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Abstract

Regularization methods applying input pertur-
bation have drawn considerable attention and
have been frequently explored for NMT tasks
in recent years. Despite their simplicity and ef-
fectiveness, we argue that these methods are
limited by the under-fitting of training data.
In this paper, we utilize prediction difference
for ground-truth tokens to analyze the fitting
of token-level samples and find that under-
fitting is almost as common as over-fitting. We
introduce prediction difference regularization
(PD-R), a simple and effective method that
can reduce over-fitting and under-fitting at the
same time. For all token-level samples, PD-
R minimizes the prediction difference between
the original pass and the input-perturbed pass,
making the model less sensitive to small in-
put changes, thus more robust to both pertur-
bations and under-fitted training data. Exper-
iments on three widely used WMT transla-
tion tasks show that our approach can signifi-
cantly improve over existing perturbation reg-
ularization methods. On WMT16 En-De task,
our model achieves 1.80 SacreBLEU improve-
ment over vanilla transformer.

1 Introduction

Neural machine translation models have achieved
great success in recent years (Sutskever et al.,
2014; Bahdanau et al., 2015; Gehring et al., 2017;
Vaswani et al., 2017). Despite their efficiency and
superb performance, NMT models are prone to
over-fitting that universal regularization techniques
such as dropout (Hinton et al., 2012) and label
smoothing (Szegedy et al., 2016) have been indis-
pensable. However, over-fitting is still a signifi-
cant problem for NMT, especially for small and
medium tasks, which motivates researchers to con-
stantly explore more specialized and sophisticated
regularization techniques.

∗Yang Feng is the corresponding author of the paper.

Particularly, regularization methods applying in-
put perturbation have been frequently explored for
NMT models in recent years (Bengio et al., 2015;
Wu et al., 2019; Sato et al., 2019; Takase and Kiy-
ono, 2021). In these methods, neural models are
trained to maximize the likelihood of perturbed
samples that perturbed by a certain type of per-
turbations, with a primary intention to enhance
model’s robustness to perturbations, since neural
models have been discovered fragile to small input
noises (Szegedy et al., 2014; Liang et al., 2018;
Belinkov and Bisk, 2018). In the past few years,
many types of perturbations have been proposed to
machine translation and been shown effective, in-
cluding word-dropout (Gal and Ghahramani, 2016),
word-replacement (Bengio et al., 2015; Wu et al.,
2019) and adversarial perturbation (Miyato et al.,
2017; Sato et al., 2019), etc.

In this paper, unlike previous works which are
devoted to finding stronger perturbations and more
appropriate perturbation schedules, we rethink the
existing perturb-and-fit mechanism and prove that
indiscriminate fitting of perturbed samples ignores
and aggravates under-fitting, which dramatically
limits the effectiveness of perturbation regulariza-
tion. We further propose prediction difference reg-
ularization (PD-R), a simple and effective method
that can alleviate over-fitting and under-fitting at
the same time and significantly enhance the effec-
tiveness of perturbation regularization.

Specifically, we use the prediction difference for
ground-truth labels before and after input pertur-
bation as an indicator of over-fitting and under-
fitting for token-level samples. Quantitative anal-
ysis shows that a considerable part of token-level
predictions get improved after input perturbation,
indicating that the model is less fitted to those orig-
inal samples compared to the perturbed samples,
which has been ignored by previous works. We
then divide labels in a batch into relatively under-
fitted and over-fitted subsets according to real-time
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prediction difference and train only one subset to
fit the perturbed inputs and the other subset to fit
the original inputs. Experiments show that train-
ing only the relatively under-fitted subset to further
fit the perturbed inputs dramatically degrade the
model performance, while the opposite gets better
results than the existing indiscriminate way. This
indicates that existing methods are hindered by the
excessive fitting of perturbed data.

We further propose to use prediction difference
as a regularization term, where the prediction dif-
ference is the divergence of prediction distribution
caused by input perturbation. Since the value of
prediction difference reflects the severity of over-
fitting or under-fitting, both of which are cases we
want to avoid for training models, regularizing pre-
diction difference has been a natural solution to
avoid above fitting problems. By combining cross-
entropy loss and the prediction difference term, a
model can be trained to fit training data with control
of over-fitting and under-fitting.

