
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 6896 - 6906

May 22-27, 2022 c©2022 Association for Computational Linguistics

CQG: A Simple and Effective Controlled Generation Framework for
Multi-hop Question Generation

Zichu Fei1,2,Qi Zhang1,2∗, Tao Gui3∗, Di Liang4,Sirui Wang4,Wei Wu4,Xuanjing Huang1,2,3

School of Computer Science, Fudan Unviersity1

Shanghai Key Laboratory of Intelligent Information Processing, Shanghai, China2

Institute of Modern Languages and Linguistics, Fudan University, Shanghai, China3

Meituan Inc., Beijing, China4

{zcfei19, qz, tgui,xjhuang}@fudan.edu.cn
{liangdi04, wangsirui}@meituan.com, wuwei19850318@gmail.com

Abstract

Multi-hop question generation focuses on
generating complex questions that require
reasoning over multiple pieces of information
of the input passage. Current models with
state-of-the-art performance have been able to
generate the correct questions corresponding
to the answers. However, most models can not
ensure the complexity of generated questions,
so they may generate shallow questions that
can be answered without multi-hop reasoning.
To address this challenge, we propose the CQG,
which is a simple and effective controlled
framework. CQG employs a simple method to
generate the multi-hop questions that contain
key entities in multi-hop reasoning chains,
which ensure the complexity and quality of
the questions. In addition, we introduce a
novel controlled Transformer-based decoder
to guarantee that key entities appear in the
questions. Experiment results show that our
model greatly improves performance, which
also outperforms the state-of-the-art model
about 25% by 5 BLEU points on HotpotQA 1.

1 Introduction

Question generation (QG) aims to endow machines
with the ability to ask relevant and to-the-point
questions about a document. QG plays a vital role
in question answering (QA), dialogue systems, and
automated tutoring applications: – by enriching the
training QA corpora (Tang et al., 2017; Yuan et al.,
2017), helping chatbots start conversations with
intriguing questions (Mostafazadeh et al., 2016),
and automatically generating assessment questions
(Heilman and Smith, 2010), respectively.

Most prior research on QG has focused on
shallow factoid-based questions where answering
the question simply by extracting the span of the
text from a single input document (Zhou et al.,

∗∗ Corresponding authors.
1Our code and models are publicly available at

https://github.com/sion-zcfei/CQG

Figure 1: An example that the uncontrolled question
generation model may generate the correct but shallow
questions. In this example, the model ignores the
important entity Western European in paragraph A and
then generate a shallow question without multi-hop
reasoning chains.

2018; Zhao et al., 2018; Kim et al., 2019; Fei
et al., 2021). Recently, motivated by building the
NLP systems that are capable of understanding
and reasoning (Kaushik and Lipton, 2018; Sinha
et al., 2019), there is an increasing interest in
developing systems that are capable of more
complex multi-hop question generation, where
answering the questions requires reasoning over
multiple documents (Pan et al., 2020; Sachan et al.,
2020; Xie et al., 2020; Yu et al., 2020; Su et al.,
2020).

Compared with shallow QG, there are two

6896



challenges for multi-hop QG (MQG). At first,
generating multi-hop questions requires the model
to understand the relationship between disjointed
pieces of information in multiple context docu-
ments (Sachan et al., 2020). Secondly, multi-
hop questions must have complex chains of
connecting the mentioned entities, which ensure
the complexity of multi-hop questions, as such,
multi-hop questions are also called deep questions
(Pan et al., 2020).

To address the first challenge, existing research
on MQG relies on the Graph-to-Sequence (G2S)
architecture (Pan et al., 2020; Su et al., 2020;
Yu et al., 2020). These methods construct a
semantic-level graph or entity-graph to capture the
information among multiple context documents
that employ a graph neural network(GNN) and then
feed it to the decoder. However, these models can
not handle the second challenge because they can
not ensure the complexity of generated questions;
thus, they may generate shallow questions that can
be answered without multi-hop reasoning chains.
We show an example in Figure 1, where the
uncontrolled model generates a shallow question
that can be answered by a single sentence but
ignores the other sentences and entities.

