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Abstract

Noun-noun compounds (NNCs) occur fre-
quently in the English language. Accurate
NNC interpretation, i.e. determining the im-
plicit relationship between the constituents of a
NNC, is crucial for the advancement of many
natural language processing tasks. Until now,
computational NNC interpretation has been
limited to approaches involving linguistic rep-
resentations only. However, research suggests
that grounding linguistic representations in vi-
sion or other modalities can increase perfor-
mance on this and other tasks. Our work is
a novel comparison of linguistic and visuo-
linguistic representations for the task of NNC
interpretation. We frame NNC interpretation
as a relation classification task, evaluating on a
large, relationally-annotated NNC dataset. We
combine distributional word vectors with image
vectors to investigate how visual information
can help improve NNC interpretation systems.
We find that adding visual vectors yields mod-
est increases in performance on several con-
figurations of our dataset. We view this as a
promising first exploration of the benefits of us-
ing visually grounded representations for NNC
interpretation.

1 Introduction

Conceptual combination is the cognitive process
that allows us to combine two mental concepts into
one, for example by juxtaposing or otherwise merg-
ing two concepts. For instance, a house located on
a beach might typically be called a ‘beach house’.
Noun-noun compounds (NNCs) are the linguistic
phenomenon in which two nouns are joined to form
one single, syntactically inseparable unit. The pro-
cess of combining nouns into new nominal units is
both highly prevalent and infinitely productive in
a language like English (Libben, 2014), and also
exists in various forms in many other languages,
including but not limited to German, Norwegian,
Hindi, Tamil, Japanese, Chinese, Bulgarian, and

Turkish (Nakov, 2013). In English, the head of
the NNC is usually the rightmost word, and de-
termines the semantic category of the compound.
The leftmost word in English NNCs is referred to
as the modifier. Although NNCs are a common
occurrence, the highly productive nature of com-
pounding (Algeo and Algeo, 1993) means that indi-
vidual NNCs tend to have relatively low frequency
counts (Kim and Baldwin, 2006). Compositional
models have therefore been of particular interest to
researchers working on computational NNC repre-
sentations (e.g. Shwartz, 2019; Dima, 2016).

Due to of the high prevalence and complex na-
ture of English NNCs, the ability to interpret com-
pounds would greatly improve several important
natural language processing tasks, such as machine
translation (Baldwin and Tanaka, 2004; Balyan and
Chatterjee, 2015), text summarization (e.g. Sil-
ber and McCoy, 2000), question answering (e.g.
Mann, 2002), and natural language inference (e.g.
MacCartney and Manning, 2008).

In this paper, we frame compound interpretation
as a classification problem. The goal is to identify
the semantic relationship between the nominal ele-
ments of a compound. We explicitly compare the
contribution of linguistic and multimodal (visuo-
linguistic) representations to this task.1 In part,
the motivation for this is theoretical, as a computa-
tional account of linguistic meaning has to address
the link between symbolic and non-symbolic in-
formation (Bender and Koller, 2020; Bisk et al.,
2020). A further motivation is the empirical ob-
servation that grounding representations in vision
gives rise to richer meaning representations (Bruni
et al., 2012; Collell Talleda and Moens, 2016).
Composition in the visual modality has also been
shown to be possible for certain NNCs (Pezzelle
et al., 2016). A final motivation comes from find-

1The code for our experiments, as well as our visual em-
beddings, can be found here: https://github.com/
ingalang/multimodal_NC_interpretation
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ings in cognitive science suggesting that visually
grounded word representations yield results closer
to human performance on some NNC processing
tasks (Günther et al., 2020). Our goal is to assess
to what extent visual grounding helps to accurately
identify the semantic relationship between NNC
constituents. For example, Figure 1 displays im-
ages of the constituents of ‘beach house’ as well
as the compound itself. Does the relationship be-
tween the constituents in the NNC become easy
to predict once such visual information is incorpo-
rated, in addition to the textual representation of
the constituents?

Figure 1: Picture of a beach, a house, and a beach house
from ImageNet.

2 Background

Early approaches to the automatic interpreta-
tion of noun compounds included rule-based ap-
proaches (Finin, 1980; Vanderwende, 1994) or
semi-automatic approaches requiring some user
interaction (Barker and Szpakowicz, 1998). Other
work utilized frequency statistics of NNC con-
stituents to build probabilistic models for NNC in-
terpretation (Lauer, 1995; Lapata and Keller, 2004).
Kim and Baldwin (2005, 2006) leveraged WordNet
(Miller, 1998) similarities in supervised training
approaches.

Some approaches to NNC interpretation deal
with identifying an appropriate paraphrase for
a compound which explicitly states the relation
between the compound’s constituents. Several
paraphrasing-based approaches have viewed the
task of freely paraphrasing noun compounds as a
goal in itself (Hendrickx et al., 2019; Ponkiya et al.,
2020; Shwartz and Dagan, 2019; Van de Cruys
et al., 2013), whereas others have used paraphrases
as inputs to a model, representing NNCs in some
way through their paraphrases.

