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Abstract

Most entity linking systems, whether mono or
multilingual, link mentions to a single English
knowledge base. Few have considered link-
ing non-English text to a non-English KB, and
therefore, transferring an English entity link-
ing model to both a new document and KB lan-
guage. We consider the task of zero-shot cross-
language transfer of entity linking systems to
a new language and KB. We find that a system
trained with multilingual representations does
reasonably well, and propose improvements to
system training that lead to improved recall in
most datasets, often matching the in-language
performance. We further conduct a detailed
evaluation to elucidate the challenges of this
setting.

1 Introduction

Entity linking – the process of matching mentions
of people, places or organizations with a relevant
knowledge base (KB) entry – has often focused on
linking English text. Cross-language linking often
uses English KBs for matching to non-English text.
While transferring a system to a new document
language presents challenges, it does not consider
issues that arise when transferring to a new KB
language. KBs in different languages consider dif-
ferent topics, and matching text within the same
language presents different challenges from build-
ing cross-language representations. People build
KBs in many different languages, and we should
explore how to link documents to these KBs.

This paper considers zero-shot cross-language
adaptation of a trained entity linking system to a
new monolingual setting: the same new language
for both the query document and KB. We consider
adaptation so as to utilize the extensive annotated
data resources for English, improving entity link-
ing on languages that have little to no training
data. Consider the example in Figure 1, which
links the Spanish language mention Senado (Sen-

ate) to the KB entry Senado de la República (Sen-
ate of the Republic of Mexico). An entity linker
uses the mention text and surrounding sentence
paired with the KB entry (including information
such as the name, description) to score the likeli-
hood of a match. Many approaches to entity linking
learn these linkages by training on a set of hand-
annotated links in the desired language. If there are
no or few language-specific annotations, how can
we train a model on an annotation-rich language to
perform well on other languages?

Similar to the architecture used in a cross-
language setting (Schumacher et al., 2021), we
take a neural approach to entity linking and use a
multilingual pretrained transformer model, XLM-
Roberta (XLM-R) (Conneau et al., 2019), to build
representations of the available text for a mention
and candidate entity pair. We feed each of these rep-
resentations through a feed forward neural model
to produce a likelihood score. XLM-R is a mul-
tilingual model that yields robust representations
of text in a wide variety of languages. However,
we find that even with the cross-language ability of
XLM-R, in-language annotation data is key to an
accurate linker. We thus propose ways to improve
zero-shot cross-language transfer of a trained linker
from one language to another.

We adapt a method from Chen and Cardie
(2018) to add an adversarial objective to linker
training which uses an intermediate layer in the
linker to transform language-specific embeddings
to language-agnostic via a language classification
module. Similar approaches (Chen et al., 2019)
have been used in other multilingual NLP tasks,
but have yet to be explored in EL. To train this
language-agnostic layer, we force the language
classifier alone to predict the incorrect language
label for unannotated portions of the source (e.g.,
English) and target (e.g., Spanish) text. We jointly
train the ranker and the language classifier using
the correct source (e.g., English) language labels.
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...lo acompañan el presidente del Senado ...

name Senado de la República

desc. El Senado de los Estados Unidos ...

Figure 1: Example Spanish mention Senado, which is
a link to the Spanish KB entity Senado de la República
(the Senate of Mexico)

which encourages the name and mention represen-
tation to be language-independent.

Second, we augment the entity linker with in-
formation from the target language KB to capture
popularity of each entity, better handling entities
that are common in the target language but rare in
the source. We find that both model adjustments im-
prove zero-shot performance on several language
pairs, and that the adversarial model specifically
produces consistent improvement in recall. Overall,
we demonstrate that entity linking models can be
effectively adapted to a new language for both the
query document and KB.

2 Entity Linking Model

Figure 1 shows an example mention in Spanish
(Senado) linked to a Spanish-language KB entry –
Senado de la República for the Spanish mention.
A linker will compare the text of the mention to the
name of the entity, and consider information avail-
able in the context of the mention (the surrounding
sentences). the entity description, and the mention
and entity types.

One approach to handling linking in multiple lan-
gages is to train separate models. While this works
well for languages with a large amount of anno-
tated data (English), others have far less (Span-
ish). Additionally, training a new model for each
language does not scale well to many languages.
Instead, we pursue building a model that can be
trained on entity linking annotations in a single lan-
guage and transferred to another without additional
annotations: cross-language entity linking.

