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Abstract

How to learn a better speech representation for
end-to-end speech-to-text translation (ST) with
limited labeled data? Existing techniques often
attempt to transfer powerful machine transla-
tion (MT) capabilities to ST, but neglect the
representation discrepancy across modalities.
In this paper, we propose the Speech-TExt
Manifold Mixup (STEMM) method to cali-
brate such discrepancy. Specifically, we mix
up the representation sequences of different
modalities, and take both unimodal speech se-
quences and multimodal mixed sequences as
input to the translation model in parallel, and
regularize their output predictions with a self-
learning framework. Experiments on MuST-
C speech translation benchmark and further
analysis show that our method effectively alle-
viates the cross-modal representation discrep-
ancy, and achieves significant improvements
over a strong baseline on eight translation di-
rections.

1 Introduction

Speech-to-text translation (ST) aims at translating
acoustic speech signals into text in a foreign lan-
guage, which has wide applications including voice
assistants, translation for multinational video con-
ferences, and so on. Traditional ST methods usu-
ally combine automatic speech recognition (ASR)
and machine translation (MT) in a cascaded man-
ner (Sperber et al., 2017; Cheng et al., 2018; Sper-
ber et al., 2019; Dong et al., 2019b; Zhang et al.,
2019a; Lam et al., 2021b), which might suffer from
error propagation and high latency. To break this
bottleneck, end-to-end ST systems attracted much
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Code and models are publicly available at https://
github.com/ictnlp/STEMM.
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Figure 1: STEMM aims at bridging the modality gap
of speech and text. Different modalities with the same
meaning are projected to a shared space.

attention recently (Wang et al., 2020b,c; Dong et al.,
2021a,b; Han et al., 2021; Inaguma et al., 2021a;
Tang et al., 2021a), which learn a unified model to
generate translations from speech directly. Some
recent work has shown great potential for end-to-
end speech translation, even surpassing traditional
cascaded systems (Ye et al., 2021; Xu et al., 2021).

As a cross-modal task, a major challenge in train-
ing an end-to-end ST model is the representation
discrepancy across modalities, which means there
is a modality gap between speech representations
and text embeddings, as shown in the left sub-figure
of Figure 1. Existing approaches often adopt a so-
phisticated MT model to help the training of ST,
with some techniques like pretraining (Wang et al.,
2020c; Ye et al., 2021; Xu et al., 2021), multi-
task learning (Ye et al., 2021; Han et al., 2021;
Tang et al., 2021a) and knowledge distillation (Liu
et al., 2019; Gaido et al., 2020; Inaguma et al.,
2021b; Tang et al., 2021a). Although these meth-
ods have achieved impressive improvements in ST
task, these methods are not necessarily the best
way to leverage the MT knowledge. Considering
that during training, the input of the translation
module only include speech sequences or text se-
quences, the lack of multimodal contexts makes
it difficult for the ST model to learn from the MT
model. Inspired by recent studies on some cross-
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lingual (Lample and Conneau, 2019; Liu et al.,
2020a; Lin et al., 2020) and cross-modal (Li et al.,
2021b; Zhou et al., 2020; Dong et al., 2019a) tasks,
we suggest that building a shared semantic space
between speech and text, as illustrated in the right
sub-figure of Figure 1, has the potential to benefit
the most from the MT model.

In this paper, we propose the Speech-TExt
Manifold Mixup (STEMM) method to bridge the
modality gap between text and speech. In order
to calibrate the cross-modal representation discrep-
ancy, we mix up the speech and text representa-
tion as the input and keep the target sequence un-
changed. Specifically, STEMM is a self-learning
framework, which takes both the speech representa-
tion and the mixed representation as parallel inputs
to the translation model, and regularizes their out-
put predictions. Experimental results show that
our method achieves promising performance on
the benchmark dataset MuST-C (Di Gangi et al.,
2019a), and even outperforms a strong cascaded
baseline. Furthermore, we found that our STEMM
could effectively alleviate the cross-modal repre-
sentation discrepancy, and project two modalities
into a shared space.