Other approaches to NNC relation classification
tend to be centered around classifying NNCs based
on a pre-defined set of compound relations using
various representations of the compounds them-
selves as input. Both compositional and distri-
butional representations have been tested. Dima

(2016) and Shwartz (2019) both tested various
ways of representing noun compounds. Dima
(2016) performed the first experiments on composi-
tional representations of English NNCs, using com-
positional models such as the FullAdd model (Zan-
zotto et al., 2010) and the Matrix model (Socher
et al., 2012). Dima’s results, which were tested on
datasets by Tratz and Hovy (2010) and Ó Séaghdha
(2008), reached a similar performance to the re-
sults obtained by the creators of said datasets,
respectively. Yet, Dima’s work utilized simpler
methods and did not include lexical and relational
information, as opposed to Tratz and Hovy and
Ó Séaghdha.

Visuo-linguistic representations for NNC inter-
pretation have received far less attention. Günther
et al. (2020) created the first computational model
of visuo-linguistic conceptual combination, report-
ing positive results on several NNC processing
tasks. Pezzelle et al. (2016) found that certain com-
pounds can be composed in the visual domain by
simple addition of image feature vectors. However,
none of these studies have touched upon NNC in-
terpretation using visuo-linguistic data, an area that
remains unexplored, to our knowledge.

The present work focuses on the interpretation of
NNCs that possess at least some degree of composi-
tionality. This is justified on the grounds that novel
compounds, which are very common (Algeo and
Algeo, 1993), must be interpreted compositionally
on first encounter. We employ one compositional
model, called the Full Additive model (Zanzotto
et al., 2010), as well as simple vector concatenation,
in our experiments to construct compound vectors
from individual constituent vectors. We do this for
linguistic and visual vectors separately, and then
combine the two modalities using vector concate-
nation. The following section will describe how we
obtain our visual and linguistic vectors as well as
introduce the noun compound dataset that we use.

3 Data

To perform our experiments, we use two main
sources of data: a relationally-labeled NNC in-
terpretation dataset for training and testing Tratz
(2011), and ImageNet (Deng et al., 2009) to extract
visual feature embeddings. The following subsec-
tions will describe these datasets in more detail.
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Split Train Val Test

Coarse

random 13835 928 3701
lexical (full) 4650 1593 766
lexical (mod) 9555 5316 3593
lexical (head) 9048 5516 3900

Fine

random 13968 934 3725
lexical (full) 4614 1574 843
lexical (mod) 9511 5270 3846
lexical (head) 8938 5640 4049

Table 1: Number of samples in each configuration (split
and grain) of the Tratz (2011) dataset after our filtering.

3.1 Compound Dataset

Our main compound dataset for this work is a re-
vised version of the Tratz (2011) noun compound
dataset, which contains 19,158 distinct NNCs la-
beled with 37 fine-grained and 12 coarse-grained
relation labels. The dataset is based on a previ-
ous one first published by Tratz and Hovy (2010),
which contained 17509 compounds categorized by
43 fine-grained constituent relation labels. The
compounds were annotated using Amazon’s Me-
chanical Turk service.2 They used a weighted
majority-vote scheme based on ten annotation votes
per compound, where Turkers voted on the quality
on the other Turkers’ decisions in order to even out
potential inter-annotator disagreement. On their 43-
class annotation task, Tratz and Hovy (2010) report
a Cohen’s k (Cohen, 1960) of 0.57 as a measure of
inter-annotator agreement.

To be able to test how compound interpretation
models perform when dealing with unseen con-
stituents, the Tratz (2011) dataset is split in various
ways to ensure no previously seen constituents are
available in the validation and testing phase. Differ-
ent lexical splits ensure that the test and validation
dataset contain no constituents previously seen in
the training data – the lexical mod split ensures no
previously seen modifiers (e.g. ‘beach‘ in ‘beach
house’), the lexical head split ensures no previously
seen heads (e.g. ‘house’), and the lexical full split
ensures no previously seen constituents at all. The
random split does not take into account whether
constituents are found in the training data or not.

Before performing our experiments, we do
some filtering on the data in which we remove
the fine-grained classes PERSONAL NOUN, PER-
SONAL TITLE, and LEXICALIZED. Our reason
for removing the PERSONAL NOUN and PER-

2https://www.mturk.com/

SONAL TITLE classes is that there is some doubt
as to whether proper names and titles possess the
same semantic characteristics as common nouns
(Cumming, 2007). Several works on NNC inter-
pretation remove proper nouns from their data (e.g.
Kim and Baldwin, 2006; Shwartz, 2019). Others,
like (Dima and Hinrichs, 2015), choose to keep
these categories but still acknowledge that their
presence in the dataset is questionable. We remove
the LEXICALIZED class because our work is mainly
centered around how to interpret compounds that
have a certain degree of compositionality, seeing as
novel compounds, which likely make up the major-
ity of compound types in most corpora, will need
to be interpreted compositionally. Table 1 gives
an overview of the number of samples in the train,
validation, and test sets for each configuration of
the Tratz (2011) dataset.