2.1 Architecture

We use a standard neural ranking architecture to
focus on the mechanisms of transfer that has been
applied successfully in cross-language entity link-
ing (Schumacher et al., 2021). To score a men-
tion m and and candidate entity e, we leverage a
pointwise neural ranker inspired by the architecture
of Dehghani et al. (2017). This produces a score

for each mention-entity pair, creating a ranking of
entities specific to each mention. Additionally, this
pointwise approach allows scoring of previously
unseen entities. We select a subset of entities to
score using a triage system (§5.)

Our ranker captures two common sources of in-
formation about the entity – the mention string and
entity name, and the context of the mention and
the entity description. These sources are not KB
specific (e.g., type information) and thus transfer to
different KBs. We create separate multilingual rep-
resentations for the mention string and entity name
(ms and es), and the mention and entity context
(mc and ec). The string and context pairs are fed
into separate multilayer perceptrons (MLP), out-
putting an embedding that models the relationship
between the entity and the mention. For exam-
ple, we input ms and es into a text-specific hidden
layer hs which outputs a combined representation
rs, and we input mc and ec into a context-specific
hidden layer hc which outputs a representation rc.
These representations rs and rc are then fed into
a final MLP, which produces a score between −1
and 1.

To train our model parameters θ, we score a men-
tion m and a correct entity link e+, and separately
score the same mention paired with n randomly
sampled negative entities e−. We apply hinge loss
between the positive pair and the best performing
negative pair;

L(θ) = max{0, ε− (S({m, e+}; θ)−
max{S({m, e0−}; θ) . . . S({m, cn−}; θ)}}

We use the resulting loss to backpropagate through
the entire network. We use random combinations
of parameters to select the best model configuration.
For parameter values see Appendix Table 3.

2.2 Multilingual Representations
To create representations of the name and con-
text for a mention-entity pair, we use XLM-
Roberta (XLM-R) (Conneau et al., 2019), a mul-
tilingual transformer representation model. XLM-
R outperforms other transformer models (such as
mBERT (Devlin et al., 2019)) on multilingual tasks,
and we confirmed this behavior in our initial ex-
periments. Consider the Spanish example in Fig-
ure 1. We create a representation of the mention
text ms, Senado, by feeding the entire sentence
through XLM-R, and form a single representation
using max pooling on only the subwords of the
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mention. We create a representation of the entity
name es, Senado de la República in the same way,
except without any surrounding context.

To create mc, we select the sentences surround-
ing the mention up to XLM-R’s sub-word limit.
We use max pooling over XLM-R to create a single
representation, following Schumacher et al. (2021).
The same process is used to encode the entity con-
text ec, but uses the definition in the KB, using the
first 512 subword tokens from that description.

3 Multilingual Transfer

The use of XLM-R makes our model inherently
multilingual, allowing a single model to build rep-
resentations in several languages. While this allows
our models to do fairly well on previously unseen
languages, we consider ways to further improve
models during transfer: adaptation of the name
matching model, and adaptation to the new knowl-
edge base.

3.1 Language Adaptation

One source of error may arise from a linker learning
language-specific patterns which do not generalize
to other languages. Consider the example in Figure
1: would the model recognize that Spanish mention
Senado is not linked to the United States Senate?
While XLM-R provides a multilingual representa-
tion, the entity linking model has not been trained
to learn this nuance in Spanish.

We add an adversarial objective to ensure that
the model focuses on language-agnostic represen-
tations of the text, which will better transfer to
other languages. The advantage of this approach is
that it does not require annotated training data, but
uses unannotated data to encourage desired model
behavior. Chen and Cardie (2018) train a text clas-
sification system with an adversarial objective that
forces the network to learn domain-invariant fea-
tures. In addition to a standard text classifier that
uses features from a shared and domain specific
feature extractor, they add a domain discriminator
which uses the shared feature extractor as input.
They run two training passes: 1) a training pass
for the entire network that uses the correct clas-
sification and domain labels; 2) an adversarially
trained domain discriminator and only the shared
feature extractor, which uses the inverse of domain
labels as the target. Prediction only uses the stan-
dard classification output. This objective improves
performance when classifying text from previously

unseen domains. We use this approach to learn
language-invariant representations for our linking
task, so they can be transferred to a new languages
using only source-language linking annotations.

Our proposed adversarial approach is described
in Algorithm 1 and illustrated in Figure 2. For each
epoch, we first adversarially train the language clas-
sifier. Using pairs of unannotated English A and
L2 B text, we create representations in the same
method as for ms as described §2.2. Initially, we
use randomly selected names from the ontology
for A and B (see §6.3 for other approaches). Each
of the two representations are fed into the shared
invariant layer hs0, the language classifier hadv,
and softmaxed to produce separate language like-
lihood scores for the English pA and L2 pB text.
Importantly, we calculate the mean squared error
(MSE) using the inverted language labels – for the
English input, we calculate the error as if it was
labelled as L2, and for the L2 input, we treat it as
English. If we train with multiple L2 languages at
the same time; all incorrect labels are applied with
equal probability. We stop training the adversarial
step after 50 epochs for one dataset (Wiki) based
on development data performance.

