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Abstract
This work presents methods for learning cross-
lingual sentence representations using paired
or unpaired bilingual texts. We hypothesize
that the cross-lingual alignment strategy is
transferable, and therefore a model trained to
align only two languages can encode multilin-
gually more aligned representations. We thus
introduce dual-pivot transfer: training on one
language pair and evaluating on other pairs.
To study this theory, we design unsupervised
models trained on unpaired sentences and
single-pair supervised models trained on bi-
texts, both based on the unsupervised language
model XLM-R with its parameters frozen. The
experiments evaluate the models as univer-
sal sentence encoders on the task of unsuper-
vised bitext mining on two datasets, where the
unsupervised model reaches the state of the
art of unsupervised retrieval, and the alterna-
tive single-pair supervised model approaches
the performance of multilingually supervised
models. The results suggest that bilingual
training techniques as proposed can be applied
to get sentence representations with multilin-
gual alignment.

1 Introduction

Cross-lingual alignment as evaluated by retrieval
tasks has been shown to be present in the repre-
sentations of recent massive multilingual models
which are not trained on bitexts (Pires et al., 2019;
Conneau et al., 2020b). Other studies further show
that sentence representations with higher cross-
lingual comparability can be achieved by training a
cross-lingual mapping (Aldarmaki and Diab, 2019)
or fine-tuning (Cao et al., 2020) for every pair of
languages. These two lines of research show that,
on the one hand, multilingual alignment arises from
training using monolingual corpora alone, and, on
the other, bilingual alignment can be enhanced by
training on bitexts of specific language pairs.

∗Work done while at the Department of Linguistics at the
University of Washington.

Combining these insights yields a question: can
training with bilingual corpora help improve multi-
lingual alignment? Given a language model encod-
ing texts in different languages with some shared
structure already, we can expect that the model fur-
ther trained to align a pair of languages will take
advantage of the shared structure and will there-
fore generalize the alignment strategy to other lan-
guage pairs. From a practical point of view, bitexts
for some pairs of languages are more abundant
than others, and it is therefore efficient to lever-
age data from resource-rich pairs for the alignment
of resource-poor pairs in training multilingual lan-
guage models.

To better understand the cross-lingual structure
from the unsupervised models, we also ask the fol-
lowing question: how can multilingual alignment
information be extracted from the unsupervised
language models? Unsupervised multilingual mod-
els out-of-the-box as sentence encoders fall short
of their supervised counterparts such as LASER
(Artetxe and Schwenk, 2019b) in the task of bi-
text mining (Hu et al., 2020). The discovery of
cross-lingual structure in the hidden states in the
unsupervised model (Pires et al., 2019; Conneau
et al., 2020b), however, raises the possibility that
with relatively light post-training for better extrac-
tion of deep features, the unsupervised models can
generate much more multilingually aligned repre-
sentations.

In this paper, we address both questions with
the design of dual-pivot transfer, where a model
is trained for bilingual alignment but tested for
multilingual alignment. And we hypothesize that
training to encourage similarity between sentence
representations from two languages, the dual pivots,
can help generate more aligned representations not
only for the pivot pair, but also for other pairs.

In particular, we design and study a simple ex-
traction module on top of the pretrained multi-
lingual language model XLM-R (Conneau et al.,
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2020a). To harness different training signals, we
propose two training architectures. In the case of
training on unpaired sentences, the model is encour-
aged by adversarial training to encode sentences
from the two languages with similar distributions.
In the other case where bitexts of the two pivot
languages are used, the model is encouraged to en-
code encountered parallel sentences similarly. Both
models are then transferred to language pairs other
than the dual pivots. This enables our model to
be used for unsupervised bitext mining, or bitext
mining where the model is trained only on parallel
sentences from a single language pair.

The experiments show that both training strate-
gies are effective, where the unsupervised model
reaches the state of the art on completely un-
supervised bitext mining, and the one-pair su-
pervised model approaching the state-of-the-art
multilingually-supervised language models in one
bitext mining task.