We apply PD-R on simplest word dropout regu-
larization and conduct experiments on three widely
used WMT translation tasks covering small-scale,
medium-scale, and large-scale data sets. Our
method significantly improves over existing per-
turbation regularization methods. On WMT16
En-De translation task, our method achieves 1.80
SacreBLEU improvement over vanilla transformer
model and 1.12 SacreBLEU over traditional word
dropout regularization.

2 Background

In this section, we introduce basic principles of
neural machine translation, representative types of
perturbations as well as their training objectives.

2.1 Neural Machine Translation

For NMT, the probability of a target sentence Y =
y1:J conditioned on its parallel source sentence
X = x1:I is established based on chain rule:

p(Y |X,θ) =
J+1∏
j=1

p(yj |y0:j , X,θ), (1)

where θ represents the parameters of the model,
y0 and yJ+1 are special tokens representing the
beginning and end of a sentence respectively.

On this basis, NMT models are trained with the
cross-entropy loss to minimize the negative log-

likelihood of all samples in the training set D:

L = L(D,θ) = − 1

D
∑

(X,Y )∈D

`(X,Y,θ), (2)

where D = {(Xn, Yn)}|V |n=1, |V | is the size of the
data set, `(X,Y,θ) = log p(Y |X,θ).

2.2 Types of perturbations

Word Dropout and Replacement The simplest
way to apply perturbation is to mask or replace one
or more tokens of the original input sequence. The
resulting sequence x̂ is sampled from the original
sequence and the perturbation sequence:

x̂i =

{
xi, with probability 1 - α,
xpi , with probability α,

(3)

where 0 < α < 1 is the hyper-parameter of
bernoulli sampling and xpi is the i-th word of the
perturbation sequence. Note that the perturba-
tion sequence xp consists of zero vectors for word
dropout (Gal and Ghahramani, 2016), and consists
of random words sampled from the vocabulary with
uniform or a particular distribution for word re-
placement (Bengio et al., 2015; Wu et al., 2019).

Adversarial Perturbation Adversarial Training
(AdvT) tries to make perturbation that maximize
the loss function, which is believed more effective
for regularization. As described in Miyato et al.
(2017) and Sato et al. (2019), the perturbed input
embedding for xi can be computed as follows:

êi = ei + κr̂i, (4)

where ei is original embedding of i-th source word,
κ is a scalar hyper-parameter that controls the norm
of the perturbation, and r̂i is the worst case unit
perturbation vector approximated by gradient back-
propagation(Goodfellow et al., 2015):

r̂i =
gi
||gi||2

, gi = ∇eiL(D,θ), (5)

where gi is the gradient of a model’s loss function
with respect to its input embedding ei.

In most cases, the inputs of the decoder side can
also be perturbed in the same way as the encoder
side. For scheduled sampling (Bengio et al., 2015)
however, perturbation is limited at the decoder side.

7666



2.3 Training Objectives of Perturbation
Regularization

For word dropout and word replacement, the model
is trained to fit the perturbed samples X̂:

L = L(D̂,θ) = − 1

D
∑

(X̂,Y )∈D̂

`(X̂, Y,θ), (6)

where D̂ is the perturbed data set.
For adversarial training, two forward passes and

two backward passes are required for computing
perturbation vectors and then training with them.
The model is trained to fit both the original samples
and adversarial samples with loss function:

L = L(D,θ) + λL(D̂,θ), (7)

where λ is a hyper-parameter. Here samples are
perturbed at the embedding layer, rather than token-
level perturbation at the input layer.

3 Prediction Difference Fitting Analysis

It is usually believed that a model’s prediction for
ground-truth target tokens will be hindered when
the input is perturbed, which has been the initial
motivation for perturbation regularization. How-
ever, this conclusion is not necessarily true in exper-
iment for many reasons: Firstly, neural networks
are complex and may not behave in an ideally log-
ical way. Secondly, perturbations are randomly
produced and may have complex properties. For
example, word-replacement may induce synonyms
or heteronyms, and high-dimension embedding per-
turbation is hard to interpret. Thirdly, the model is
uncertain during training due to parameter dropout,
which further brings uncertainty to the model’s re-
action to perturbations.