We also run a standard entity linking training
pass, in which we jointly train the linker and the
language classifier using our set of training men-
tions M and corresponding entity labels E. The
entity linking loss is unchanged from §2.1, except
that the ms and es are first fed separately through
the shared invariant layer hs0. All h hidden layers
in the model are randomly initialized weight vec-
tors and learned in the training process. The loss
for the language classifier is unchanged from the
first step except that the correct labels are used. The
effect of the language classifier loss is controlled by
the parameter λ, which we set to be either 0.25 or
0.01 depending on the dataset. Models including
this are referred to as +A. Further implementation
details are available in §6.3. We experimented with
adding the additional layers hs0 and not apply-
ing the adversarial objective, and feeding both the
language-invariant (e.g., m) and language-specific
representations (e.g., rm)) into the linker, but both
performed worse in development experiments.

4 Algorithms

4.1 KB Adaptation

A second source of error comes from a change in
the coverage of the KB, not necessarily due to the
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Figure 2: Our adversarial training approach consists of two steps – standard entity linking paired with training
a language classifier (center), and adversarially training the language classifier (right). The hidden layer hs0 is
shared.

Algorithm 1 Pseudo-code of adversarial model
training. In each epoch, a random set of text
(y = 5) is used to adversarially train the language
classifier. Then, the entity linker and the language
classifier with the correct labels are jointly trained.
Require: Mentions M, entity labels E; English

Text A; L2 Text B; Hyperparameter λ > 0, y,
z ∈ N , num_epochs

1: for ep = 0 to num_epochs do
2: ladv, l = 0
3: for i = 0 to y do . Adversarial Step
4: tA = representation of Ai

5: tB = representation of Bi

6: pA =Hadv(Hs0(tA))
7: pB =Hadv(Hs0(tB)) . Calculate

Lang scores
8: ladv += MSE(pA, L2) + MSE(pB ,

ENG) . Calculate Loss using reversed labels
9: UpdateHadv using ladv

10: for i = 0 to z do . Main Step
11: m = representation of Mi

12: rm =Hs0(m)
13: e = representation of Ei

14: re =Hs0(e)
15: l = EL Loss (Eq. 1) with rm and re
16: pM =Hadv(rm)
17: pE =Hadv(re)

. Calculate Lang scores
18: l += λ (MSE(pM , ENG) + MSE(pE ,

ENG)) . Calculate Loss using correct labels
19: Update all parameters exceptHadv using l

change in language. Trained entity linkers tend
to do well on popular, or previously seen entities.
New entities, which are common when a linker
changes to a new KB, do worse. Consider the ex-
ample in Figure 1: a linker trained on English will
favor the KB entry for the U.S. Senate, more com-
mon in English language documents, as opposed
to the Mexican Senate, which is more common in
Spanish documents. This is especially important
since we consider models transferred from TAC to
our Wiki data (§5), which cover different topics.

We adapt the model to a KB in a new lan-
guage by supplying the entity linker with popu-
larity measures drawn from the new KB. This in-
formation could normally be derived from some
annotated entity linking data, but in the zero-shot
cross-language transfer setting we instead leverage
the cross-links among entities in the KB, a good
indicator of entity popularity. For example, the
entity Senado de la República might have a link to
the lower legislature of Mexico, Cámara de Diputa-
dos, and the President of Senate, Presidente de la
Cámara de Senadores. Others, such as Senado de
Arizona, are likely to have fewer. We count unique
cross-links between entities, divide by the median
number of links, and feed the result into the final
feed forward neural network h (indicated as +P).

5 Datasets

We consider entity linking datasets in multiple lan-
guages from two sources. We treat each language
as having a distinct KB, although entities may over-
lap in different languages. We predict NILs (men-
tions with no matching entity) as those where all
candidate entities are below a given threshold (−1
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unless otherwise noted). We evaluate using the
script from Ji et al. (2015): Precision, Recall, F1,
and Micro-averaged precision. See Appendix Sec-
tion A for implementation details.

TAC. The 2015 TAC KBP Entity Discovery
and Linking dataset (Ji et al., 2015) consists of
newswire and discussion posts in English, Spanish,
and Mandarin Chinese. A mention is linked to NIL
if there is no relevant entity in the KB. The KB is
based on BaseKB. KB entities without non-English
names are omitted.

