.68 0.37 58.15 2.84e-4 30.26 0.21 77.94 2.65e-4

Table 4: Evaluation on the privacy for 8 clusters. Unseen shows the results only for the first 3 persona labels that
defender has never seen. Overall refers to the results on all 8 labels. Acc and Max-Ratio are measured in %. BPu

corresponds to Bayesian Privacy loss on the uniform distribution. Still, the worse the attack model performs, the
better privacy protection can be achieved.

the second speaker (Human B in Figure 1) with all
previous turns as context. Then we compared the
generated model outputs with ground truth replies.
We use Dist-1 and Dist-2 to count ratios of dis-
tinct unigrams and bigrams. BLEU-1, BLEU-2 and
BLEU-4 are applied to evaluate generation simi-
larity with ground truth. Due to the one-to-many
nature of chit-chats, the BLEU is not adequate to
compare generated responses with ground truth.
Hence, we adapt Precision, Recall and Precision
of BERTScore to measure the similarity in the em-
bedding space.

The evaluation result is shown in Table 3, where
same models from Table 2 are evaluated. The re-
sult indicates that adding KL loss will increase the
perplexity greatly from 14.8 to 28.9. After combin-
ing KL loss with MI loss, its perplexity decreases
to 19.674. A plausible explanation is that KL loss
confuses the persona predictor and indirectly in-
creases the uncertainty of the GPT-2. All GPT-2
models have relatively low BLEU scores due to
the one-to-many mapping between contexts and
responses. For Distinct and BERTScore, there are
only minor differences between LM and defensed
LMs. Though the uncertainty increases after ap-
plying KL loss and MI loss, it does no harm to the
quality of generation. In summary, there is almost
no negative influence on the utility after applying
the proposed defense strategies.

5.5 More Setups on Attacks

Attacks on Imbalanced Data Distribution. Pre-
vious black-box attacks usually assume that the
annotated dataset Da must share similar data distri-

bution with the defender’s training data. To exam-
ine the performance of defense strategies on unseen
personas, we assign the adversary’s dataset Da with
labels that the defender cannot acquire. We split
data with 500 persona labels that are uniquely held
by the adversary. The defender owns 8,031 con-
versations with persona labels ranging from 500 to
4,331 while the adversary holds 2,376 dialogues
with persona labels ranging from 0 to 4,331. For
testing, 500 conversations with persona labels rang-
ing from 0 to 4,331 are used.

Under imbalanced data distribution, the attack
on the defensed LM has Acc 0.47%, F1 1.90e-3
and Max-Ratio 94.06%. The persona inference
accuracy is still very low and the attacker model
tends to predict more on a single persona label than
the balanced data distribution setup. This result
shows that the proposed overall loss can also pre-
vent black-box persona inference attacks on unseen
personas. It also verifies previous suggestions that
combining LM loss with MI loss may fool the at-
tacker model to make wrong predictions.

Attacks on Fewer Persona Labels. The above
experiments are based on 4,332 persona labels. In
fact, many personas share similar meanings and
can be further clustered. Besides, to better evaluate
privacy loss for the estimated distribution, a smaller
label space is preferred. Therefore, it is necessary
to consider defense performance on a smaller la-
bel space. We use Sentence-BERT (Reimers and
Gurevych, 2020) to embed all persona sentences
and perform k-means clustering on the embeddings
to obtain 8 clusters. We manually checked these
clusters and classified them as cars, food, animals
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5): Bot Oh that is not good, I am in the 
military.

I am in the army

6): User What do you do in the military? I am in the army

7): Bot I am in the navy, the food is so 
amazing.

I would be honored to give 
my life for my country

8): User Do you have any children? I want to have two kids

9): Bot Yes, they are all grown up. I have a son

10): User Well, I like to watch game of 
thrones with my family.

I love watching game of 
thrones

I understand that, I am too. I love the beach

What do you like to do? I love animals

I love to bake and spend time 
with my family.

My favorite color is blue

I like to watch game of thrones. My favorite color is blue

I have never seen it before. I have my own salon

Do you have any favorite music? My favorite color is blue

Context:    1): Bot: Hi, how are you doing?           2): User: Not great! I hate school.
3): Bot: Oh no, what’s wrong with your school?     4): User: I just do not like it! Plus I am so worried about money.          
Generation & attack on LM Generation & attack on the defensed LM






















5): Bot

6): User

7): Bot

8): User

9): Bot

10): User

Figure 3: Black-box persona inference attacks on chit-chats between the user (the authors of this paper) and chatbots.
For both conversations, the “context” is fixed and used as the first four utterances. Then the bot and the user start
interactive conversations with the “context”. Since there is no gold standard, the results are annotated by the authors.