3.2 Image Data
ImageNet (Deng et al., 2009) is a large-scale im-
age database which is structured using the WordNet
(Miller, 1998) taxonomy, using synsets to represent
sets of word meanings. Since many word classes
are difficult to represent visually, ImageNet only
contains nouns, and no other lexical categories,
from the WordNet hierarchy. ImageNet contains
14,197,122 images, indexed by 21841 synsets3,
which represent different senses of the words.

Selecting Synsets and Images from ImageNet
In order to collect the images needed for our task,
we have to select all the synsets that were linked
to each individual word in our dataset, and then
retrieve the image URLs linked to those specific
synsets. ImageNet is structured in such a way that
one word can be linked to several synsets, and one
synset can be linked to several words. Image URLs
are associated with specific synsets, not specific
words, so to retrieve an image URL from a word,
one needs to first select which synset(s) one wants
to use to represent that word.

Determining the appropriate sense to use for
each constituent in a sample based on their context
on the compound level is not trivial. We decide to
go for a simple heuristic approach, namely finding
the synset that most probably represents the most
common or basic meaning for each word, given
that the synset has images linked to it (where possi-
ble). Our heuristic method consists of the following
steps:

3As per January of 2022
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1. For a given word, let us call this our target
word, retrieve all synsets that have images
linked to them.

2. For each of the retrieved synsets, get the list
of words that contain that synset among its
synsets (representing the potential senses of
the word). Let us call this list of words com-
parison words.

3. For each list of comparison words, com-
pute the cosine similarity (by a pre-trained
word2vec model) between each comparison
word and the target word, and then take the
average of all of these cosine similarities.

4. The synset whose comparison words list has
the highest cosine similarity to the target word
is selected as the most common, or basic,
meaning.

Note that this method does not necessarily yield
the most common sense, but the most common im-
ageable sense, that is, the most common sense of
a word, out of those which have related images.
This choice was made on the basis of two assump-
tions: 1) it would give us the chance to collect
more images, as opposed to selecting images only
when the most common meaning is imageable,4

and 2) an imageable synset that does not reflect the
most common meaning of a word might still have
certain visual properties in common with another
less imageable, but more common, meaning of said
word.

ImageNet ResNet10 ResNet100 Total in data
Unique mods 38.7% 36.4% 32.4% 3126
Unique heads 40.1% 37.6% 31.6% 3187

Table 2: Overview of the percentages of unique modi-
fiers and heads in the coarse-grained random split of the
(Tratz, 2011) data that have ImageNet images available,
and that we could obtain ResNet10 and ResNet100 vec-
tors for.

Table 2 gives an example of the ImageNet cov-
erage of unique heads and modifiers in one dataset
configuration (the random + coarse setting).

4 Methods

We frame the NNC interpretation task as a classi-
fication problem, experimenting with passing lin-
guistic and visuo-linguistic vectors as inputs to an

4In this case, we use ‘imageable’ to mean that ImageNet
has images for it.

SVM classifier. Our experimental process can be
described in three steps:

1. Obtain linguistic vectors (from a pre-trained
word2vec model) and visual feature vectors
(from a pre-trained ResNet model) for the con-
stituents of a compound (head and modifier).
We experiment with both unimodal (word)
embeddings, and visuo-linguistic embeddings,
formed by concatenating the word embedding
of a compound to the visual representation of
a compound.

2. Combine the vector representations of each
constituent (either linguistic, or visuo-
linguistic).5 We use two methods of combi-
nation: (a) simple concatenation, and (b) the
Full Additive (FullAdd) method proposed by
Zanzotto et al. (2010).

3. Observe and evaluate the performance of a
setup depending on (a) modality of vectors
(purely linguistic, or visuo-linguistic) and (b)
mode of constituent vector combination.

To obtain linguistic vectors and visual vectors,
we utilize pre-trained word2vec (Mikolov et al.,
2013a) and ResNet (He et al., 2016) models, re-
spectively. Our models, as well as our experimen-
tal setups and baselines, will be described in this
section.

4.1 Models of Word Representation
We utilize a word2vec model (Mikolov et al.,
2013a) to represent words in the linguistic modal-
ity, and visual vectors obtained by using a ResNet
model (He et al., 2016) on ImageNet (Deng et al.,
2009) images. The following subsections will de-
scribe these approaches in more detail.

4.1.1 word2vec
To obtain word embeddings to use as our linguis-
tic vectors, we use a pre-trained word2vec model
(Mikolov et al., 2013a). We employ a popular set of
pre-trained word2vec embeddings that were trained
on about 100 billion words from the GoogleNews
dataset. These 300-dimensional word embeddings6

were trained using a skip-gram approach with neg-
ative sampling (SGNS for short), as described in
Mikolov et al. (2013b). Unlike previous work on

5In case a constituent lacks a vector representation in either
modality, we instead use a vector of zeros.

6https://code.google.com/archive/p/
word2vec/
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this dataset published by e.g. Shwartz (2019), we
decide to not train our own word2vec embeddings.
This decision was made because our goal is inves-
tigating the effect of combining linguistic repre-
sentations with visual ones, rather than comparing
different kinds of linguistic representations, like
Shwartz (2019) did.