2 Method

In this section, we will begin with the basic prob-
lem formulation (Section 2.1) and introduce the
model architecture (Section 2.2). Then, we intro-
duce our proposed Speech-TExt Manifold Mixup
(STEMM) in Section 2.3. Finally, we introduce our
proposed self-learning framework with STEMM in
Section 2.4 and present two mixup ratio strategies
in Section 2.5. Figure 2 illustrates the overview of
our proposed method.

2.1 Problem Formulation

The speech translation corpus usually contains
speech-transcription-translation triples, which can
be denoted as D = {(s,x,y)}. Here s is the se-
quence of audio wave, x is the transcription in the
source language, and y is the translation in the tar-
get language. End-to-end speech translation aims
to generate translation y directly from the audio
wave s, without generating intermediate transcrip-
tion x.

2.2 Model Architecture

Inspired by recent works (Dong et al., 2021b;
Xu et al., 2021) in end-to-end speech translation,
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Figure 2: Overview of our proposed self-learning frame-
work with STEMM. We first mix up the sequence
of speech representations and word embeddings with
STEMM. Then, both the unimodal speech sequence and
the multimodal mixed sequence are fed into the shared
translation module to predict the translation, and we
regularize two output predictions with an additional JS
Divergence loss.

we decompose the ST model into three modules:
acoustic encoder, translation encoder, and transla-
tion decoder. The acoustic encoder first encodes
the original audio wave into hidden states, fed into
the translation encoder to learn further semantic
information. Finally, the translation decoder gen-
erates the translation based on the output of the
translation encoder.
Acoustic Encoder As recent works (Ye
et al., 2021; Han et al., 2021) show that
Wav2vec2.0 (Baevski et al., 2020) can improve
the performance of speech translation, we first use
a pretrained Wav2vec2.0 to extract speech repre-
sentations c from the audio wave s. We add two
additional convolutional layers to further shrink the
length of speech representations by a factor of 4,
denoted as a = CNN(c).
Translation Encoder Our translation encoder is
composed of Ne transformer (Vaswani et al., 2017)
encoder layers, which includes a self-attention
layer, a feed-forward layer, normalization layers,
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and residual connections. For MT task, the in-
put of the translation encoder is the embedding of
transcription e = Emb(x). For ST task, it is the
output sequence of the acoustic encoder a. The
input can also be the multimodal mixed sequence
with our proposed STEMM (see details in Section
2.3). Generally, for the input sequence χ, we ob-
tain the contextual representations h(χ) after Ne

transformer (Vaswani et al., 2017) layers, which
are fed into the translation decoder for predicting
the translation.
Translation Decoder Our translation decoder is
composed of Nt transformer decoder layers, which
contain an additional cross-attention layer com-
pared with transformer encoder layers. For the
input sequence χ, the cross entropy loss is defined
as:

LCE(χ,y) = −
|y|∑
i=1

log pθ(yi|y<i,h(χ)). (1)

Pretrain-finetune We follow the pretrain-finetune
paradigm to train our model. First, we pretrain
the translation encoder and translation decoder
with parallel transcription-translation pairs, de-
rived from both the speech translation corpus and
the external MT dataset. Also, the acoustic encoder
is pretrained on large amounts of unlabeled au-
dio data in a self-supervised manner. We combine
those pretrained modules and finetune the whole
model for ST.

2.3 Speech-Text Manifold Mixup (STEMM)
As we mentioned in Section 1, to alleviate the repre-
sentation discrepancy due to the lack of multimodal
contexts, we present the Speech-TExt Manifold
Mixup (STEMM) method to mix up the sequence
of speech representations and word embeddings.
We first introduce STEMM in this section and later
show how to use it to help the training of ST.