Wiki. We created a multi-language entity link-
ing dataset from Wikipedia links (Pan et al., 2017a)
for Farsi and Russian. A preprocessed version of
Wikipedia1 is annotated with links to in-language
pages, which we treat as entities. We consider this
to be silver-standard data because–unlike TAC –
the annotations are automatically derived. Thus
the resulting distribution of mentions is different.
Comparing the number of exact matches between
the mention text and the entity name in Wikipedia
(e.g.,, in Farsi 54.5%) to TAC (e.g.,, in Spanish
21.2%) underscores that TAC is a more illustrative
dataset, thus we caution against treating Wikipedia
as a replacement for a human-annotated entity link-
ing dataset.

Triage. We use the triage system of Upadhyay
et al. (2018), which retrieves a reduced set of en-
tities for a mention for us to score. For a given
gold mention m, a triage system will provide a set
of k candidate entities e1 . . . ek. The system uses
Wikipedia cross-links to generate a prior probabil-
ity Pprior(ei|m) by estimating counts from those
mentions. Originally, this system was designed to
produce links for non-English mentions to English
titles. We tweak this approach by applying the
same pipeline, but for in-language titles, which did
not require any major algorithmic adaptations.

6 Model Evaluation

We begin with a zero-shot evaluation: how well
does a model trained on English (TAC) transfer
to a new language without in-language training
data? This baseline, which uses the same architec-
ture as Schumacher et al. (2021), leverages only
the crosslingual ability of XLM-R to apply En-
glish language annotations to the new languages.
We evaluate the English trained model on Spanish

1We thank the authors of Pan et al. (2017a) for providing
us with a preprocessed Wikipedia. We will work with the
authors to release the dataset.

(es) and Chinese (zh) for TAC, and Russian (ru)
and Farsi (fa) for Wiki. We also train a separate
model for each of these languages to establish an
in-language performance baseline. We illustrate
the difference in performance of an English-only
model as compared to an in-language trained one in
Figure 3; the dashed line above each metric shows
the increase in performance. To control for the ef-
fect of training set size we ensure that the training
sets are of equivalent size for each language by ran-
domly downsizing the larger training dataset (e.g.,
English) to match the smaller (e.g., Spanish). For
comparison, we include a simple nearest neighbor
baseline (noted as nn), which selects the highest
scoring mention-entity pair using cosine similar-
ity between the mention name ms and the entity
representation es.

We then apply our language (noted as +A) and
KB (noted as +AP) adaptation strategies for each
language, and measure the performance on both the
target and English language. In all cases, reported
metrics are averaged over three runs. We report
results for each language in the form of micro-
averaged precision (micro), recall (r), and F1. See
Appendix Table 4 for full results and additional
metrics, and Tables 5 and 6 for development results.

6.1 Transfer Performance

Figure 3 shows that zero-shot cross-language trans-
fer from English gives worse performance com-
pared to in-language models. Absolute values are
included in Appendix Table 4. For TAC languages
(es and zh) there is a large decrease in micro-avg
and F1, and the same for Wiki languages (fa and ru),
except that F1 decreases more significantly than re-
call, illustrating a drop in precision. The overall
drop in performance is not large - the largest drop
in F1 is only .1 less compared to the in-language
baseline. This illustrates that the linker is able
to transfer across language and knowledge bases
effectively. Compared to the baseline nearest neigh-
bor model, which one has the higher performance
improvement depends on the language. For exam-
ple, while Spanish F1 is nearly the same, Chinese
F1 is slightly higher with the nn, but in Farsi the
English-trained model is an improvement for F1.

We also evaluate other languages as sources of
transfer. Appendix Table 4 shows results on train-
ing models on Chinese using the +A approach and
testing on Spanish, demonstrating that our results
are not specific to English. Note that the same
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pattern appears when transferring from a Chinese
trained model to a Spanish model. While the Span-
ish performance is understandably worse when
transferring from Chinese instead of English, the
reduction of F1 performance is only −.086.

6.2 Language and KB adaptation

We train the TAC and Wiki datasets with different
configurations based on development results (see
§6.3): TAC: λ = 0.25 and the adversarial step
covers all of training; Wiki: λ = 0.01 and stop the
adversarial step after 50 epochs.