Our contributions are fourfold:

• This study proposes effective methods of bilin-
gual training using paired or unpaired sen-
tences for sentence representation with multi-
lingual alignment. The strategies can be incor-
porated in language model training for greater
efficiency in the future.

• The work demonstrates that the alignment in-
formation in unsupervised multilingual lan-
guage models is extractable by simple bilin-
gual training of a light extraction module
(without fine-tuning) with performance com-
parable to fully supervised models and reach-
ing the state of the art of unsupervised models.

• The models are tested using a new experi-
mental design—dual-pivot transfer—to eval-
uate the generalizability of a bilingually-
supervised sentence encoder to the task of
text mining for other language pairs on which
it is not trained.

• This study shows that unsupervised bitext min-
ing has strong performance which is compa-
rable to bitext mining by a fully supervised
model, so the proposed techniques can be ap-
plied to augment bilingual corpora for data-
scarce language pairs in the future.

2 Related work

Alignment with adversarial nets This work fol-
lows the line of previous studies which use adver-
sarial networks (GANs) (Goodfellow et al., 2014)
to align cross-domain distributions of embeddings
without supervision of paired samples, in some
cases in tandem with cycle consistency (Zhu et al.,
2017), which encourages representations “trans-
lated” to another language then “translated” back
to be similar to the starting representations. Con-
neau et al. (2018)’s MUSE project trains a linear
map from the word-embedding space of one lan-
guage to that of another using GANs, the method of
which is later applied to an unsupervised machine
translation model (Lample et al., 2018a). Cycle
consistency in complement to adversarial training
has been shown to be effective in helping to learn
cross-lingual lexicon induction (Zhang et al., 2017;
Xu et al., 2018; Mohiuddin and Joty, 2020). Our
work is the first to our knowledge to apply such
strategy of adversarial training and cycle consis-
tency to the task of bitext mining.

Alignment with pretrained LMs We adopt the
training strategy aforementioned on top of pre-
trained multilingual language models, the ex-
tractability of multilingual information from which
has been studied in several ways. Pires et al. (2019)
find multilingual alignment in the multilingual
BERT (mBERT) model (Devlin et al., 2019) pre-
trained on monolingual corpora only, while Con-
neau et al. (2020b) identify shared multilingual
structure in monolingual BERT models. Other
work studies the pretrained models dynamically
by either fine-tuning the pretrained model for cross-
lingual alignment (Cao et al., 2020) or learning
cross-lingual transformation (Aldarmaki and Diab,
2019) with supervision from aligned texts. Re-
cently, Yang et al. (2020) use multitask training
to train multilingual encoders focusing on the per-
formance on retrieval, and Reimers and Gurevych
(2020) use bitexts to tune multilingual language
models and to distill knowledge from a teacher
model which has been tuned on paraphrase pairs.
Also, Chi et al. (2021a) pretrain an alternative
XLM-R on a cross-lingual contrastive objective.
Our work falls in the line of exploring multilingual-
ity of pretrained models with a distinct emphasis on
investigating the multilingual structure induced by
bilingual training without fine-tuning or alternative
pretraining.
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Figure 1: Schematic depiction of the unsupervised
model with adversarial and cycle consistency losses.