Note the sequence of sub-word embeddings as
e = [e1, e2, ..., e|e|] and the sequence of speech
representations as a = [a1,a2, ...,a|a|], where the
sequence lengths usually follow |a| ≥ |e|. We first
perform a word-level forced alignment between
speech and text transcriptions to determine when
particular words appear in the speech segment. For-
mally, the aligner recognizes a sequence of word
units w = [w1, w2, ..., wT ], and for each word wi,
it returns the start position li and end position ri
in the sequence of speech representation a. Mean-
while, we denote the corresponding sub-word span

for word wi as [xmi : xni ], with its embeddings
matrix [emi : eni ], where mi and ni are the start
position and end position in the sequence of sub-
words. To mix up both sequences, for each word
unit wi, we choose either the segment of speech
representations [ali : ari ] or sub-word embeddings
[emi : eni ] with a certain probability p∗, referred
to mixup ratio in this paper.

mi =

{
[ali : ari ] p ≤ p∗

[emi : eni ] p > p∗
, (2)

where p is sampled from the uniform distribution
U(0, 1).

Finally, we concatenate all mi together and ob-
tain the mixup sequence:

m = Concat(m1,m2, ...,mT ). (3)

Note that in terms of the mixup representation
sequence length, we have |e| ≤ |m| ≤ |a|. Con-
sidering the positions of tokens have changed after
mixup, we add positional encodings to the token
embeddings. We further perform layer normaliza-
tion to normalize the embeddings:

Mixup((s,x), p∗) = LayerNorm(m+ Pos(m)),
(4)

where Pos(·) is the sinusoid positional embed-
ding (Vaswani et al., 2017). Mixup((s,x), p∗) in-
dicates the mixup sequence of speech s and text x
with probability p∗, which is fed into the transla-
tion encoder for predicting the translation.

2.4 Self-learning with STEMM

With the help of our proposed STEMM, we are now
able to access multimodal mixed sequences, in ad-
dition to the unimodal speech sequences. We inte-
grate them into a self-learning framework. Specif-
ically, we input both unimodal speech sequences
and multimodal mixed sequences into the trans-
lation module (translation encoder and transla-
tion decoder). In this way, translation of uni-
modal speech sequences focuses on the ST task
itself, while the translation of multimodal mixed
sequences is devoted to capture the connections be-
tween representations in different modalities. Be-
sides, we try to regularize above two output pre-
dictions by minimizing the Jensen-Shannon Di-
vergence (JSD) between two output distributions,
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which is

LJSD(s,x,y,p
∗) =

|y|∑
i=1

JSD{pθ(yi|y<i,h(s))∥

pθ(yi|y<i,h(Mixup((s,x), p∗)))},
(5)

where h(·) is the contextual representation out-
putted by the translation encoder. pθ(yi|y<i,h(s))
is the predicted probability distribution of the i-th
target token given the speech sequence s as input,
and pθ(yi|y<i,h(Mixup((s,x), p∗))) is that given
the multimodal mixed sequence as input.

With the cross-entropy losses of two forward
passes, the final training objective is as follows:

L = LCE(s,y) + LCE(Mixup((s,x), p∗),y)

+ λLJSD(s,x,y, p
∗),

(6)

where λ is the coefficient weight to control LJSD.

2.5 Mixup Ratio Strategy
When using our proposed STEMM, an important
question is how to determine the mixup ratio p∗.
Here we try two strategies: static mixup ratio and
uncertainty-aware mixup ratio.
Static Mixup Ratio We use the same mixup ratio
p∗ for all instances throughout the whole training
process. We will show how we determined this
important hyper-parameter in Section 4.3.
Uncertainty-aware Mixup Ratio With this strat-
egy, we determine the mixup ratio for each instance
according to the prediction uncertainty of the ST
task, defined as the average entropy of predicted
distributions of all target tokens:

u =
1

|y|

|y|∑
i=1

Entropy(pθ(yi|y<i,h(s))), (7)

and then we set the mixup ratio p∗ as follows:

p∗ = σ

(
u

U
− 1

2

)
, (8)

where U is a normalization factor which re-scales
u to [0, 1], σ(·) is a sigmoid function to prevent p∗

from dropping too quickly.