Applying the adversarial objective to English-
trained models usually increases recall compared
to the baseline English-trained models, and often
even compared to the in-language trained models.
For example, the English-trained, Chinese-tested
model sees a large drop in recall which is almost
completely eliminated when applying the adver-
sarial objective. This increase in recall leads to
nearly-equivalent F1 performance in Spanish and
Chinese in-language models and English trained
models with the adversarial objective. In short, ad-
versarial training greatly improves the models abil-
ity to locate the right KB entry, suggesting better
name matching. This recall-focused improvement
is useful for settings where high-recall is desired,
such as in search. The exception to this is Farsi –
this is likely because the high recall 0.934 of the
zero-shot model established a high starting point.
Compared to the nearest neighbor baseline, the +A
outperforms the baseline in all languages for F1,
nn F1, micro-avg., and recall. The same pattern ap-
pears when transferring a Chinese model instead of
English. The F1 performance is only −.017 below
the in-language trained model despite not sharing
a writing system.

We also explored transferring a multilingual
model: training on English with +A and testing
on all target languages at once (see Appendix Table
4). In almost all cases, the multilingual adversarial
approach performs worse than a single-language
one, but only slightly; it may be preferable when
targeting multiple languages. KB popularity (+AP)
has the largest effect on micro-average precision
by doing much better on rarer entities, specifically
in the TAC dataset. While in Chinese the improve-
ment in micro-average is larger in the +AP models
than in +A, in all other cases the micro-average is
close to the +A model.

We explored model behavior on different types

of entities using the TAC evaluation dataset and
provided mention types (see Appendix Table A).
For Person mentions, we see consistent perfor-
mance between in-language, English, and En-
glish+A trained models. While this is not unex-
pected in Spanish (which has similar names to
English), it is also true in Chinese, which uses a
different orthography than English. The largest per-
formance change occurred in Geo-Political Entities.
For Chinese, F1 drops 0.15 for an English trained
model compared to an in-language trained model,
but the deficit is erased in the English+A model. A
similar pattern occurs in Spanish, suggesting that
the adversarial model is able to improve the more
challenging entity types.

6.3 Design of Adversarial objective

How does the configuration of the +A model
change its behavior? We vary three factors and
measure results on TAC evaluation (full results
shown in Table 1): 1) the size of the coefficient
λ; 2) whether to train using the entity linking ob-
jective only for an additional 50 epochs instead of
for all epochs (for lower λ and additional entity
linking training, we found that both worked bet-
ter on Wiki development data, while a higher λ
and full training worked better for TAC); and 3)
training +A using randomly selected names from
English and the target language plausibly learns a
better name model than it does language-invariant
representations, so we instead train with the first
512 subwords of randomly selected descriptions.

Comparing to a Chinese trained model, we
considered versions with all non-baseline models
trained on the joint entity linking and adversar-
ial objective for 50 epochs, and the +EL models
trained on EL data for an additional 50. Our re-
ported setting for TAC, λ = 0.25 with name data,
performs best on recall, F1, and non-NIL F1. How-
ever, when using the description data and λ = 0.01
with or without additional EL training, a better
micro-averaged precision is achieved. Generally,
the models using name data perform slightly better
than those using descriptions, but the overall dif-
ference is slight (e.g., +.009 F1 for λ = 0.25 with
name, −.015 F1 with description), suggesting that
the model is learning better multilingual representa-
tions. Finally, recall generally performs best with a
higher λ and full adversarial training, and improves
less with a lower λ and EL only training.
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Figure 3: Compared to an English-only baseline (0.0 on y-axis), how do models with the adversarial objective
(+A), the adversarial objective with popularity (+PA), and a nearest neighbor baseline (nn) perform? While in
most cases, the performance of all models is below that of an in-language trained model (dashed line), +A most
closely matches the recall in most cases. Additionally, +PA is best able to improve micro-average, especially
compared to the poor performance of nn. All results and additional metrics are provided in Appendix Table 4.

6.4 Effect on English performance

What effect does forcing an English-trained model
to better orient to a target language have on English-
language performance? Table 2 shows TAC En-
glish evaluation results in three settings: 1) a base-
line linker with English training data matched to
the size of the target language’s training data; 2) the
added +A objective; 3) the added +AP objective.
These are the same models as in Table 2, except
tested on English.

Interestingly, the performance change is very
small: a small increase for micro-average and a
small decrease in F1 and non-NIL F1. The largest
drop in performance is less than 0.05. This illus-
trates the capacity of the model: it can adapt to a
new language while maintaining its performance
on the source language.

6.5 Analysis

While our training methods are effective, they are
inconsistent across our experiments. +A improves
performance more on TAC data (Spanish and Chi-
nese) than Wiki data (Farsi and Russian).

We postulate several explanations for this trend.