Unsupervised parallel sentence mining The
evaluation task of our work is bitext mining with-
out supervision from any bitexts or from bitexts of
the pair of languages of the mining task. Such ex-
periments have been explored previously. Hangya
et al. (2018) show that unsupervised bilingual word
embeddings are effective on bitext mining, and
Hangya and Fraser (2019) further improve the
system with a word-alignment algorithm. Kiros
(2020) trains a lensing module over mBERT for
the task of natural language inference (NLI) and
transfers the model to bitext mining. Keung et al.
(2020)’s system uses bootstrapped bitexts to fine-
tune mBERT, while Kvapilíková et al. (2020)’s
system uses synthetic bitexts from an unsupervised
machine translation system to fine-tune XLM (Con-
neau and Lample, 2019). Results from the three
aforementioned studies are included in Section 5
for comparisons. Methodologically, our approach
differs from the above in that our system is based on
another pretrained model XLM-R (Conneau et al.,
2020a) without fine-tuning, for one of the goals of
the study is to understand the extractability of the
alignment information from the pretrained model;
and our model receives training signals from exist-
ing monolingual corpora or bitexts, instead of from
NLI, bootstrapped, or synthesized data.

3 Model

3.1 A linear combination and a linear map
The model as an encoder generates fixed-length
vectors as sentence representations from the the hid-
den states of the pretrained multilingual language
model XLM-R (Conneau et al., 2020a). Formally,
given a sentence πi,γ in language γ ∈ {s, t}, with
the pretrained language model producing features
xγi of l layers, sequence length q, and embedding
size d, the extraction module f(·) generates a sen-
tence embedding yγi of fixed size d based on the
features xγi , or

f(xγi ) = yγi , xγi ∈ Rl×q×d and yγi ∈ Rd .

With the parameters of XLM-R frozen, within
the extraction module f(·) are only two trainable
components. The first is an ELMo-style trainable
softmax-normalized weighted linear combination
module (Peters et al., 2018), and the second being
a trainable linear map. The linear combination
module learns to weight the hidden states of every
layer l of the pretrained language model and output
a weighted average, on which a sum-pooling layer
is then applied to q embeddings. And then the
linear map takes this bag-of-word representation
and produces the final sentence representation yγi
of the model.

3.2 Adversarial learning with unpaired texts
Monolingual corpora in different languages with
language labels provide the signal for alignment
if the semantic contents of the utterances share
similar distributions across corpora. In order to
exploit this information, we introduce to the model
adversarial networks (Goodfellow et al., 2014) with
cycle consistency (Zhu et al., 2017), to promote
similarity in the distribution of representations.

As is usual in GANs, there is a discriminator
module d(·), which in this model consumes the
representation yγi and outputs continuous scores
for the language identity γ of the sentence πi,γ .
Following Romanov et al. (2019), as inspired by
Wasserstein-GAN (Arjovsky et al., 2017), the loss
of the discriminator Ldisc is the difference between
the unnormalized scores instead of the usual cross-
entropy loss, or

Ldisc = d(ysi )− d(ytj) .

And the adversarial loss Ladv = −Ldisc updates
the parameters of the extraction module f(·) to

8698



encourage it to generate encodings abstract from
language-specific information.

Adversarial training helps learning aligned en-
codings across languages at the distributional level.
At the individual level, however, the model is not
constrained to generate encodings which are both
aligned and discriminative (Zhu et al., 2017). In
particular, a degenerate encoder can produce pure
noise which is distributively identical across lan-
guages. A cycle consistency module inspired by
Zhu et al. (2017) is therefore used to constrain the
model to encode with individual-discerning align-
ment. Cycle consistency is also reminiscent of the
technique of using back-translation for unsuper-
vised translation systems (Lample et al., 2018b).

In this model, a trainable linear map F (·) maps
elements from the encoding space of one language
to the space of the other, and another linear map
G(·) operates in the reverse direction. The cycle
loss so defined is used to update parameters for
both of the cycle mappings and the encoder:

Lcycle = h(ysi , G(F (y
s
i ))) + h(F (G(ytj)), y

t
j)

where h is the triplet ranking loss function which
sums the hinge costs in both directions:

h(a, b) =
∑
n

max(0, α− sim(a, b) + sim(an, b))

+max(0, α− sim(a, b) + sim(a, bn)) ,

where the margin α and the number of negative
samples n are hyperparameters, and sim(·) is co-
sine similarity. The loss function h encourages the
model to encode similar representations between
positive pairs (a, b) and dissimilar representations
between negative pairs (an, b) and (a, bn), where
an and bn are sampled from the embeddings in the
mini-batch. Based on the findings that the hard neg-
atives, or non-translation pairs of high similarity
between them, are more effective than the sum of
negatives in the ranking loss (Faghri et al., 2018),
our system always includes in the summands the
costs from the hardest negatives in the mini-batch
along with the costs from any other randomly sam-
pled ones.