4.1.2 ResNet
ResNet (He et al., 2016) is a deep residual neu-
ral network architecture for image recognition.
ResNet models learn residual functions instead of
unreferenced functions, allowing for the creation of
models that are deeper than previous CNN models
such as the VGG models (Chatfield et al., 2014),
while still being less complex and faster to train (He
et al., 2016). To extract visual embeddings based
on images from ImageNet, we use a ResNet152
model trained on ImageNet data, implemented in
the Keras (Chollet et al., 2015) library for Python.
ResNet is trained on an object classification task,
using 1.28 million images in its training phase. The
model learns to take an image vector as input and
outputs one out of the 1000 ImageNet category
labels included in its training data.

To extract visual features using ResNet152, we
flatten the final layer before the final classification
(softmax) layer of the model, which has the size 7 x
7 x 2048, resulting in vectors of size 100352. Since
a single, randomly selected image would not reflect
all the potential visual aspects of an object, and
finding the image that is closest to a prototypical
representation of a concept is not trivial, we take
the average of several image vectors to get a general
visual representation for each noun. We use two
experimental settings for visual features, where we
extract and average feature vectors for 10 or 100
ImageNet images. We will refer to these vectors as
ResNet10 and ResNet100, respectively. See Table 2
for a summary of the image availability in the Tratz
(2011) dataset. These vectors can then be reduced
to our desired vector dimensions, for example 300
in order for them to be compatible with pre-trained
300-dimensional word2vec embeddings. For our
ResNet vectors to be more appropriate as inputs to
our SVM classifiers, we scale our vectors so that
the values range from -1 to 1.

4.2 Modes of Vector Combination

To combine modifier and constituent vectors into
compound vectors, we test two different modes of
combination: simple vector concatenation, and the

FullAdd model (Zanzotto et al., 2010). In both
cases, the combination of a modifier vector and
a head vector only happens within one modality,
i.e. we would not combine a linguistic modifier
vector with a linguistic head vector. For our visuo-
linguistic setups, compound vectors are composed
in each modality and then the resulting vectors are
concatenated to form a visuo-linguistic representa-
tion of the compound. The following subsection
will describe the FullAdd model in more detail.

4.2.1 The Full Additive Model

The Full Additive model, also referred to as Full-
Add or the Estimated Additive model (Zanzotto
et al., 2010) is a model where the two vectors −→x
and −→y , representing the constituent words c1 and
c2, are multiplied by square matrices A and B,
respectively, and then added together to create a
compositional meaning representation of a phrase.
A and B are the same for each vector −→x and −→y ,
respectively, and are obtained through training on
a training set of compound nouns that contains
distributional vector representations of each com-
pound and each constituent word. We can think
of these vectors as being ordered in triples, where
any triple of words (z, x, y), which corresponds
to (compound, modifier, head) in English, is rep-
resented by a triple of vectors (−→z ,−→x ,−→y ). For
example, the training set could contain the vector
triple (−−−−−−−→soap opera,−−→soap,−−−→opera). The goal will be
to learn a composition function for any word vec-
tors −→x ,−→y such that −→p = f(−→x ,−→y ) approximates
−→z , where −→p is the composed vector for any given
noun compound, and −→z is the observed distribu-
tional vector for this noun compound. In other
words, the function is trained using compounds
for which we have a distributional representation,
and can then be used to create compositional rep-
resentations of compounds where a distributional
representation is not available.

Intuitively, one can think of the process of train-
ing the two matrices (one for modifiers and one for
heads) as finding a way of transforming a mean-
ing representation of a single word into its as-
constituent meaning. For example, by multiplying
the vector for chocolate with the modifier matrix
(which we call matrix A), we approximate the as-
modifer meaning of chocolate, as in chocolate cake.
The general equation for composing a compound
vector −→z given two constituent word vectors −→x
and −→y is given below:
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−→z = A−→x + B−→y (1)

To implement our FullAdd model, we use the
Distributional Semantic Composition Toolkit, or
DISSECT (Dinu et al., 2013), which allows for
the implementation of FullAdd as well as other
composition models. To prepare the necessary
data for FullAdd, we filter our training data so
that we only keep the compounds for which the
whole compound as well as the modifier and head
separately have vectors associated with them in our
word embedding model. Then we construct a se-
mantic space using those word embeddings. Due to
the requirements of the DISSECT implementation,
heads and modifiers cannot be repeated in the space
(e.g., we can not include both ‘cat food’ and ‘dog
food’). The two FullAdd matrices, A and B, can
then be trained in the way described above. The
resulting vectors are then used to compose compo-
sitional meaning vectors for our training, test, and
validation data. In our FullAdd experiments, we
train a FullAdd model for each modality (linguistic
and visual) and then create composed vectors for
each compound in each modality before combining
the two modalities using concatenation.

4.3 Experimental Setups
For our experiments, we create three majority-class
baselines in addition to our SVM classifier.7 In
this section, we will describe our baselines and our
main experimental setups.

4.3.1 Baselines
We implement the following majority-class base-
lines:

• Overall Majority: For a given data sample,
this baseline selects the overall majority class
as observed in the training data.

• Modifier Majority: For a given data sample,
this baseline selects the majority class repre-
sented among compounds in the training data
with the same modifier as the sample.