(pets), family information, hobbies, jobs, personal
information and music tastes respectively. To eval-
uate how the clustering performs, we randomly
sample 100 utterances with clustered labels and in-
vite two volunteers to inspect those samples. Both
of them agree on 90% of the clustered annotations.
After manual inspection of the remaining 10% an-
notations, the clustering error rate is 8%. Following
previous imbalanced data split, we assign data in
the first 3 clusters only to the adversary to make the
data distribution imbalanced. Here, the defender
owns 6,654 conversations with persona labels rang-
ing from 3 to 7 while the adversary holds 3,753
dialogues with persona labels ranging from 0 to 7.
For testing, 500 conversations with persona labels
ranging from 0 to 7 are used.

The attacking performance for both unseen la-
bels and all labels is displayed in Table 4. BPu

measures the KL divergence DKL(F0||A(f(u)))
where F0 refers to uniform distribution. For im-
balanced data distribution with a small label space,
our proposed defenses can still achieve much lower
attack accuracy than LM on both Unseen and Over-
all. However, for Overall, LM+KL+MI has higher
accuracy with a lower F1-score compared with two
baselines. This indicates that proposed defenses
fail to protect privacy as we desired in the baselines.
For BPu, LM+KL+MI are around 10 times smaller
than LM. It means that after applying defense objec-
tives, the attacker’s estimated distribution is much
closer to the uniform distribution. Thus the effec-
tiveness of the KL loss is verified. In addition,
Max-Ratio with 8 clusters on Unseen is smaller
than 4,332 labels even though the distribution of 8
clusters is obviously tighter. Still, the Max-Ratio
of 58.15% accounts for a much larger fraction than
other predictions. In summary, the above results
imply that for the smaller label space, our proposed
defense objectives are still effective even on unseen

persona labels.

5.6 Case Study

In Figure 3, we give an example of the persona in-
ference attack, where conversations are generated
between the chatbot and the user with the given
context. We manually mark True/False on the pre-
dicted results. As shown in the figure, there are
several successful attacks on LM and no correct
prediction on the defensed LM. For attacks on LM,
speakers’ hobbies and jobs can be inferred. For
incorrect predictions, the attacker model can still
predict context-aware personas. After applying
proposed defense learning strategies, the predicted
personas become irrelevant with context and mostly
predict “My favorite color is blue.” In fact, it is
the most frequent prediction for LM+KL+MI over
4,332 persona labels. This attack example illus-
trates that our defense objectives can prevent the
black-box persona inference attack from inferring
relevant personas.

6 Conclusion

In this paper, we show that LM-based chatbots
tend to reveal personas of speakers and propose
effective defense objectives to prevent GPT-2 from
overlearning. Unlike other works that suffer from
utility degradation, our defense learning strategies
do no harm to the powerful generation ability of
LM-based chatbots. We conduct extensive exper-
iments to evaluate both privacy and utility. We
perform black-box persona inference attacks un-
der various setups to demonstrate the robustness of
proposed defense learning strategies. In addition,
we use automatic metrics to show that proposed
defense learning strategies maintain the utility. For
future work, we suggest working on flattening the
distributions of attacker models.
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7 Ethical Considerations

We declare that all authors of this paper acknowl-
edge the ACM Code of Ethics and honor the code
of conduct. This work essentially considers black-
box attacks on the private persona attributes and
proposes effective learning strategies to prevent
chatbots from overlearning private personas.

Dataset. During our dataset collection, all the
conversations and personas are collected from pub-
licly available datasets including PersonaChat and
DNLI. All the speakers are anonymized and no
identifiable personal information is included.

Model. For training our LM-based chatbots, we
follow standard methods. We are well aware of the
bias issue inside current language models. In the
future, if there are other fairer language models, we
will extend our defenses on them.
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Data

𝓐: LM

𝓐: LM+KL+MI

𝓐𝒑: Defender

Figure 4: The test set data distribution (Data) and av-
erage estimated distributions of persona predictors (A
and Ap) over imbalanced 8 clusters.

A Training details.

For each conversation, the utterances are concate-
nated by the special token “<|endoftext|>” to train
the GPT-2. To decode outputs from GPT-2, we ap-
ply the Nucleus Sampling (Holtzman et al., 2020)
method. We set top-p = 0.9 with a temperature
coefficient 0.9 to sample words from the GPT-2.
For optimization, we set 2 AdamW optimizers
(Loshchilov and Hutter, 2019) for the chatbot and
the persona predictor respectively. The learning
rate is 3e-5 with linear warm-up and decay. For
hyper-parameters, we set λ0 = 1, λ1 = 10 and
λ2 = 1.

B Comparison of Internal Distribution
between A and Ap

To make predictions on personas, the argmax func-
tion is used for the estimated distribution of persona
predictors. However, the internal distribution con-
veys crucial information about how the persona
predictors estimate f(u). We follow the setup of
imbalanced data split of 8 clusters in Section 5.5 to
examine persona predictors of attacker A and fake
attacker Ap.