The full loss of the unsupervised model is

Lunsup = Ladv + λLcycle ,

with a hyperparameter λ. This unsupervised model
is presented schematically with Figure 1.

Hyperparameter values

output dimension d {1024}
# negative samples n {1, 2, 4}
margin value α {0, 0.2, 0.4}
weight for cycle loss λ {1, 5, 10}
discriminator step times κ {1, 2}

Table 1: Hyperparameters and experimented values.

3.3 Learning alignment with bitexts

In addition to the completely unsupervised model,
we also experiment with a model which is super-
vised with bitext from one pair of languages and
then transferred to other pairs. In this set-up, in-
stead of using cyclical mappings, bitexts provide
the alignment signal through the ranking loss di-
rectly, so the loss for the supervised model is

Lsup = h(ysi , y
t
i) ,

where ysi and yti are representations of parallel sen-
tences.

4 Training

The model is trained with the Adam optimizer
(Kingma and Ba, 2014) and learning rate 0.001
with the parameters in XLM-R frozen. Our train-
ing program is built upon AllenNLP (Gardner et al.,
2018), HuggingFace Transformers (Wolf et al.,
2020), and PyTorch (Paszke et al., 2019). The
code for this study is released publicly.1

For adversarial training, the discriminator is up-
dated κ times for every step of backpropagation
to the encoder. Other hyperparameters include the
dimension of the output representations d, number
of negative samples n, margin value α, and weight
of the cycle loss λ. The hyperparameters and the
the values which are experimented with are sum-
marized in Table 1. We empirically determine the
hyperparameters among experimented values, and
report their values in specific evaluation sections.

The bilingual corpora used to train the encoder is
taken from OPUS (Tiedemann, 2012) as produced
for the training of XLM (Conneau and Lample,
2019).2 We experimented with two language pairs
for training the model—Arabic-English (ar-en) and

1The repository at https://github.com/cctien/
bimultialign.

2We use the script https://github.
com/facebookresearch/XLM/blob/main/
get-data-para.sh to get the corpora MultiUN
(Eisele and Chen, 2010) and EUbookshop, where each
training corpus we use is of 9 million sentences.
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Model F1 score (%) xx↔en

Average de fr ru zh

Unsupervised
Model (ar-en unsup.) 81.8 84.1 77.9 87.9 77.1
Model (de-en unsup.) 82.4 91.4 75.6 86.1 76.5

XLM-R L16-boe 68.7 75.4 65.0 75.6 59.0
Kvapilíková et al. (2020) 75.8 80.1 78.8 77.2 67.0
Keung et al. (2020) 69.5 74.9 73.0 69.9 60.1
Kiros (2020) 51.7 59.0 59.5 47.1 41.1

One-pair supervised
Model (ar-en bitexts sup.) 89.1 91.7 89.2 90.1 85.6
Model (de-en bitexts sup.) 89.6 92.5 89.6 90.3 85.8

Fully Supervised
LASER 92.8 95.4 92.4 92.3 91.2
LaBSE 93.5 95.9 92.5 92.4 93.0
XLM-R+SBERT 88.6 90.8 87.1 88.6 87.8

Table 2: F1 scores on the BUCC bitext mining text.
Simple average of scores from 4 tasks reported in the
second column. Highest scores in their groups are
bolded.