• Head Majority: For a given data sample, this
baseline selects the majority class represented
among compounds in the training data with
the same head as the sample.

7We did also perform a few NNC interpretation experi-
ments using a BERT model, which were not included in this
paper because of poor performance on the lexical splits of
the Tratz (2011) dataset. See Table 7 in the appendix for an
overview.

The ‘Modifier Majority’ and ‘Head Majority’
rely on using the modifiers or heads, respectively,
from the training data to determine the assigned
label of each data sample. However, we have sev-
eral dataset configurations in which the training
and test datasets do not share any heads, modifiers,
or any constituents at all – see Table 1 for a sum-
mary. Thus, in these configurations, the head or
modifier majority mechanism will not work. This
means that for the lexical + mod split of our data,
the Modifier Majority baseline will give the exact
same results as the Overall Majority baseline. The
same is the case for the lexical + head split together
with the Head Majority baseline, as well as the full
lexical split with both the Modifier Majority and
Head Majority baselines.

4.3.2 Classifier Setup
Our classifier is an SVM that takes as inputs
either linguistic representations (in the form of
word2vec vectors that have either been concate-
nated or composed using the FullAdd function) or
visuo-linguistic representations (in the form of lin-
guistic vectors concatenated with the visual vectors
described in section 4.1.2). We use an SVM with
a one-vs-rest scheme for multiclass classification.
The SVM has a linear kernel, L2 penalty and a C
value of 0.5. We train our classifier on the Tratz
(2011) data, passing either our linguistic or visuo-
linguistic vectors as inputs.

5 Results and Evaluation

We evaluate our setup on the Tratz (2011) dataset
and report F1 scores for all dataset configurations.

Split MC-O MC-M MC-H

Coarse

random 7.5 40.0 59.3
lexical (full) 6.7 – –
lexical (mod) 7.8 – 58.8
lexical (head) 7.0 38.6 –

Fine

random 5.3 34.5 54.1
lexical (full) 5.6 – –
lexical (mod) 6.3 – 52.6
lexical (head) 5.2 34.8 –

Table 3: F1 scores from our baseline classifiers. MC
stands for Majority Class; O stands for Overall, M for
Modifier, and H for Head.

Table 3 shows the weighted F1 scores of our
baseline classifiers. The modifier- and head-
majority classifiers require the test datasets to in-
clude previously seen modifiers and heads (respec-
tively), which is why the table has some cells that
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are marked with ‘–’, indicating that the score for
this cannot be computed with the given majority-
class strategy and thus would get the same score as
the overall majority baseline. For this reason, we
only have comparable scores from the modifier-
and head-majority classifiers in the case of the
random split, in which both the fine-grained set-
ting and the coarse-grained setting show that the
head-majority classifier performs the best. In other
words, it seems that having a common head is a
greater indicator of same-class membership than
having a common modifier in the Tratz (2011)
dataset.

Split w2v w2v + ResNet10 w2v + ResNet100

Coarse

random 66.3 66.0 - 0.3 66.4 + 0.1
lexical (full) 44.2 44.1 - 0.1 43.7 - 0.5
lexical (mod) 57.9 58.3 + 0.4 57.7 - 0.2
lexical (head) 50.8 51.0 + 0.2 51.3 + 0.5

Fine

random 66.7 66.6 - 0.1 66.7 +/- 0
lexical (full) 39.2 39.4 + 0.2 38.4 - 0.8
lexical (mod) 56.4 56.4 +/- 0 56.5 + 0.1
lexical (head) 47.1 47.5 + 0.4 46.9 - 0.2

(a) F1 scores using FullAdd-composed compound vectors

Split w2v w2v + ResNet10 w2v + ResNet100

Coarse

random 74.1 75.3 + 1.2* 75.2 + 1.1*
lexical (full) 49.1 50.8 + 1.7* 50.0 + 0.9
lexical (mod) 63.5 64.0 + 0.5 63.1 - 0.4
lexical (head) 55.5 56.7 + 1.2 56.0 + 0.5

Fine

random 73.0 75.0 + 2.0 75.0 + 2.0
lexical (full) 40.3 40.0 - 0.3 40.7 + 0.4
lexical (mod) 63.0 63.5 + 0.5 63.4 + 0.4
lexical (head) 50.6 51.6 + 1.0* 52.0 + 1.4*

(b) Results using concatenated compound vectors

Table 4: Weighted F1 scores from classification ex-
periments using linguistic and visuo-linguistic vectors.
The tables show results of using FullAdd-composed
vectors as well as concatenation-composed vectors,
with the change in F1 obtained when ResNet vectors
are included. An asterisk next to an increase in F1
score means the bimodal result is significantly different
from its unimodal counterpart following a Bonferroni-
corrected McNemar test.