In this section, we analyze the influence of per-
turbations leveraging token-level prediction differ-
ence. Here the prediction difference is defined as
the change of model’s prediction probabilities for
ground-truth target tokens (Gu and Tresp, 2019; Li
et al., 2019a):

∆p(yj) =p(yj |y0:j−1, X,θ)

− p(yj |ŷ0:j−1, X̂,θ).
(8)

We apply random perturbations to samples in the
test set and divide all target labels into two subsets
according to their prediction change: positively in-
fluenced subset Sp containing labels whose predic-
tion probabilities get bigger after input perturbation

and negatively influenced subset Sn containing la-
bels whose prediction probabilities get smaller. We
compute the quantitative proportion and the aver-
age value of ∆p for these two subsets to evaluate
the influence of different perturbations.

Since the prediction difference is also under the
influence of parameter dropout during training, we
also conduct experiments both with and without
parameter dropout difference. The original pass
and the perturbed pass are carried out by two differ-
ent sub-models if their parameter dropout mask is
different. In experiment, We use a transformer base
model trained on WMT16 En-De data set and con-
duct our experiments on a test set which is a com-
bination of 5 test sets from WMT16 to WMT20.
Our analysis covers different kinds of perturba-
tions, including word-dropout, word-replacement,
and adversarial perturbation. The word-dropout
and word-replacement probabilities are set as 0.05,
and all perturbations are applied on both sides of
the model.

As illustrated in figure 1, for any certain type of
perturbation, the negative impact is principal, es-
pecially for adversarial perturbation. However, the
positive influence is non-negligible since the pro-
portion of positively influenced tokens could reach
30%-40% for word-dropout and word-replacement.
With parameter dropout difference, the positive in-
fluence could get further bigger and become more
crucial.

We attribute prediction difference to relatively
over-fitting and under-fitting of token-level sam-
ples. Since perturbations are very small, perturbed
samples can be approximately viewed as good sam-
ples. For one target label, if its prediction probabil-
ity gets smaller after a small input perturbation, it
indicates the model is relatively over-fitted to the
original sample, while the contrary case is the re-
flection of relatively under-fitting. With parameter
dropout, predictions are carried out by sub-models,
and these fitting problems also reflect the relative
fitting bias of sub-models, which is also what we
want to avoid.

As mentioned above, existing perturbation reg-
ularization methods are based on the motivation
to enhance the model’s performance against input
perturbation and avoid over-fitting. However, ex-
periments show that a model could be better fit-
ted to the perturbed data rather than the original
data, which is regarded by us as a sign of relatively
under-fitting. This indicates that training a model
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(a) (b)

Figure 1: Influence of different perturbations on token-level label prediction. ‘Sn’ represents the negatively influ-
enced set, while ‘Sp’ represents the positively influenced set. ‘DP-diff’, ‘WD’, ‘WR’ and ‘Adv’ represents parame-
ter dropout difference, word-dropout, word-replacement and adversarial perturbation respectively. (a) Quantitative
proportion of Sp and Sn. (b) Average probability change normalized by subset size for Sp and Sn.

En→Ro En→De

Transformer 33.4 32.55

only Sp 31.59 30.16
only Sn 34.57 33.73
both 34.53 33.20

Table 1: BLEU (Papineni et al., 2002) for selective
training of word-dropout perturbation on WMT16 En-
Ro and WMT16 En-De translation tasks. Evaluation
set for En-De is a combination of 5 test sets form
WMT16 to WMT20.

with perturbed data may not be necessary for some
circumstances.

We further carry out selective training for word-
dropout regularization, where one subset is trained
to fit the perturbed inputs and the other subset is
trained to fit the original inputs. As presented in
table 1, training only Sn gets better results than ex-
isting indiscriminate training, while training only
Sp gets worse results than vanilla transformer. This
implies that the existing method suffers from de-
generation caused by aggravated under-fitting.