German-English (de-en)—to explore potential ef-
fects of the choice of the dual-pivots. After being
trained, the encoder is evaluated on two tasks of bi-
text mining between texts in English and in another
language. Additionally, we train the models with
the pivot pair of Arabic-German (ar-de), which
does not include English, to be evaluated on the
second task.

5 Evaluations

Four models, two unsupervised and two one-pair
supervised trained on either of the two language
pairs, are evaluated on two bitext mining or re-
trieval tasks of the BUCC corpus (Zweigenbaum
et al., 2018) and of the Tatoeba corpus (Artetxe and
Schwenk, 2019a).

5.1 Baselines and comparisons

Unsupervised baselines The XLM-R (Conneau
et al., 2020a) bag-of-embedding (boe) represen-
tations out-of-the-box serve as the unsupervised
baseline. We identify the best-performing among
the layers of orders of multiples of 4, or layer
L ∈ {0, 4, 8, 12, 16, 20, 24}, as the baseline. In
the case of BUCC mining task, for example, the
best-performing baseline model is of layer 16 and
denoted by XLM-R L16-boe.

Results from Kiros (2020), Keung et al. (2020),
and Kvapilíková et al. (2020), as state-of-the-art
models for unsupervised bitext mining from pre-
trained language models, are included for compari-

son (see Section 2 for a description of them).

Fully supervised models LASER (Artetxe and
Schwenk, 2019b) and LaBSE (Feng et al., 2020),
both fully supervised with multilingual bitexts, are
included for comparisons. LASER is an LSTM-
based encoder and translation model trained on par-
allel corpora of 93 languages, and is the earlier lead-
ing system on the two mining tasks. LaBSE on the
other hand is a transformer-based multilingual sen-
tence encoder supervised with parallel sentences
from 109 languages using the additive margin soft-
max (Wang et al., 2018) for the translation language
modeling objective, and has state-of-the-art perfor-
mance on the two mining tasks. Finally, XLM-
R+SBERT from Reimers and Gurevych, 2020 is
XLM-R fine-tuned to align representations of bi-
texts of 50 language pairs and to distill knowledge
from SBERT (Reimers and Gurevych, 2019) fine-
tuned on English paraphrase pairs.

5.2 BUCC

The BUCC corpora (Zweigenbaum et al., 2018),
consist of 95k to 460k sentences in each of 4
languages—German, French, Russian, and Man-
darin Chinese—with around 3% of such sentences
being English-aligned. The task is to mine for the
translation pairs.

Margin-based retrieval The retrieval is based
on the margin-based similarity scores (Artetxe and
Schwenk, 2019a) related to CSLS (Conneau et al.,
2018),

score(ys, yt) = margin(sim(ys, yt), scale(ys, yt))

scale(ys, yt) =∑
z∈NNk(ys)

sim(ys, z)

2k
+

∑
z∈NNk(yt)

sim(yt, z)

2k
,

where NNk(y) denotes the k nearest neighbors of
y in the other language. Here we use k = 4 and the
ratio margin function, or margin(a, b) = a/b, fol-
lowing the literature (Artetxe and Schwenk, 2019b).
By scaling up the similarity associated with more
isolated embeddings, margin-based retrieval helps
alleviate the hubness problem (Radovanovic et al.,
2010), where some embeddings or hubs are near-
est neighbors of many other embeddings with high
probability.

Following Hu et al. (2020), our model is eval-
uated on the training split of the BUCC corpora,
and the threshold of the similarity score cutting
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off translations from non-translations is optimized
for each language pair. While Kvapilíková et al.
(2020) and Kiros (2020) optimize for the language-
specific mining thresholds as we do here, Keung
et al. (2020) use a prior probability to infer the
thresholds. And different from all other baselines
or models for comparisons presented here, Kva-
pilíková et al. (2020)’s model is evaluated upon the
undisclosed test split of the BUCC corpus.