3 Experiments

3.1 Datasets
MuST-C We conduct experiments on MuST-C
(Di Gangi et al., 2019a) dataset. MuST-C is a mul-
tilingual speech translation dataset, which contains

ST (MuST-C) MT
En→ hours #sents name #sents

De 408 234K WMT16 4.6M
Fr 492 280K WMT14 40.8M
Ru 489 270K WMT16 2.5M
Es 504 270K WMT13 15.2M
Ro 432 240K WMT16 0.6M
It 465 258K OPUS100 1.0M
Pt 385 211K OPUS100 1.0M
Nl 442 253K OPUS100 1.0M

Table 1: Statistics of all datasets

translations from English (En) to 8 languages: Ger-
man (De), French (Fr), Russian (Ru), Spanish (Es),
Italian (It), Romanian (Ro), Portuguese (Pt), and
Dutch (Nl). It is one of the largest speech transla-
tion datasets currently, which contains at least 385
hours of audio recordings from TED Talks, with
their manual transcriptions and translations at the
sentence level. We use dev set for validation and
tst-COMMON set for test.
MT Datasets Our model architecture allows us to
utilize external parallel sentence pairs in large-scale
machine translation datasets. Therefore, we incor-
porate data from WMT for En-De, En-Fr, En-Ru,
En-Es, En-Ro, and OPUS1001 for En-Pt, En-It, En-
Nl, as pretraining corpora. The detailed statistics
of all datasets included are shown in Table 1.

3.2 Experimental setups

Pre-processing For speech input, we use the raw
16-bit 16kHz mono-channel audio wave. To per-
form word-level force alignment, we use Montreal
Forced Aligner2 toolkit, whose acoustic model is
trained with LibriSpeech (Panayotov et al., 2015).
For text input, we remove the punctuation from
the source texts for the ST dataset. Both source
and target texts are case-sensitive. For each trans-
lation direction, we use a unigram SentencePiece3

model to learn a vocabulary on the text data from
ST dataset, and use it to segment text from both ST
and MT corpora into subword units. The vocabu-
lary is shared for source and target with a size of
10k.

1http://opus.nlpl.eu/opus-100.php
2https://github.com/

MontrealCorpusTools/
Montreal-Forced-Aligner

3https://github.com/google/
sentencepiece
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Models External Data BLEU
Speech ASR MT En-De En-Fr En-Ru En-Es En-It En-Ro En-Pt En-Nl Avg.

Pretrain w/o external MT data

Fairseq ST (Wang et al., 2020a) × × × 22.7 32.9 15.3 27.2 22.7 21.9 28.1 27.3 24.8
AFS (Zhang et al., 2020) × × × 22.4 31.6 14.7 26.9 23.0 21.0 26.3 24.9 23.9
DDT (Le et al., 2020) × × × 23.6 33.5 15.2 28.1 24.2 22.9 30.0 27.6 25.6
Self-training (Pino et al., 2020) ✓ ✓ × 25.2 34.5 - - - - - - -
BiKD (Inaguma et al., 2021a) × × × 25.3 35.3 - - - - - - -
SATE (Xu et al., 2021) × × × 25.2 - - - - - - - -
XSTNet (Ye et al., 2021) ✓ × × 25.5 36.0 16.9 29.6 25.5 25.1 31.3 30.0 27.5
W2V2-Transformer ✓ × × 24.1 35.0 16.3 29.4 24.8 23.1 30.0 28.9 26.5
STEMM ✓ × × 25.6** 36.1** 17.1** 30.3** 25.6** 24.3** 31.0** 30.1** 27.5

Pretrain w/ external MT data

MTL (Tang et al., 2021b) × × ✓ 23.9 33.1 - 28.6 - - - - -
FAT-ST (Zheng et al., 2021a) ✓ ✓ ✓ 25.5 - - 30.8 - - - 30.1 -
JT-S-MT (Tang et al., 2021a) × × ✓ 26.8 37.4 - 31.0 - - - - -
SATE (Xu et al., 2021) × ✓ ✓ 28.1† - - - - - - - -
Chimera (Han et al., 2021) ✓ × ✓ 27.1† 35.6 17.4 30.6 25.0 24.0 30.2 29.2 27.4
XSTNet (Ye et al., 2021) ✓ × ✓ 27.8 38.0 18.5 30.8 26.4 25.7 32.4 31.2 28.8
W2V2-Transformer ✓ × ✓ 26.9 36.6 17.3 30.0 25.4 23.9 30.7 29.6 27.6
STEMM ✓ × ✓ 28.7** 37.4** 17.8** 31.0** 25.8* 24.5** 31.7** 30.5** 28.4

Table 2: BLEU scores on MuST-C tst-COMMON set. "Speech" denotes unlabeled audio data. † use OpenSubtitles
(Lison and Tiedemann, 2016) as external MT data. * and ** mean the improvements over W2V2-Transformer
baseline is statistically significant (p < 0.05 and p < 0.01, respectively).