4 Prediction Difference Regularization
(PD-R)

Since both positive and negative prediction differ-
ence is a sign of improper fitting of samples, we

therefore propose prediction difference regulariza-
tion (PD-R), to regularize the model directly with
the prediction difference:

`PD−R(X,Y,θ) =R[P (∗|X,Y<,θ
′
),

P (∗|X̂, Ŷ<,θ
′′
)],

(9)

where R[·] is the distance of two distributions,
(X,Y ) is a sample from data set D, “ ∗ ” repre-
sents all prediction steps, P (∗|X,Y<,θ

′
) is the

prediction distributions for all steps conditioned
on original source input X , target teacher forcing
target input Y< and sub-model with parameters θ

′
,

and P (∗|X̂, Ŷ<,θ
′′
) is the prediction distributions

for all steps conditioned on perturbed source input
X̂ , perturbed target teacher forcing target input Ŷ<
and sub-model with parameters θ

′′
. The total regu-

larization loss is averaged over all samples in the
data set:

LPD−R(D,θ) =
1

D
∑

(X,Y )∈D

`PD−R(X,Y,θ).

(10)
The model is trained with a combination of cross-
entropy loss and regularization term:

L = L(D,θ) + γLPD−R(D,θ), (11)

where γ is a hyper-parameter controlling the weight
of regularization.
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WMT2016 En→Ro WMT2017 Zn→En

2016 ∆ 2017 ∆

Transformer (Vaswani et al., 2017) 33.16 – 23.98 –

Word-Drop 34.13 + 0.97 24.20 + 0.22
SSE-SE (Wu et al., 2019) 33.75 + 0.59 24.14 + 0.16
Scheduled Sampling (Bengio et al., 2015) 33.62 + 0.46 23.74 – 0.24
AdvT (Sato et al., 2019) 33.65 + 0.49 24.17 + 0.19
R-Drop (Liang et al., 2021) 34.14 + 0.96 25.08 + 1.10

Word-Drop + ST 34.24 + 1.08 24.37 + 0.39
Word-Drop (enc) + PD-R 34.22 + 1.06 24.98 + 1.00
Word-Drop (dec) + PD-R 34.57 + 1.41 24.76 + 0.78
Word-Drop (both) + PD-R 34.93 + 1.77 24.86 + 0.88

Table 2: SacreBLEU for different models on WMT16 En-Ro and WMT17 Zh-En tasks.

In experiment, we apply PD-R on simplest word-
dropout perturbation with α = 0.05 in Eq.(3)
and γ = 1.0 in Eq.(11) without further hyper-
parameter search. R[·] in Eq.(9) is implemented
as L1 distance, which performs slightly better than
KL-divergence in our experiments.

5 Experiments

We evaluate PD-R on three public WMT machine
translation tasks and compare it with representative
related works.

5.1 Data Sets
To fully verify the effectiveness of our method
on NMT, we conduct experiments on three ma-
chine translation tasks, including small-scale
WMT16 English-Romanian(En-Ro), medium-
scale WMT16 English-German (En-De), and large-
scale WMT17 Chinese-English (Zh-En).

English-Romanian This data set contains about
0.6M processed parallel sentence pairs tokenized
by Moses toolkit (Koehn et al., 2007) and seg-
mented with 40K merge operations using BPE
(Sennrich et al., 2016). We use news-dev 2016
and news-test 2016 as the validation set and test set
respectively.

English-German The WMT16 En-De data set
consists of about 4.5M parallel sentences pairs
coded with 30K BPE merge-operations. For evalua-
tion, we average the last 5 epochs and report results
on all test sets from WMT2016 to WMT2020.

Chinese-English Our data set consists of over
20M parallel sentence pairs. The English and Chi-
nese sentences are tokenized with Moses toolkit
and Stanford Segmenter respectively, which are
further applied 32K BPE segmentation. We use

newsdev2016 for validation and newstest2017 for
testing.

5.2 Configuration
To fairly compare each method, we reproduce
all compared methods with transformer model
(Vaswani et al., 2017) using open-source toolkit
Fairseq (Ott et al., 2019), with the same model
configuration and hardware facilities.