Results F1 scores on the BUCC dataset pre-
sented in Table 2 demonstrate that bilingual align-
ment learned by the model is transferable to other
pairs of languages. The hyperparameter values of
the unsupervised model presented in the table are
n = 1, α = 0, λ = 5, κ = 2, and those of the
supervised model are n = 1, α = 0.

The adversarially-trained unsupervised model
outperforms the unsupervised baselines and near-
ing the state of the art, and is thus effective
in extracting sentence representations which are
sharable across languages. The choice of pivot
pairs shows effects on the unsupervised models,
with the model trained on the de-en texts perform-
ing better than that on the ar-en texts at mining for
parallel sentences between English and German
by 7 points. The results suggest that while align-
ment is transferable, the unsupervised model can
be further improved for multilingual alignment by
being trained on multilingual texts of more than
two pivots.

The one-pair supervised model trained with bi-
texts of one pair of languages, on the other hand,
performs within a 6-point range of the fully super-
vised systems, which shows that much alignment
information from unsupervised pretrained models
is recoverable by the simple extraction module.
Noticeably, the model supervised with ar-en bi-
texts but not from the four pairs of the task sees
a 20-point increase from the plain XLM-R, and
the choice of dual pivots does not have significant
effects on the supervised model.

5.3 Tatoeba

We also measure the parallel sentence matching
accuracy over the Tatoeba dataset (Artetxe and
Schwenk, 2019b). This dataset consists of 100
to 1,000 English-aligned sentence pairs for 112 lan-
guages, and the task is to retrieve the translation
in one of the target languages given a sentence in
English using absolute similarity scores without
margin-scaling.

Model Average accuracy (%)

36 41 112

Unsupervised
Model (ar-en unsup.) 73.4 70.8 55.3
Model (ar-de unsup.) 71.5 68.9 53.3
Model (de-en unsup.) 74.2 72.0 56.0

XLM-R L12-boe 54.3 53.1 39.6
Kvapilíková et al. (2020) −− 50.2 −−

One-pair supervised
Model (ar-en bitexts sup.) 79.6 78.3 61.1
Model (ar-de bitexts sup.) 74.1 71.8 56.0
Model (de-en bitexts sup.) 80.4 78.9 62.4

Supervised with 50+ pairs
LASER 85.4 79.1 66.9
LaBSE 95.0 −− 83.7
XLM-R+SBERT 86.2 84.3 67.1

Table 3: Average accuracy scores on the Tatoeba
dataset in three average groups. Highest scores in their
groups are bolded.

Results Matching accuracy for the retrieval task
of the Tatoeba dataset are presented in Table 3.
Following Feng et al., 2020, average scores from
different groups are presented to compare differ-
ent models. The 36 languages are those selected
by Xtreme (Hu et al., 2020), and the 41 languages
are those for which results are presented in Kva-
pilíková et al., 2020. The hyperparameter values of
the unsupervised model presented in the table are
n = 2, α = 0.2, λ = 10, κ = 2, and those of the
supervised model are n = 1, α = 0.

The unsupervised model outperforms the base-
lines by roughly 20 points, and the one-pair super-
vised model performs close to the the supervised
model LASER but falls shorts by around 10 to
20 points to the other supervised model LaBSE.
When one of the two pivot languages is English,
the choice of the pivot does not show much differ-
ence on this task on average. While the models
trained on ar-de (where neither pivot language is
English) still exhibits strong transfer performance,
there is a drop of around 2 to 6 points from the
models where English is one of the pivot languages
(ar-en and de-en).

6 Analysis

To understand the factors affecting the performance
of the model, we consider several variants. All
models presented in this section are trained with the
same hyperparameters presented in the evaluation
section above using either de-en corpora or corpora
of multiple language pairs (Section 6.3).
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Model Tatoeba 36

Unsupervised
XLM-R average-boe 54.9
XLM-R L12-boe 54.3
L = Ladv

linear combination 34.7
linear map 0.1
linear combination + linear map 2.1
L = Lcycle

linear combination 55.4
linear map 69.8
linear combination + linear map 68.0
L = Ladv + λLcycle

linear combination 47.4
linear map 70.5
linear combination + linear map 74.2

One-pair supervised
L = Lsup

linear combination 67.5
linear map 80.1
linear combination + linear map 80.4

Table 4: Ablation results of the accuracy (%) on the
Tatoeba averaged across 36 languages.