Models WER↓ MT BLEU↑ ST BLEU↑

Cascaded 9.9 31.7 27.5
W2V2-Transformer - 31.7 26.9
STEMM - 31.7 28.7**

Table 3: Comparison with cascaded baseline on MuST-
C En-De tst-COMMON set. ** mean the improvements
over cascaded baseline is statistically significant (p <
0.01).

Model Configuration Our model consists of
three modules. For the acoustic encoder, we use
Wav2vec2.0 (Baevski et al., 2020) following the
base configuration, which is pretrained on audio
data from LibriSpeech (Panayotov et al., 2015)
without finetuning4. We add two additional 1-
dimensional convolutional layers to further shrink
the audio, with kernel size 5, stride size 2, padding
2, and hidden dimension 1024. For the translation
encoder, we use Ne = 6 transformer encoder lay-
ers. For the translation decoder, we use Nd = 6
transformer decoder layers. Each of these trans-
former layers comprises 512 hidden units, 8 atten-
tion heads, and 2048 feed-forward hidden units.
Training and Inference We train our model in a
pretrain-finetune manner. During pretraining, we
train the MT model i.e., translation encoder and
translation decoder, with transcription-translation
pairs. The learning rate is 7e-4. We train the
model with at most 33k input tokens per batch.

4Model can be downloaded at https://dl.
fbaipublicfiles.com/fairseq/wav2vec/
wav2vec_small.pt

During finetuning, the learning rate is set to 1e-
4. We finetune the whole model up to 25 epochs
to avoid overfitting, with at most 16M source au-
dio frames per batch. The training will early-stop
if the loss on dev set did not decrease for ten
epochs. During both pretraining and finetuning,
we use an Adam optimizer (Kingma and Ba, 2015)
with β1 = 0.9, β2 = 0.98, and 4k warm-up up-
dates. The learning rate will decrease proportion-
ally to the inverse square root of the step number
after warm-up. The dropout is set to 0.1, and the
value of label smoothing is set to 0.1. We use the
uncertainty-aware mixup ratio strategy by default,
and the mixup ratio p∗ is set to 0.4 when using
static strategy. The weight λ of JSD loss is set to
1.0.

During inference, We average the checkpoints
of the last 10 epochs for evaluation. We use beam
search with a beam size of 5. We use sacreBLEU5

(Post, 2018) to compute case-sensitive detokenized
BLEU (Papineni et al., 2002) scores and the statis-
tical significance of translation results with paired
bootstrap resampling (Koehn, 2004) for a fair com-
parison6. All models are trained on 8 Nvidia Tesla-
V100 GPUs. We implement our models based on
fairseq7 (Ott et al., 2019).

Baseline Systems We compare our method with
several strong end-to-end ST systems including:

5https://github.com/mjpost/sacrebleu
6sacreBLEU signature: nrefs:1 | bs:1000 | seed:12345 |

case:mixed | eff:no | tok:13a | smooth:exp | version:2.0.0
7https://github.com/pytorch/fairseq

7054

https://dl.fbaipublicfiles.com/fairseq/wav2vec/wav2vec_small.pt
https://dl.fbaipublicfiles.com/fairseq/wav2vec/wav2vec_small.pt
https://dl.fbaipublicfiles.com/fairseq/wav2vec/wav2vec_small.pt
https://github.com/mjpost/sacrebleu
https://github.com/pytorch/fairseq


Fairseq ST (Wang et al., 2020a), AFS (Zhang et al.,
2020), DDT (Le et al., 2020), MTL (Tang et al.,
2021b), Self-training (Pino et al., 2020), BiKD (In-
aguma et al., 2021a), FAT-ST (Zheng et al., 2021a),
JT-S-MT (Tang et al., 2021a), SATE (Xu et al.,
2021), Chimera (Han et al., 2021) and XSTNet (Ye
et al., 2021). Besides, we implement a strong base-
line W2V2-Transformer based on Wav2vec2.0. It
has the same model architecture as our proposed
STEMM and is pretrained in the same way. The
only difference is that it is only finetuned on the
ST task, while we adopt a self-learning framework
during finetuning.