Test micro r F1 nn F1

zh 0.674 0.789 0.824 0.846
en base −.341 −.123 −.060 −.071

+A
na

m
e .25 −.190 −.001 +.009 −.003

.01 −.202 −.078 −.033 −.036
.25+ −.205 −.123 −.062 −.073
.01+ −.230 −.137 −.072 −.087

+A
de

sc

.25 −.317 −.048 −.015 −.012

.01 −.169 −.088 −.041 −.046
.25+ −.287 −.188 −.108 −.133
.01+ −.145 −.150 −.080 −.097

Table 1: How do adversarial settings affect perfor-
mance? We consider the coefficient λ, type of text
(names or descriptions), and entity-only training for 50
more epochs (i.e., we stop updating the language clas-
sifier, indiated by +). Comparing an in-language to an
English trained model using TAC Chinese evaluation,
we find that λ = .25 with name data performs best in
terms of recall, F1, and nn F1.
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First, the distribution of mentions is different be-
tween the two datasets. The lexical similarity be-
tween mentions and entity names – one measure
of how easy the mentions are to link – is much
higher in Wiki. For Farsi development mentions,
54.5% were exact matches and also had an over-
all Jaro-Winkler (Winkler, 1990) lexical similar-
ity of 94.1%. Compared to Spanish TAC (21.1%
exact, 71.4% similarity) and Chinese (28% exact,
66.1% similarity), the Farsi data is relatively easy
to link. While many entity linking studies rely on
Wikipedia data due to its availability, it is not rep-
resentative of other data types; we should build
more human-annotated entity linking resources in
non-English languages.

When comparing the drop in performance from
an in-language trained model to an English trained
model, recall drops in the TAC data, while preci-
sion drops in the Wiki data. The drop in precision
may be due to the fact that we use English TAC
data to train the zero-shot Wiki models, and that
recall is fairly easy given the high mention-entity
similarity. Another factor is the possibility that
Wikipedia text is less suited as adversarial training
data, compared to that from TAC. Thus, while see
an increase in recall in the Wiki models, but this
does not cancel out the reduction in precision.

7 Related Work

Many studies on entity linking (Dredze et al., 2010;
Durrett and Klein, 2014; Gupta et al., 2017; Lam-
ple et al., 2016; Francis-Landau et al., 2016; Cao
et al., 2018; Mueller and Durrett, 2018; Wang et al.,
2015; Witten and Milne, 2008; Piccinno and Fer-
ragina, 2014; Orr et al., 2020) have served as the
basis for developing cross-language systems, as has
increasing research in monolingual model transfer
in other information extraction tasks (Johnson et al.,
2019; Rahimi et al., 2019).

One multilingual model is Raiman and Raiman
(2018), which transfers an English-trained system
to French-language Wikipedia. They formulate a
type system as a mixed integer problem, which
they use to learn a type system from knowledge
graph relations. Their training approach uses broad
amounts of annotated data with type information
(e.g., all of English Wikipedia). Since we do not
train English Wikipedia models, and also do not
use that magnitude of training data, we were not
able to produce numbers using their system that are
comparable to ours despite our best efforts to do so.

Target micro F1 nn F1

en 0.484 0.672 0.797
zh+A +.009 +.014 +.015
zh+P +.030 −.025 −.031
en 0.472 0.678 0.802
es+A +.004 −.014 −.017
es+P +.011 −.036 −.043

Table 2: Compared to a baseline English TAC model
(with training set size reduced to the noted language’s
training set size), we find that English performance is
largely unchanged for both +A and +P.

Other recent work (Botha et al., 2020) uses a neural
approach to link mentions in multiple languages,
but differs from us by targeting language-agnostic
KBs that include text in multiple languages. Work
using unsupervised graph methods, such as Wang
et al. (2015), are applied in non-English language
pairs, such as Chinese, but are not transferred from
a secondary language.

The related task of cross-language entity link-
ing motivates approaches like transliteration (Mc-
Namee et al., 2011; Pan et al., 2017b), or mono-
lingual entity linking paired with translation (Ji
et al., 2015). Some (Tsai and Roth, 2016; Upad-
hyay et al., 2018) use the cross-language structure
of Wikipedia to build entity linkers, or Rijhwani
et al. (2019) study cross-language entity linking on
low-resource languages.

8 Conclusion

We explored how to build a monolingually-trained
entity linker that can be transferred to new lan-
guages that do not have annotated training data.
With a neural ranker model using XLM-R, we see
that while in-language trained models perform bet-
ter than English-trained models applied to second
languages, the performance decrease is not large.

We have validated several ways to improve these
zero-shot models and find that an adversarial lan-
guage classifier improves recall and F1 on many
datasets. Furthermore, by adjusting the adversarial
parameters, different performance objectives can
be achieved, such as maximizing recall. We also
present an analysis of our models, demonstrating
which settings have the highest expectation of suc-
cess. Overall, we find that training the model to
learn language-invariant representations is effec-
tive in improving performance when transferring
to both text and a KB in a new language.
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A Dataset

TAC The training set consists of mentions across
447 documents, and the evaluation set consists of
mention annotations across 502 documents. This
leaves us 14, 793 development mentions, of which
11, 344 are non-NIL.