We use transformer base configuration for all
experiments, with 6 encoder and decoder layers,
512 hidden dimensions, 8 attention heads and 2048
FFN dimensions. We train all models with 4000
warm-up steps, initial learning rate of 7e−4, label
smoothing factor of 0.1, and Adam optimizer with
β1 = 0.9, β2 = 0.98 and ε = 1e−9 as Vaswani
et al. (2017). We set the dropout rate to 0.2 for
small-scale En-Ro task and 0.1 for En-De and
Zh-En tasks. All experiments are conducted on
4 GeForce RTX 3090 GPUs with a distributional
batch-size of 4096 tokens each GPU and an overall
accumulated batch-size of 4096×8 tokens. During
inference, we use beam size of 4 and length penalty
of 0.6 for all tasks.

For En-Ro and En-De translation tasks, we share
the vocabulary for source and target and apply
three-way weight tying(TWWT) (Press and Wolf,
2017) for training, the vocabulary sizes of both
tasks are limited to 32768 tokens. We train models
for 50 epochs for both tasks. For Zh-En translation
task, the Chinese and English vocabulary sizes are
44K and 33K respectively, and models are trained
for 300K steps.

5.3 Compared Methods
We reproduce four representative perturbation reg-
ularization methods and recently proposed R-Drop
for comparison.
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WMT2016 En→De

2016 2017 2018 2019 2020 AVG ∆

Transformer (Vaswani et al., 2017) 33.81 27.75 40.56 36.39 21.95 32.09 –

Word-Drop 34.14 28.00 41.07 38.04 22.62 32.77 + 0.68
SSE-SE (Wu et al., 2019) 33.90 27.95 41.23 36.93 22.66 32.53 + 0.44
Scheduled Sampling (Bengio et al., 2015) 33.96 28.12 41.13 37.39 22.58 32.63 + 0.54
AdvT (Sato et al., 2019) 34.25 27.91 41.31 37.05 23.00 32.70 + 0.61
R-Drop (Liang et al., 2021) 35.32 27.66 41.72 38.26 22.84 33.16 + 1.07

Word-Drop + ST 34.85 28.23 42.10 38.13 22.74 33.21 + 1.12
Word-Drop (enc) + PD-R 35.30 28.28 42.92 39.09 23.88 33.89 + 1.80
Word-Drop (dec) + PD-R 35.39 28.34 42.14 38.51 23.68 33.61 + 1.52
Word-Drop (both) + PD-R 35.17 28.23 42.20 38.74 23.61 33.59 + 1.50

Table 3: SacreBLEU for different models on WMT16 En-De task.

Word-Drop We implement word-dropout (Gal
and Ghahramani, 2016) by randomly replace word
embeddings with zero vectors with α = 0.05 in
Eq.(3).

SSE-SE The SSE-SE is a word-replacement
method that randomly replaces input tokens with
other tokens in vocabulary. As in Wu et al. (2019),
we set α = 0.01 in Eq.(3) and sample perturbation
sequence with uniform distribution.

Scheduled Sampling Scheduled sampling (Ben-
gio et al., 2015) is a word-replacement method
that randomly replace target-side input tokens with
model predictions. Each model prediction token
is sampled using model’s output distribution. The
replacement rate α follows a curriculum learning
strategy:

αi =
k

k + exp(i/k)
, (12)

where i represents training steps, and k is a hyper-
parameter depending on the speed of convergence.
Our implementation of scheduled sampling for
transformer is parallel as in Mihaylova and Mar-
tins (2019) and Duckworth et al. (2019). We set
k = (4590, 29350, 36150) for En-Ro, En-De and
Zh-En tasks respectively. The hyper-parameter k
is set to make sure that αi is decayed to 0.9 at the
end of training.

AdvT For adversarial training, we set κ = 1 in
Eq.(4) and λ = 1 in Eq.(7) as Sato et al. (2019).

R-Drop R-Drop (Liang et al., 2021) is a very
recent work whose implementation is similar to
PD-R. However, its motivation is to restrict the
freedom of parameters by reducing sub-model di-
vergence, while ours is to avoid token-level sample
fitting problems reflected by prediction difference.

Since predictions are carried out by sub-models dur-
ing training, the fitting bias of sub-models is also
included in the prediction difference. From this
point, R-Drop can be viewed as a sub-component
of PD-R.