4 Results and Analysis

4.1 Results on MuST-C Dataset

Comparison with End-to-end Baselines As
shown in Table 2, our implemented W2V2-
Transformer is a relatively strong baseline, which
proves the effectiveness of Wav2vec2.0 module
and MT pretraining. Without external MT data,
our method achieves an improvement of 1.0 BLEU
(average over 8 directions) over the strong baseline,
which proves our proposed self-learning framework
could effectively improve the performance of the
ST task. It even outperforms baselines with exter-
nal MT data on En-Es, En-It, En-Ro, En-Pt, and
En-Nl. When we introduce additional MT data, our
method also yields a 0.8 BLEU improvement com-
pared with baseline. Note that our performance is
slightly worse than XSTNet (Ye et al., 2021). How-
ever, our method is orthogonal with theirs, which
focuses on the training procedure of end-to-end ST
model. We will investigate how to combine them
together in the future.
Comparison with Cascaded Baseline We also im-
plement a strong cascaded system, whose ASR part
is composed of a pretrained Wav2vec2.0 module
and 6 transformer decoder layers, and the MT part
is the same as our pretrained MT module. Both cas-
caded systems and end-to-end models are trained
with the same data (D and DMT). As shown in Ta-
ble 3, the end-to-end baseline W2V2-Transformer
is inferior to the cascaded system, but our method
significantly outperforms it, which shows the po-
tential of our STEMM method.

4.2 Ablation Studies

Is Each Learning Objective Effective? As
shown in Equation 6, our training objective con-
tains three terms. Besides the cross-entropy objec-

Mixup Ratio STEMM Trans. JSD BLEU

uncertainty-aware ✓ ✓ 28.7**
static ✓ ✓ 28.5**
static ✓ × 27.9**
static × × 26.9

Table 4: BLEU scores on MuST-C En-De
tst-COMMON set with different auxiliary train-
ing objectives. STEMM Trans. indicates the criterion
entropy loss of translation of multimodal mixed
sequence LCE(Mixup((s,x), p∗),y). ** mean the
improvements over W2V2-Transformer baseline (last
row in the table) is statistically significant (p < 0.01).

tive LCE(s,y) for speech translation, we investi-
gate the effects of the other two auxiliary training
objectives. As shown in Table 4, when we input
the additional multimodal mixed sequence into the
model and optimize the cross-entropy loss (Line
3), it can already outperform the baseline (Line 4)
significantly. When we regularize two output pre-
dictions with JSD loss (Line 2), the performance
can be further boosted.
The uncertainty-aware strategy reduces the cost
for searching mixup ratio and has better per-
formance. We present two different mixup ratio
strategies in Section 2.5. To evaluate their im-
pacts, we conduct another ablation study on MuST-
C En-De. We observe that the BLEU scores on
tst-COMMON set are 28.5 and 28.7 for static strat-
egy and uncertainty-aware strategy, respectively.
The uncertainty-aware strategy can slightly im-
prove the performance, and more importantly, it
lowers the manual cost for searching an optimal
mixup ratio to get the best performance.

4.3 What is the Optimal Mixup Ratio?
When using static mixup ratio strategy, it is impor-
tant to choose the mixup ratio p∗. We constrain p∗

in [0.0, 0.2, 0.4, 0.6, 0.8] for experiments on MuST-
C En-De tst-COMMON set, as shown in Figure 3.
When p∗ = 0.0, the translation task with the mixed
sequence as input degrades to the MT task. We
interestingly find that self-learning with MT tasks
performed the worst (i.e. lowest BLEU) than self-
learning with STEMM at other mixup ratios. This
confirms what we mentioned in Section 1, that the
representation discrepancy between speech and text
makes the MT task an inferior boost to ST.