Table 4 shows the results of our experiments
on the Tratz (2011) data after our filtering. All of
the scores given in the tables are F1 scores, and
an asterisk next to an increase in score means that
the increase was found to be significant following
a McNemar test (McNemar, 1947) and a Bonfer-
roni correction (Neyman and Pearson, 1928) of the
p-values.8 As is evident when comparing tables
4a and 4b, using concatenated vectors as opposed
to FullAdd composed vectors yields much higher
F1 scores. Additionally, the results in table 4b,

8We set our α level to the conventional 0.05, which resulted
in a p-value threshold of 0.00625 after a Bonferroni correction.

with concatenated vectors, are less ambiguous: in
this experiment, at least one of the visuo-linguistic
settings beats the purely linguistic setting in each
experimental setting.

As has been shown in previous research on this
dataset, the most challenging dataset split is the full
lexical split, where no constituents in the validation
and test data are previously seen in the training
data. As expected, the fine-grained setting is gener-
ally more challenging than the coarse-grained one.
As we can see from comparing tables 4a and 4b,
the results in the former table are more ambiguous,
meaning that we cannot conclude that one input
type (linguistic or visuo-linguistic vectors) is better
than another. In table 4b, however, we find that
our visuo-linguistic vectors help increase scores in
some cases. In the case of the ResNet10 vectors,
the increase in scores is significant for the random
and full lexical splits in the coarse-grained setting
as well as for the lexical (head) split in the fine-
grained setting. For our ResNet100 vectors, only
the coarse + random and the fine + lexical (head)
settings show a significant increase in scores. We
find small increases overall for most NNC relation
classes, rather than big increases for certain rela-
tion classes (see Figure 3 in Appendix A for an
example).

Table 5 shows results of experiments run on a
subset of the data for which ResNet10 vectors were
available for both the modifier and head of each
compound. We compare results on our baselines
as well as our FullAdd and concatenation models
with textual or visual vectors alone, on the same
subset. As with the results on the full dataset, the
concatenation method performs better than the Full-
Add model here. Additionally, it seems that the
visual vectors do contribute at least some valuable
information on their own. It is important to note
that Table 5 is not directly comparable to the tables
in 4, since the former shows results on just a small
subset of the data.

One might be inclined to question why our Full-
Add experiments on this dataset perform worse
than very similar experiments done by e.g. Shwartz
(2019) and Dima (2016). This is likely due to the
fact that Shwartz (2019) and Dima (2016) trained
their own word embeddings specifically for this
task, meaning that they were able to obtain dis-
tributed embeddings for more of the compounds
in the Tratz (2011) dataset than what we had avail-
able through our pre-trained model, and as a con-
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baselines word2vec ResNet10
grain split MC-O MC-M MC-H FullAdd concatenate FullAdd concatenate

Coarse

random 9.8 40.6 48.4 56.0 70.7 30.9 62.7
lexical (full) 3.9 – – 26.2 41.9 6.9 28.5
lexical (mod) 6.3 – 47.1 45.7 59.7 20.4 47.0
lexical (head) 5.7 32.0 – 30.8 47.1 19.8 40.4

Fine

random 3.3 32.5 38.9 53.7 66.6 16.9 59.1
lexical (full) 4.6 – – 23.6 31.2 5.7 18.6
lexical (mod) 2.8 – 36.1 34.4 51.3 10.7 41.1
lexical (head) 3.4 33.8 – 36.5 41.7 10.8 34.4

Table 5: Results (reported in F1) from experiments with
unimodal vectors in either modality (word2vec vectors
alone or ResNet10 vectors alone) on a subset of the data
for which ResNet10 vectors were available. Baseline
results on the same subset are included for comparison.
Scores in bold are cases in which the ResNet10 vectors
outperform the strongest baseline.

sequence had more training data for the FullAdd
model. As our goal with this work is not to com-
pare composition functions for linguistic vectors,
we saw training our own embeddings as being su-
perfluous for this study.

Overall, we see that, in our experiments with
concatenated compound vectors, adding visual in-
formation helps increase the scores in all cases,
and in some cases the increases are statistically
significant.

5.1 Concreteness Ratings
Intuitively, one could assume that visual informa-
tion (i.e. images) would be easier to obtain for more
concrete words, thus making visual information a
more appropriate and/or helpful addition for com-
pounds that have relatively concrete constituents.
If this is the case, then we should find a higher ben-
efit of incorporating visual information, the more
concrete a word is.

We quantify concreteness using a dataset of con-
creteness ratings of almost 40,000 English lemmas,
by Brysbaert et al. (2014). The ratings are contin-
uous values between 1 and 5, where 5 is the most
concrete. The ratings were obtained by surveying
more than 4,000 participants in a crowdsourcing
study and taking the mean of the ratings obtained
for each word.

As a first analysis of our results in light of these
concreteness ratings, we performed several logistic
regression analyses where we looked at the con-
creteness ratings of modifiers and heads as predic-
tors of classification success. Table 6 in Appendix
A gives a full overview of these results. What we
find is that the dataset configuration seems to matter
more than the modality, but that the concreteness
ratings of both modifiers and heads are, in some
cases, good predictors of classifier success. How-
ever, in the significant cases, we discover a negative

Figure 2: Word concreteness rating by number of avail-
able URLs in ImageNet

relationship between concreteness and classifica-
tion success – i.e., the higher the concreteness of a
modifier/head, the lower the chance of the classi-
fier predicting the correct class. We performed an
investigation into some of our results, filtering the
samples by image availability (specifically, whether
a constituent had fewer or more than 10 images
available in ImageNet). The full results are found
in Table 8 in Appendix A.