5.4 Main Results

SacreBLEU (Post, 2018) of compared methods and
PD-R on three translation tasks are illustrated in
table 2 and table 3. We apply PD-R on encoder-
side word-dropout, decoder-side word-dropout,
and both-side word-dropout. For all compared
methods involving input perturbation, perturbation
is applied on both sides of the model except sched-
uled sampling. Note that selective training of word-
dropout regularization (only Sn, referred as ’ST’)
is also presented for comparison with Word-Drop
and PD-R.

Experiments show that existing perturbation reg-
ularization methods are similarly effective com-
pared to each other, which is consistent with Takase
and Kiyono (2021). R-Drop and selective train-
ing(ST) of word-dropout regularization are con-
sistently better than existing perturbation regular-
ization. Our PD-R against word-dropout signifi-
cantly improves over word-dropout and other per-
turbation regularization methods on all three tasks,
and also performs better than R-Drop on small-
scale and medium-scale tasks. On WMT16 En-De,
PDR achieves 1.80 SacreBLEU improvement over
vanilla transformer, 1.12 SacreBLEU improvement
over existing word-dropout perturbation regular-
ization, and 0.73 SacreBLEU improvement over
R-Drop.

On large scale WMT17 Zh-En task though, the
improvement of perturbation regularization gets
smaller compared to small and medium tasks, and
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(a) (b)

Figure 2: BLEU of models (a) on sentences of different lengths, (b) under different levels of word-dropout
perturbation. Experiments are conducted on WMT16 En-De with a combined test set.

R-Drop performs better than PD-R. We attribute
it to the fact that large-scale tasks are sufficient
in data, regularization in data level has become
a burden rather than help while regularizing sub-
model bias is still beneficial.

6 Analysis

In this section, we analyze the robustness of our
methods and distinguish the contribution of differ-
ent components via ablation study.

6.1 Performance on long sentences

Longer sentences contain more complex word com-
binations that are unseen or seldom seen in the
training set and suffer more from exposure bias
(Ranzato et al., 2016; Zhang et al., 2019). Per-
formance on long sentences reflects the model’s
robustness to unexpected inputs.

In experiment, we evaluate the performance of
different models on WMT16 En-De task. We com-
bine 5 test sets from WMT16 to WMT20 and divide
samples into 7 subsets according to sentence length.
As shown in figure 2a, PD-R achieves better results
in all subsets, and the improvement tends to be-
come larger as the sentence length grows, which
implies that PD-R can better handle unexpected
inputs of long sentences.

6.2 Robustness against perturbation
To better evaluate model’s robustness to perturba-
tions, we conduct perturbation attack for all models,
similar as Michel and Neubig (2018) and Moradi
and Samwald (2021). In experiment, we apply
word-dropout on source sentences and generate tar-
get sentences based on perturbed source sentences.
Experiment results in figure 2b show that PD-R
against word-dropout and existing word-dropout
regularization are consistently better than the base
model, and the gap becomes larger as the propor-
tion of perturbation grows, which confirms that our
approach does improve the model’s robustness to
perturbation.

Note that our experiments on other types of per-
turbation attack conclude that a model is robust to
a certain type of perturbation only if the model is
trained on this kind of perturbation, so comparison
of different perturbation regularization methods un-
der one certain type of perturbation attack is not
the focus of our discussion in this subsection.

6.3 Ablation Study
Ablation study in table 4 shows that training only
the positively influenced subset Sp using PD-R is
also effective, even more effective than training
only Sn. This indicates that PD-R can properly
handle both under-fitting and over-fitting.

As mentioned in section 3, sub-model bias is
also a source of improper fitting problems. To dis-
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En→Ro En→De

Transformer 33.40 32.55

only Sp 34.83 34.22
only Sn 34.59 34.16
both 35.11 34.50

only DP-diff 34.70 34.10
WD(enc) w/o DP-diff 33.97 33.97
WD(dec) w/o DP-diff 34.15 33.15
WD(both) w/o DP-diff 34.40 34.02
WD(enc) w/ DP-diff 34.63 34.50
WD(dec) w/ DP-diff 34.92 34.19
WD(both) w/ DP-diff 35.11 34.22

Table 4: BLEU for ablation study of PD-R, where
‘WD’ represents word-dropout, ‘w/o DP-diff’ repre-
sents that the two passes share the same parameter
dropout mask, ‘w/ DP-diff’ represents that two differ-
ent sub-models are used for the two passes.