6.1 Ablation

We ablate from the model the trainable
components—the weighted linear combina-
tion and the linear map—as well as the two
training losses, Ladv and Lcycle, of the unsu-
pervised model. When the weighted linear
combination is ablated, we use the unweighted
average of embeddings across layers.

We evaluate on the average accuracy over the 36
languages of the Tatoeba corpus. The results in Ta-
ble 4 show a few interesting trends. First, the cycle
consistency loss is essential for the unsupervised
model, as can be seen by the very low performance
when only Ladv is used. Secondly, the linear map
plays a larger role than the linear combination in ex-
tracting alignment information in the unsupervised
model: in both conditions with cycle consistency
loss, the linear map alone outperforms the linear
combination alone, and in the condition with only
cycle consistency loss, the linear map alone does
best. Finally, in the one-pair supervised model, the
linear combination module alone shows gains of
13 points from the baseline but does not produce
gains when trained along with a linear map.
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Figure 2: Average accuracies of 36 languages of the
Tatoeba task where the model is trained with represen-
tations from XLM-R layers of orders which are multi-
ples of 4.

Model Model with # of pairs

1 2 4 8 16

Unsupervised 74.2 74.9 75.2 77.5 77.1
Supervised 80.4 80.0 80.0 83.3 85.7

Table 5: Models with multiple pairs with accuracy (%)
on Tatoeba averaged across 36 languages.

6.2 Single-layer representations

Previous studies show that representations from
different layers differ in their cross-lingual align-
ment (Pires et al., 2019; Conneau et al., 2020b).
To understand this phenomenon in the present set-
ting, we take layers whose orders are multiples of 4
and train the model with representations from one
single layer without combining embeddings from
different layers.

The average accuracy scores over 36 languages
in Tatoeba summarized in Figure 2 show that the
alignment information is most extractable deep
in the middle layers, corroborating the findings
from the previous work (Kvapilíková et al., 2020;
Litschko et al., 2021; Chi et al., 2021b). The model
trained with the best-performing layer shows simi-
lar or higher scores than the full model with learned
linear combination, which is consistent with the
findings from the ablation that the learned linear
combination is not essential for extracting align-
ment information.

6.3 Training with multiple language pairs

It is possible that a model trained on texts from
more pairs of languages may improve upon the
multilingual alignment so far demonstrated. To test
this, we trained the model with the same hyper-
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Model F1 score (%) xx↔en

de fr ru zh

Unsupervised
Optimized thresholds 91.4 75.6 86.1 76.5
Dual-pivot threshold 91.4 73.5 84.9 75.8

One-pair supervised
Optimized thresholds 92.5 89.6 90.3 85.8
Dual-pivot threshold 92.5 89.6 90.2 85.2

Table 6: F1 scores on the BUCC training split with
the model trained with de-en texts. The system with
optimized thresholds tunes the threshold for each pair,
as in Table 2; the dual-pivot system uses the threshold
from the de-en pair for all four pairs.

parameters as in the previous section but on texts
from multiple languages,3 where each multi-pair
model is trained on 16 million total sentences. The
results are in Table 5. There is an aggregate 3 point
improvement for the unsupervised model and 5
point for the supervised model. The results sug-
gest that with our models, one bilingual pivot is
capable of extracting much transferable multilin-
gual representations from XLM-R, but using more
pivots can still improve the transferability of the
representations to some extent.