Figure 2 shows word concreteness ratings by
number of URLs available in ImageNet, as deter-
mined by our image selection heuristic, for each
of the words in the Tratz (2011) dataset that had
concreteness ratings in the Brysbaert et al. (2014)
dataset (regardless of whether they appeared as a
modifier or head).

A correlation analysis revealed a low to mod-
erate correlation between the concreteness ratings
and the URL counts (Pearson‘s r = 0.45, p < 0.001).
This indicates that, to some extent, the higher the
concreteness rating of a constituent in a compound,
the higher the chances of finding 10 or 100 images
to represent said constituent as part of our image
vectors. Yet, in experiments on the subset of com-
pounds for which both constituents had ResNet10
vectors available, we find that our visual vectors
alone are somewhat informative, as we saw in Ta-
ble 5. Examples of words for which we were not
able to obtain at least 10 images include minute
(concreteness rating 3.04), intelligence (concrete-
ness rating 2.24), and state (concreteness rating
3.52).

The negative relationship between constituent
concreteness and classifier success seems counter-
intuitive, but might be a result of a number of fac-
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tors related to word frequency, polysemy, and the
distribution of concrete vs. non-concrete words
over the classes in the Tratz (2011) dataset. Al-
though one might expect compounds containing
concrete constituents to benefit more from visuo-
linguistic representations, we note that the negative
correlation between concreteness and classifica-
tion success is always found in the visuo-linguistic
modality whenever it is found in the linguistic
modality. In other words, this seems to be a gen-
eral finding rather than a modality-specific one. As
suggested by previous work, concrete and abstract
words differ in the kinds of contexts they tend to
appear in, where abstract words tend to occur near
other abstract words, and concrete words occur
in more varied contexts (Frassinelli et al., 2017).
Additionally, it has been found that distributional
semantic models like word2vec are worse at model-
ing word pair similarity for highly concrete words
than for highly abstract words (Hill et al., 2015).
Since our task is relation classification, our findings
might also be partially influenced by the distribu-
tion of relation labels for concrete and non-concrete
words. For example, abstract words may be more
restricted in which relations they can partake in,
and thus be easier to classify. We leave it up to
future work to investigate these relationships, but
we note that our visuo-linguistic representations
do tend to outperform the purely linguistic ones,
regardless of constituent concreteness ratings.

6 Conclusion and Future Work

In this paper, we have presented NNC interpre-
tation experiments on the Tratz (2011) dataset,
comparing linguistic and visuo-linguistic inputs
to an SVM classifier. We have found that, in our
best-performing case, concatenating visual feature
vectors with linguistic vectors (word embeddings)
helps increase F1 scores on the Tratz (2011) dataset
in almost all experimental settings. Our findings
indicate that utilizing visual information for this
NNC relation classification task might indeed be a
promising endeavor.

Future work should aim to further refine our
approach by for example using more sophisti-
cated methods for selecting images to represent
words, exploring ways to represent abstract or non-
imageable words, and finding better ways to vi-
sually ground polysemous words. In this regard,
recent multimodal encoders pretrained on visual
and linguistic data (e.g. Lu et al., 2019; Tan and

Bansal, 2019), are a promising way forward. An-
other possible angle for future work could be to
consider NNC interpretation in visual and linguis-
tic contexts. In the future, we would also be eager
to explore visual grounding in other aspects of com-
putational NNC related tasks, such as NNC genera-
tion. Additionally, our approach should be tested
on different datasets and in different circumstances,
for example in a task that determines the probability
of compound categories rather than fixed classes.
One final potential angle for future work could be
to look further into the task of visual composition.
A first step could be to more closely examine the
effects of using the FullAdd function with image
vectors.

To conclude, our results are in line with previous
work from both cognitive science and computa-
tional linguistics suggesting that more psychologi-
cally plausible models of NNC processing should
incorporate grounding.
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Appendix

A Detailed Results Tables

This appendix contains supplementary
tables that describe some of our find-
ings in more detail.

Figure 3 shows the F1 scores for each
relation in the random + coarse dataset
configuration for word2vec vectors and
word2vec + ResNet10 vectors. As op-
posed to Table 5, Figure 3 shows re-
sults from our full dataset, rather than
the subset of compounds with ‘image-
able’ constituents.

modifiers heads
L VL L VL

split coef p coef p coef p coef p

Coarse

random -0.2049 <0.001 -0.1675 <0.001 -0.18 0.008 -0.99 0.028
lexical (full) -0.1788 0.032 -0.1251 0.133 0.076 0.352 0.13 0.113
lexical (mod) -0.2322 <0.001 -0.2740 <0.001 -0.1924 <0.001 -0.2093 <0.001
lexical (head) -0.1710 <0.001 -0.2118 <0.001 0.0053 0.888 0.0432 0.252

Fine

random -0.2128 <0.001 -0.2073 <0.001 -0.268 <0.001 -0.27 <0.001
lexical (full) 0.1108 0.171 0.1665 0.041 0.0854 0.340 0.0296 0.741
lexical (mod) -0.1340 0.001 -0.1581 <0.001 -0.3257 <0.001 -0.3306 <0.001
lexical (head) 0.0393 0.278 0.0423 0.243 0.0659 0.090 0.0569 0.144

Table 6: Results from a logistic regression analysis of
modifier and head concreteness as a predictor of the
successful classification of compounds. The scores in
boldface are ones where the p-values are lower than a
Bonferroni-corrected α level of 0.05.