Our method achieves the best performance at
p∗ = 0.4. To find a reasonable explanation, we do
a more in-depth study of the representation of the
speech, text, and their mixup sequence (STEMM).
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Figure 3: BLEU scores on MuST-C En-De
tst-COMMON set with different mixup ratio p∗. Our
method achieves best performance when p∗ = 0.4.
When p∗ = 0.0, STEMM will degrade to text-only
sequence, which we denote as MT.

In Figure 4, we take out the sequential represen-
tation of the speech (output of acoustic encoder),
text sequences (output of embedding layer), and
the STEMM sequences, average them over the se-
quence dimension, and apply the T-SNE dimen-
sionality reduction algorithm to reduce the 512
dimensions to two dimensions. We plot the bivari-
ate kernel density estimation based on the reduced
2-dim representation. We find that when p∗ = 0.4,
the mixup representation just lies between the rep-
resentation of speech and text sequences. That is
why it calibrates the cross-modal representation
discrepancy more easily and gets the best ST per-
formance.

4.4 Can Our Model Alleviate Cross-modal
Representation Discrepancy?

To examine whether our method alleviates the
cross-modal representation discrepancy, we con-
duct some analysis of cross-modal word represen-
tations. As described in Section 2.3, for each word
unit wi, we identify the corresponding segment of
speech representation [ali : ari ] and text embed-
ding [emi : eni ]. We define the word representation
in each modality as follows:

αi = AvgPool([ali : ari ]), (9)

εi = AvgPool([emi : eni ]), (10)

where AvgPool() denotes average-pooling opera-
tion across the sequence dimension, αi and εi de-
note the representation of word unit wi in speech
and text modalities, respectively.

We calculate the average cosine similarity be-
tween αi and εi over all word units wi in MuST-C

60 40 20 0 20 40 60 80
x

100

50

0

50

100

y

Speech
Mixup 0.4
Text

Figure 4: The bivariate kernel density estimation visu-
alization of the averaged sentence representation of the
speech, text and STEMM sequences after pretraining.
T-SNE algorithm is applied to reduce the 512-dim rep-
resentations to two dimensions. The green line stands
for the averaged sentence embedding. The red line
stands for the averaged speech representation. the blue
line is the representation for STEMM with mixup ratio
p∗ = 0.4. We observe that the representation of the
mixed sequence is in between that of speech and text,
which fills the gap between the representation of speech
sequences and text sequences. Best view in color.

Models Similarity (%)

W2V2-Transformer 32.31
STEMM 51.89

Table 5: Comparison of word-level representation simi-
larity across modalities.

En-De tst-COMMON set. As shown in Table 5,
our method could significantly improve the similar-
ity of word representations across modalities over
baseline. We believe it is because when training
with our proposed STEMM, the speech segment
and text segment of a word will appear in a similar
multimodal context, which leads to similar rep-
resentations. We also show the visualization of
an example in Figure 5, we can observe that our
method brings word representations within differ-
ent modalities closer compared with baseline.
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Figure 5: Visualization of word representations in
speech and text modalities. We visualize the repre-
sentations by reducing the dimension with Principal
Component Analysis (PCA). Our method brings word
representation within different modalities closer.
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Figure 6: Curve of BLEU scores on MuST-C En-De
tst-COMMON against the size of external MT data used
during pretraining.

4.5 How the Size of MT Data Influences
Performance?

One important contributor to our excellent perfor-
mance is the usage of external MT data. Therefore,
how the amount of MT data affects the final per-
formance is an important question. We vary the
amount of available external MT data during pre-
training on En-De direction. As shown in Figure 6,
we observe a continuous improvement of BLEU
scores with the increase of MT data, which shows
that external MT data is helpful to improve ST.