6.4 Threshold transfer

Previous work observes that in the BUCC min-
ing task, the thresholds optimized for different lan-
guage pairs are close to one another, suggesting
that one can tune the threshold on high-resource
pairs and use the system to mine other language
pairs (Kiros, 2020). We examine the mining per-
formance on the BUCC dataset of two threshold
schemes: optimized thresholds, where thresholds
are optimized for each language pair, and the dual-
pivot threshold, where the threshold optimized for
the pivot pair, in this case German-English, is used
to mine all languages.

The scores from these two schemes on BUCC
are summarized in Table 6. The results show that
the thresholds optimized for the pivot pair trans-
fer to other pairs with at most a 2-point decrease
in the F1 score, and that the results of the two
schemes are almost identical to the one-pair super-
vised model. These experiments corroborate the

3The 16 pairs are those between en and ar, bg, de,
el, es, fa, fr, hi, id, ru, sw, th, tr,
ur, vi, zh.

Model ar-ar en-en es-es en-ar en-es en-tr

Unsup.
XLM-R 47.2 58.5 53.0 31.2 17.3 28.1
Model 51.7 74.5 63.8 42.0 41.9 37.9

One-pair sup.
Model 54.7 67.5 65.0 43.7 39.8 44.0

Other systems
LASER 68.9 77.6 79.7 66.5 57.9 72.0
LaBSE 69.1 79.4 80.8 74.5 65.5 72.0
SBERT 79.6 88.8 86.3 82.3 83.1 80.9

Table 7: Spearman correlation (%) on multilingual
STS 2017 (Cer et al., 2017) of the unsupervised and
supervised models trained on the de-en pair.

previous observation and demonstrate yet another
case for leveraging texts from resource-rich pairs
for unsupervised mining of other language pairs.

6.5 Multilingual semantic textual similarity

To test whether our method of training language-
agnostic sentence encoders encourages meaning-
based representations, we evaluate the models on
the multilingual semantic textual similarity (STS)
2017 (Cer et al., 2017) with Spearman correlation
reported in Table 7. All evaluation pairs on average
see about 10 percentage-point increases from base-
line (XLM-R L12-boe) for both models. Yet the
gaps between our models and the fully supervised
systems suggest that supervision with more lan-
guage pairs and more trainable parameters likely
encourages sentence representations to be closer to
what humans see as meaning.

7 Conclusion

This work shows that training for bilingual align-
ment benefits multilingual alignment for unsuper-
vised bitext mining. The unsupervised model
shows the effectiveness of adversarial training with
cycle consistency for building multilingual lan-
guage models, and reaches the state of the art of
unsupervised bitext mining. Both unsupervised
and one-pair supervised models show that signif-
icant multilingual alignment in an unsupervised
language model can be recovered by a linear map-
ping, and that combining monolingual and bilin-
gual training data can be a data-efficient method
for promoting multilingual alignment. Future work
may combine both the supervised and the unsu-
pervised techniques to attain sentence embeddings
with stronger multilingual alignment through the
transferability of bilingual alignment demonstrated
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in this work, and such work will benefit tasks in-
volving languages of low resources in bitexts.
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Eneko Agirre, and Ondřej Bojar. 2020. Unsuper-
vised multilingual sentence embeddings for parallel
corpus mining. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics: Student Research Workshop, pages 255–
262, Online. Association for Computational Linguis-
tics.

Guillaume Lample, Alexis Conneau, Ludovic Denoyer,
and Marc’Aurelio Ranzato. 2018a. Unsupervised
machine translation using monolingual corpora only.
In International Conference on Learning Represen-
tations (ICLR).

Guillaume Lample, Myle Ott, Alexis Conneau, Lu-
dovic Denoyer, and Marc’Aurelio Ranzato. 2018b.
Phrase-based & neural unsupervised machine trans-
lation. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 5039–5049, Brussels, Belgium. Association
for Computational Linguistics.

Robert Litschko, Ivan Vulić, Simone Paolo Ponzetto,
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