Table 6 contains a summary of sev-
eral logistic regression analyses per-
formed on our classification results in
both the linguistic and visuo-linguistic
modalities. The results show coeffi-
cients and p-values of analyses using
modifier and head concreteness (sep-
arately) as predictors of classification
success.

split grain BERT BERT + ResNet10 RAW BERT + ResNet10 NORM
F1 diff ϵ, (B<BMRAW ) F1 diff ϵ, (B<BMNORM )

random coarse 78.7 69.7 - 9 0.99 78.7 +/- 0 0.47*
random fine 57.9 50.7 - 7.2 0.94 65.1 + 7.2 0.024*
lexical (full) coarse 31.6 28.6 - 3 0.92 25.8 - 5.8 0.95
lexical (full) fine 19.5 14.5 - 5 1.00 15.0 - 4.5 0.79
lexical (mod) coarse 17.0 36.6 + 19.6 0.036* 6.7 - 10.3 0.98
lexical (mod) fine 8.3 27.0 + 18.7 0.005* 8.3 +/- 0 0.55
lexical (head) coarse 11.1 40.2 + 29.1 0.004* 5.0 - 6.1 0.84
lexical (head) fine 4.4 29.5 + 25.1 0.036* 2.8 - 1.6 0.78

Table 7: Results from fine-tuning BERT with and with-
out adding ResNet10 vectors after 50 epochs of training,
averaged over 10 runs. Each column of bimodal results
shows weighted F1, the change in F1 between the uni-
modal and the given bimodal setting, and the epsilon
value from the ASD algorithm that reveals to what ex-
tent the bimodal is better than the unimodal setting.

Table 7 shows the results of some
NNC interpretation experiments that
we did with a pre-trained BERT model
(Devlin et al., 2018) and our ResNet
visual embeddings. In these experi-
ments, we fed compounds to a BERT
model fitted with a linear classifier on
top in order to get the classifications of
the compounds. In the visuo-linguistic
modality, we concatenated BERT’s lin-
guistic embeddings with our visual
embeddings before passing them to a
linear classification layer. We exper-
imented with using raw ResNet em-
beddings (straight out of the ResNet
model, without applying anything but
dimensionality reduction) and normal-
ized ResNet embeddings. The table
shows F1 scores as well as the ϵ value
returned by the Almost Stochastic Dom-
inance (ASD) algorithm proposed by
Dror et al. (2019) for comparing the
performance of two neural network ar-
chitectures. The algorithm works in
such a way that an ϵ value of less than
0.5 means that algorithm B (in our case,
one of the visuo-linguistic settings) is
almost stochastically dominant over al-
gorithm A (in our case, the purely lin-
guistic setting).

Table 8 gives an overview of the re-
sults of our classification algorithm
when used on linguistic (L) and visuo-
linguistic (VL) vectors. The table
shows the F1 scores for subsets of our
test data, where we select data sam-
ples where either one, both, or none of
the constituents in each sample had a
ResNet10 vector available (i.e., had 10
or more images available in ImageNet).
The ‘no filtering’ column contains the
exact same results, for the full dataset,
as reported in our main article, and is
included for comparison.

34



Figure 3: Per-relation F1 scores in the condition with the highest scores (the random + coarse configuration).

constituents with 10+ images: no filtering mods heads both none
split L VL L VL L VL L VL L VL

Coarse

random 74.1 75.3* 70.46 71.43 72.78 74.65 70.76 72.59 76.84 77.9
lexical (full) 49.1 50.8* 41.29 46.04 48.4 51.24 41.3 43.22 56.84 53.77
lexical (mod) 63.5 64.0 56.77 57.25 59.36 61.35 54.48 55.45 70.22 69.69
lexical (head) 55.5 56.7 54.3 55.7 50.85 54.64* 51.42 55.96* 58.99 59.14

Fine

random 73.0 75.0 69.49 71.72* 69.19 72.06* 66.13 69.43 76.09 77.78*
lexical (full) 40.3 40.0 41.19 40.91 39.21 35.04 42.03 38.94 42.33 44.59
lexical (mod) 63.0 63.5 60.13 60.2 54.32 55.77 51.88 53.38 68.71 69.35
lexical (head) 50.6 51.6* 52.06 53.35 51.18 51.6 52.88 53.91 50.17 51.53

Table 8: Results of our experiments using the concatenation method of composition and the ResNet10 vectors,
filtered by the imageability (as modeled by whether or not 10 or more images were available) of the constituents.
An asterisk next to a VL score means that the visuo-linguistic (VL) modality performed significantly better than the
linguistic (L) modality following a McNemar test with a Bonferroni correction of the p-values.
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