tinguish the contribution of parameter dropout and
word-dropout, we conduct experiments where the
difference of two passes is restricted to only pa-
rameter dropout or only word-dropout. We also
conduct experiments on the encoder side and de-
coder side separately. Experiment results show that
parameter dropout is an important source of im-
provement, word-dropout is nearly as important as
parameter dropout for PD-R, while using both of
them gets the best results. As for the difference
between the encoder side and decoder side, the
decoder-side word-dropout contributes more on the
En-Ro task, while on the En-De task the contri-
bution of the encoder side is much bigger, this is
also true when the two passes have no parameter
dropout difference. The encoder side gets more
important on larger data set, which is consistent
with the main results.

7 Related Work

Works involving Input Perturbation Apart
from the works mentioned above, some works in-
troduce subword uncertainty at the subword seg-
mentation stage, including sampling multiple sub-
word candidates (Kudo, 2018), applying subword
dropout (Park et al., 2020) or producing adversar-
ial subword segmentation (Provilkov et al., 2020).
For character-level tasks, there are also works us-
ing character-level perturbation including character-
level random deletion, insertion, substitution and
swap (Belinkov and Bisk, 2018; Karpukhin et al.,
2019) and adversarial substitution (Ebrahimi et al.,
2018). The mixup technique for NLP tasks can also
be seen as a form of perturbation where samples

are perturbed (mixed) with other samples for data
augmentation or generation diversity (Guo et al.,
2020; Li et al., 2021; Fang et al., 2022).

Our work can be regarded as one example of
perturbation regularization. However, unlike pre-
vious perturbation regularization works which are
focused on finding better perturbation, our work im-
proves the training mechanism and can be applied
to any type of perturbations.

Influence of Perturbation Perturbation is com-
monly considered as a negative factor for neural
models by previous works (Szegedy et al., 2014;
Liang et al., 2018; Belinkov and Bisk, 2018), which
is generally correct with the fact that perturba-
tion does degrade the training and inference ac-
curacy of a model. Belinkov and Bisk (2018)
demonstrates that the performance of NMT sys-
tems degrades monotonously as input modification
increases, which is consistent with our observa-
tions. Based on the above facts, perturbation regu-
larization is frequently studied to enhance models’
robustness to unexpected inputs at the inference
stage. From a data selection perspective, Khayral-
lah and Koehn (2018) and Briakou and Carpuat
(2021) demonstrate that noisy or semantically di-
vergent data is harmful to the training of NMT
models. In this paper, we find that the interaction
between perturbation and model is complicated and
positive influence of perturbation is very common,
which is further regarded by us as a sign of rela-
tively under-fitting and a variable that needs to be
restricted.

Prediction Difference Prediction difference is
usually considered as a reflection of the relation-
ship between input and output and is often used
to analyze model behavior. Zintgraf et al. (2017)
utilizes prediction difference to visualize the im-
portance of a specific input image area to model
decision. Li et al. (2019b) uses the prediction dif-
ference of a target word when a source word is
removed to induce word alignment and find it more
accurate than attention weights. Guo et al. (2019)
finds that adversarial examples can be accurately
and efficiently detected via prediction difference.
Liang et al. (2021) proposes R-Drop and take pre-
diction difference as a regularization term to reg-
ularize sub-model divergence. In this work, pre-
diction difference is used as an analytical tool to
detect improper fitting problems and also a regular-
ization term to regularize the model’s fitting bias to
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token-level samples.

8 Conclusion

In this paper, we propose to use probability dif-
ference for ground-truth tokens before and after
input perturbation as an indicator to analyze the
influence of different types of perturbations and
attribute probability difference to improper fitting
of token-level samples. We find that under-fitting
is almost as common as over-fitting, which is to-
tally ignored and further aggravated by existing
perturbation regularization methods. To regular-
ize both under-fitting and over-fitting, we use pre-
diction difference as a regularization term (PD-R)
and apply it on word-dropout regularization. Our
method achieves significant improvement over ex-
isting methods on three WMT translation tasks and
is proved more robust to input perturbation.
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