Wiki Some BaseKB entities used in the TAC
dataset have Wikipedia links provided; we used
those links as seed entities for retrieving mentions,
retrieving a sample mention of those and adding
the remaining links in the page. We mark 20% of
the mentions as NIL.

Triage We use the system discussed in for both
the TAC and Wiki datasets. However, while the
triage system provides candidates in the same KB
as the Wiki data, not all entities in the TAC KB
have Wikipedia page titles. Therefore, the TAC
triage step requires an intermediate step - using the
Wikipedia titles generated by triage (k = 10), we
query a Lucene database of BaseKB for relevant
entities. For each title, we query BaseKB propor-
tional to the prior provided by the triage system,
meaning that we retrieve more BaseKB entities for
titles that have a higher triage score, resulting in
l = 200 entities. First, entities with Wikipedia ti-
tles are queried, followed by the entity name itself.
If none are found, we query the mention string -
this provides a small increase in triage recall.
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Parameter Values

Context Layer(s) [768], [512], [256], [512,256]
Mention Layer(s) [768], [512], [256], [512,256]
Final Layer(s) [512,256], [256,128], [128,64], [1024,512], [512], [256]
Dropout probability 0.1, 0.2, 0.5
Learning rate 1e-5, 5e-4, 1e-4, 5e-3, 1e-3

Table 3: To select parameters for the ranker, we tried 10 random combinations of the above parameters and selected
the configuration that performed best on the TAC development set. The selected parameter is in bold.

Spanish (es) evaluation Chinese (zh) evaluation
Training micro p r F1 nn F1 micro p r F1 nn F1

same 0.623 0.910 0.711 0.798 0.870 0.670 0.862 0.787 0.822 0.844
nn 0.375 0.924 0.633 0.751 0.809 0.244 0.910 0.719 0.803 0.826
en 0.565 0.925 0.635 0.753 0.810 0.371 0.893 0.647 0.750 0.757
en+A 0.615 0.923 0.706 0.800 0.876 0.472 0.877 0.770 0.820 0.839
en+P 0.632 0.919 0.616 0.738 0.790 0.462 0.869 0.636 0.734 0.734
en+PA 0.628 0.921 0.633 0.750 0.808 0.622 0.871 0.698 0.775 0.790
en+A (all) 0.562 0.917 0.694 0.790 0.862 0.466 0.882 0.722 0.794 0.813
zh 0.492 0.924 0.579 0.712 0.755 — — — — —
zh+A 0.523 0.901 0.690 0.781 0.852 — — — — —

Farsi (fa) evaluation Russian (ru) evaluation
Training micro p r F1 nn F1 micro p r F1 nn F1

same 0.838 0.902 0.958 0.929 0.908 0.526 0.729 0.827 0.775 0.721
nn 0.392 0.560 0.950 0.705 0.585 0.362 0.654 0.868 0.746 0.680
en 0.623 0.748 0.934 0.830 0.774 0.552 0.798 0.863 0.829 0.791
en+A 0.498 0.616 0.918 0.737 0.639 0.508 0.697 0.899 0.785 0.729
en+A (all) 0.525 0.631 0.955 0.759 0.668 0.516 0.758 0.852 0.802 0.755
en+P 0.627 0.700 0.958 0.809 0.741 0.565 0.700 0.889 0.783 0.728
en+PA 0.584 0.679 0.930 0.785 0.709 0.519 0.661 0.881 0.755 0.691

Table 4: Compared to an in-language trained model and a nearest-neighbor baseline (nn), how does a zero-shot
model trained only on English transfer? We find that while there is usually a performance improvement, it is
often not large. Can we recover some of that lost performance by using an adversarial objective (+A) or adding
knowledge base information (+P), or both (+PA)? We find that when applying an adversarial objective specifically,
recall is increased leading to higher F1 scores. For each setting, we report Micro-avg., precision, recall, F1, and
non-NIL F1 on TAC and Wiki datasets.
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Train /
Test