4.6 Can the Final Model still Perform MT
Task?

Our model is first pretrained on the MT task and
then finetune for ST. An important question is
whether there is a catastrophic forgetting problem
during finetuning. We evaluate the model on the
MT task and show the result in Table 6. We observe
that when we only finetune the model on the ST
task (W2V2-Transformer), the ability of text trans-

Models BLEU

Pretrained MT 31.7
W2V2-Transformer 19.5
STEMM 31.5

Table 6: BLEU scores of MT task on MuST-C En-
De tst-COMMON set. Our proposed method almost
preserves the text translation capability of pretrained
MT model.

lation will be forgotten a lot. In contrast, when we
use our self-learning framework during finetuning,
even though there is no MT task, the MT capability
can still be preserved.

5 Related Works

End-to-end ST To overcome the error propaga-
tion and high latency in the cascaded ST systems,
Bérard et al. (2016); Duong et al. (2016) proved
the potential of end-to-end ST without intermediate
transcription, which has attracted much attention
in recent years (Vila et al., 2018; Salesky et al.,
2018, 2019; Di Gangi et al., 2019b,c; Bahar et al.,
2019a; Inaguma et al., 2020). Since it is difficult to
train an end-to-end ST model directly, some train-
ing techniques like pretraining (Weiss et al., 2017;
Berard et al., 2018; Bansal et al., 2019; Stoian et al.,
2020; Wang et al., 2020b; Pino et al., 2020; Dong
et al., 2021a; Alinejad and Sarkar, 2020; Zheng
et al., 2021b; Xu et al., 2021), multi-task learning
(Le et al., 2020; Vydana et al., 2021; Tang et al.,
2021b; Ye et al., 2021; Tang et al., 2021a), cur-
riculum learning (Kano et al., 2017; Wang et al.,
2020c), and meta-learning (Indurthi et al., 2020)
have been applied. To overcome the scarcity of
ST data, Jia et al. (2019); Pino et al. (2019); Ba-
har et al. (2019b) proposed to generate synthesized
data based on ASR and MT corpora. To overcome
the modality gap, Han et al. (2021); Huang et al.
(2021); Xu et al. (2021) further encode acoustic
states which are more adaptive to the decoder. Pre-
vious works have mentioned that the modality gap
between speech and text is one of the obstacles in
the speech translation task, and to overcome such
gap, one branch of the works (Liu et al., 2020b;
Dong et al., 2021b; Xu et al., 2021) introduced a
second encoder based on the conventional encoder-
decoder model, to extract semantic information
of speech and text. Recently, Han et al. (2021)
built a shared semantic projection module that sim-
ulates the human brain, while in this work, we
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explored how to construct an intermediate state
of the two modalities via the recent mixup method
(i.e. Speech-TExt Manifold Mixup) to narrow such
gap. Note that our work is orthogonal with Ye et al.
(2021)’s study in training procedure of end-to-end
ST model.
Mixup Our work is inspired by the mixup strat-
egy. Zhang et al. (2018) first proposed mixup as a
data augmentation method to improve the robust-
ness and the generalization of the model, where
additional data are constructed as the linear inter-
polation of two random examples and their labels
at the surface level. Verma et al. (2019) extended
the surface-level mixup to the hidden representa-
tion by constructing manifold mixup interpolations.
Recent work has introduced mixup on machine
translation (Zhang et al., 2019b; Li et al., 2021a;
Guo et al., 2022; Fang and Feng, 2022), sentence
classification (Chen et al., 2020; Jindal et al., 2020;
Sun et al., 2020), multilingual understanding (Yang
et al., 2022), and speech recognition (Medennikov
et al., 2018; Sun et al., 2021; Lam et al., 2021a;
Meng et al., 2021), and obtained enhancements.
Our approach is the first to introduce the idea of
manifold mixup to the speech translation task with
two modalities, speech, and text.

6 Conclusion

In this paper, we propose a Speech-TExt Manifold
Mixup (STEMM) method to mix up the speech
representation sequences and word embedding se-
quences. Based on STEMM, we adopt a self-
learning framework, which learns the translation of
unimodal speech sequences and multimodal mixed
sequences in parallel, and regularizes their output
predictions. Experiments and analysis demonstrate
the effectiveness of our proposed method, which
can alleviate the cross-modal representation dis-
crepancy to some extent and improve the perfor-
mance of ST. In the future, we will explore how
to further eliminate this discrepancy and fill the
cross-modal transfer gap for ST.
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