Figure 4 shows the data distribution of the test
set and average distribution after softmax activation
over the 8 labels for attacker A and defender Ap.
For attacker A, we consider the attack on LM and
LM+KL+MI. The defender Ap tends to have a large
difference with Data and tries to flatten its distribu-
tion among its own training set (the last 5 labels).
This behavior conforms to the KL loss’s objective
that aims to flatten the distribution and deviate from
the ground truth distribution. For attacker A, dis-
tributions of both LM and LM+KL+MI seem close
to the ground truth distribution. This indicates that
the attacker model A can still learn statistical in-

Human A Hello, how are you tonight?

Human B
LM
LM+KL+MI

Hello my friend. I am well.
I am fine and you?
Hi, I am good, you? What do you like to do for 
fun?

Human A Good, glad to hear it. What do you do for fun?

Human B
LM
LM+KL+MI

I ride around the town on my cool bicycle.
I like to go to the beach.
I collect civil war antiques, and to read, you?

Human A
Human B
Human A

Human B
Human A

Human B
Human A

Really? I really like mountain bike too.
I wish I lived in the mountains.
Do you like nature? I have been to 12 national 
parks.
I love nature. I like looking at plants.
I love plants too, and hiking. In fact, I am actually 
an environmental activist.
Cool, I am a vegan.
Nice, do you have a favorite food?

Human B
LM
LM+KL+MI

My favorite dish is lentil curry.
I do not like meat.
I do not eat meat.

Human A I have never had that, but I want to try it now.

Human B
LM

LM+KL+MI

What do you like to do the most?
It is very good. I also really enjoy watching funny 
videos of comedians.
It is amazing. My wife makes it.

Figure 5: Dialog generation example on Human B. All
previous utterances between A and B are used as context
to generate responses.

formation about personas. However, its attacking
performance is poor. The poor performance im-
plies our proposed defense learning strategies may
obfuscate Attacker for estimating single sample
f(u) and finally make the wrong prediction.

C More on Case Study

C.1 Example of Generation

To show an intuition view on utility, we provide
one generation sample shown in Figure 5. Both
LM and LM+KL+MI are able to generate fluent
and proper relies. Moreover, they tend to maintain
coherence with previous contexts. For example, it
is mentioned in the context that Human B is a vegan
and both chatbots respond that they do not eat meat
for the food preference. This generation example
shows that proposed defense learning objectives
preserve the model utility.

C.2 More Examples of Persona Inference

Here, we give two more examples of the persona in-
ference attacks in Table 6. The first example shows
one successful defense. For the second example,
both attackers with and without defense fail to pre-
dict the ground truth persona. Still, we can see that
LM+KL+MI predicts personas that are irrelevant
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Top-1 Top-3 Top-5 Top-10 Top-50 Top-100 Top-500 Top-2000

LM 37.59 55.57 63.28 72.76 87.19 91.54 97.79 99.60
LM+KL+MI 0.53 1.80 2.24 3.20 8.64 12.10 30.57 80.22

Table 5: Evaluation on the top-k accuracy over 4,332 clusters.

Dialog Context 1
Human A: Hi how are you doing?
Human B: I am great and you?
Human A: I am great, just reading.
Human B: I am listening to the rolling stones, I love them.
Human A: Is that your favorite band?
Human B: Yes it is. I am working right now too.
Human A: Where do you work at?
Human B: IBM in Chicago, what about you?
Persona Prediction:
LM: I currently work for IBM in Chicago. ✓
LM+KL+MI: I love cats. ✗

Dialog Context 2
Human A: Hello there my name is Dr.Lucy. How are you?
Human B: I am great, loving this city life, how are you?
Human A: I am well thank you. I miss my country life in
Spain.
Human B: My older brother lives in Spain, how is it?
Human A: It is beautiful. I hope to take my family back
there.
Human B: Yes, maybe i will take my girlfriend that I love
there one day.
Human A: Oh, how long have you two been together?
Human B: Very long, she was with me when I colored my
hair pink.
Human A: That is awesome. What type of music do you
two listen to?
Human B: I like reading music, what about you?
Human A: Hip hop is my favorite. Do you play an instru-
ment?
Persona Prediction:
Ground truth: My favorite music is hip hop.
LM: I know how to play the guitar. ✗
LM+KL+MI: My favorite food is pizza. ✗

Table 6: More persona inference attack examples. The
embeddings of the final utterance with orange color are
used for inferring B’s persona.

to the context. However, LM’s output “I know how
to play the guitar.” is much closer to the context
about music and instruments. Without any defense,
the above examples show that the attacker model
can still predict context-aware personas even if its
predictions are wrong. After applying the proposed
defenses, the attacker model cannot predict mean-
ingful personas relevant to the context.

D Evaluation on Top-k Accuracy

Previous experiments mainly consider accuracy as
the evaluation metric. In this section, we use top-k
accuracy for the black-box persona inference at-
tacks to measure privacy protection. As shown in
Table 5, our defense is much more robust than LM

when k ≤ 50. When k is larger than 500, the de-
fense degrades rapidly as k increases. This result
implies that the ground truth personas mostly lie
in the top 2,000 predictions even if the defense is
applied. For a smaller k, our proposed defense
learning strategies are still effective.
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