All Non-NIL
Model micro p r f1 micro p r f1 Epoch

zh/zh Baseline 0.795 0.890 0.830 0.859 0.801 0.884 0.884 0.884 50
en/zh Baseline 0.202 0.905 0.697 0.788 0.077 0.899 0.721 0.800 100
en/zh +A 0.439 0.897 0.732 0.806 0.367 0.892 0.764 0.823 50
en/zh +A 0.381 0.911 0.756 0.827 0.296 0.907 0.794 0.847 50
en/zh +PA 0.635 0.889 0.753 0.815 0.606 0.881 0.789 0.833 100
en/zh +A (Desc) 0.266 0.908 0.718 0.802 0.156 0.903 0.747 0.818
en/zh +PA (Desc) 0.645 0.885 0.774 0.826 0.618 0.877 0.815 0.845
en/zh +P 0.544 0.894 0.685 0.776 0.494 0.888 0.707 0.787 200
es/es Baseline 0.714 0.933 0.777 0.848 0.739 0.930 0.891 0.910 50
en/es Baseline 0.488 0.942 0.643 0.764 0.444 0.944 0.716 0.815 100
en/es +A 0.469 0.938 0.693 0.797 0.420 0.939 0.782 0.853 150
en/es +A (multi) 0.548 0.952 0.753 0.841 0.523 0.956 0.860 0.906 50
en/es +PA 0.654 0.931 0.695 0.796 0.660 0.931 0.784 0.851 100
en/es +A (Desc) 0.496 0.943 0.737 0.828 0.455 0.949 0.839 0.891
en/es +PA (Desc) 0.650 0.937 0.692 0.796 0.656 0.939 0.780 0.852
en/es +P 0.664 0.928 0.698 0.797 0.674 0.930 0.788 0.853 150
zh/es Baseline 0.378 0.942 0.661 0.777 0.301 0.943 0.739 0.829 550
zh/es +A 0.514 0.939 0.785 0.855 0.479 0.945 0.902 0.923 49

Table 5: Single runs of Development TAC results for our reported models, and the training epoch we report for
that configuration in the evaluation results table. Note that while we report results with the training sets equalized
(zh and en training are set to be of equal size) for evaluation, the full development results do not have equalized
training set sizes.

Train/Test Model micro p r f1 Eval Epoch
ru/ru Baseline 0.650 0.823 0.888 0.854 800
en/ru Baseline 0.484 0.762 0.855 0.806 550
en/ru +A 0.451 0.712 0.893 0.792 50
en/ru +A (multi) 0.4188 0.6517 0.8652 0.7434 200
en/ru +P 0.473 0.685 0.860 0.762 50
fa/fa Baseline 0.832 0.881 0.966 0.922 800
en/fa Baseline 0.603 0.720 0.928 0.811 150
en/fa +A 0.447 0.555 0.948 0.700 200
en/fa +A (multi) 0.448 0.538 0.966 0.691 50

Table 6: Single runs of Development Wiki results for select reported models, and the training epoch we report for
that configuration in the evaluation results table. Note that while we report results with the training sets equalized
(ru and en training are set to be of equal size) for evaluation, the full development results do not have equalized
training set sizes. For the +AP model, we report at Epoch 150 for Russian and 200 for Farsi, and for +P Farsi we
report Epoch 50 (same as in Russian). Note that with the Farsi +A (multi) model, since the best performing epoch
was at 50, in effect to EL-only training was performed.
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In-Language En En+A
type lang count micro r f1 micro r f1 micro r f1

CMN FAC 59 0.169 0.631 0.756 0.119 0.515 0.670 0.169 0.632 0.768
CMN GPE 3933 0.856 0.906 0.912 0.108 0.685 0.796 0.510 0.887 0.916
CMN LOC 461 0.729 0.947 0.886 0.488 0.810 0.840 0.547 0.933 0.892
CMN ORG 1441 0.160 0.726 0.774 0.299 0.629 0.722 0.127 0.799 0.821
CMN PER 3116 0.708 0.682 0.797 0.612 0.676 0.792 0.610 0.676 0.792
SPA FAC 59 0.051 0.294 0.454 0.068 0.285 0.444 0.102 0.289 0.448
SPA GPE 1570 0.664 0.891 0.927 0.338 0.674 0.791 0.532 0.830 0.888
SPA LOC 174 0.144 0.824 0.874 0.672 0.717 0.810 0.787 0.863 0.892
SPA ORG 799 0.451 0.681 0.782 0.444 0.678 0.779 0.444 0.691 0.788
SPA PER 2022 0.715 0.624 0.755 0.693 0.602 0.741 0.723 0.624 0.755

Table 7: How do the results of in-language training compare to English-only trained models and models trained
with the adversarial objective? We find that some types perform consistently, such as PER (or Persons) even in
languages that do not share scripts. Others, such as GPE (Geo-Political Entities) and ORG (Organizations) see a
substantial drop in performance when applying a English-only model, but see more of that regained when using an
adversarial objective. These results are taken from a single run of the TAC evaluation data.
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