To solve this issue, we propose the CQG,
a simple and effective controlled framework.
(De Cao et al., 2018; Qiu et al., 2019) claim that the
reasoning chains can be captured by propagating
information along the edges in an entity graph
using a GNN. Motivated by this, we construct the
entity graph from the input documents first and
then employ the Graph Attention Network (GAT)
to extract the key entities that appear in multi-
hop reasoning chains. Intuitively, all these key
entities should appear in the generated questions
to ensure the generated questions have complex
and complete reasoning chains. We introduce the
flag tag (Wang et al., 2021), a lexical constraint for
generation at each decoding step, which will assist
the controlled generation. In detail, in decoding
progressing, each input token is provided a flag tag
that indicates whether the constraint of this token
has been satisfied. Three possible types of flag
tags exist for each token, is not a constrain, does
not appear in question and appear in question. As
shown in Figure 2, the flag tag of six updates to
appear in question at the fourth step because six is
generated at this step. We represent the three flag
tags by training the embedding and injecting them

into the Transformer generator. The flag tag can
explicitly inform the generator to satisfy as many
as possible constraints. In the training stage, when
the generation is stopped, the flag tags for each
token are either not a constrain or satisfied. It is
a strong signal for the model to try to satisfy all
constrains.

We conduct experiments on HotpotQA (Yang
et al., 2018): a challenging dataset in which the
questions are generated by reasoning over text
from separate Wikipedia pages. Results show
that our model greatly improves performance; it
outperforms the state-of-the-art about 25% by 5
BLEU (Papineni et al., 2002) points.

Our main contributions are summarized as
follows:

• We propose a simple and effective controlled
generation framework for MQG; we are also
the first one to provide a method to ensure
the complexity of generated questions and the
first one to introduce the controlled generation
methods to MQG.

• Experiment results show that our model
greatly improves the performance; it also
outperforms the state-of-the-art about 25%
by 5 BLEU points.

2 Related Work

2.1 Question Generation

Early works on QG (Mostow and Chen, 2009;
Heilman and Smith, 2010) focus on the rule-based
approaches that rely on heuristic rules or hand-
crafted templates, with low generalizability and
scalability. Recent works adopt the attention-based
sequence-to-sequence neural model for QG tasks,
taking sentences with the answer as input and
outputting the question (Du et al., 2017), which
proved to work better than the rule-based methods.
(Zhou et al., 2018) proposes the feature-enriched
encoder to encode the input sentence. To generate
a question for a given answer, (Sun et al., 2018;
Kim et al., 2019; Song et al., 2018) apply various
techniques to encode answer location information
into an annotation vector corresponding to the word
positions, thus allowing for better quality answer
focused questions. (Chen et al., 2020) presents a
syntactic feature-based method to represent words
in a document and to decide what words to focus on
while generating the question. Furthermore, recent

6897



Figure 2: Overview architecture of the CQG model.

concurrent works apply the large-scale language
model pre-training strategy for QG to achieve a
new state-of-the-art performance (Chan and Fan,
2020).

Most prior research on QG has focused on
shallow factoid-based questions, where answering
the question simply by extracting the span of the
text from a single input document.

Recently, there has been an increasing interest in
MQG, to capture the complex information among
different input documents, (Pan et al., 2020; Su
et al., 2020) employ the GNN-based encoder in
semantic graph and entity graph respectively, and
(Sachan et al., 2020) use the strong transformer-
based graph model. However, all these methods
can not to ensure the complexity of generated
questions where the generated questions may
degenerate into shallow questions.

2.2 Controlled Generation

Two different types of control can be applied
over generation models: soft control and hard
control. Soft control aims at directing the option
or the general topic of the generated text. In
contrast, hard control aims at ensuring that some
explicit constraints are met, e.g., specific words
are contained in the text. The soft control can
also be achieved via hard control, i.e., text that
contains a set of words related to a certain topic
should arguably revolve around that topic. Some
recent works employ soft control on unconstrained
language generation by training or fine-tuning
language models (Ziegler et al., 2019; Keskar et al.,
2019).

While hard control of constrained generation,
such as machine translation, can be attained with
grid beam search methods (Hu et al., 2019; Post
and Vilar, 2018), which is impractical to use the

same approach for hard control of unconstrained
generation. Methods such as grid beam search rely
on the assumption that there exists a core set of
plausible candidates fulfilling the desired criteria,
this is not often the case for open-ended generation
tasks. Recent work on stochastic search (Sha,
2020) has approached this problem by performing
bidirectional search during generation and editing
the text until the constraints are fulfilled. Although
stochastic search is suitable for bidirectional RNN
models, it is not yet clear if it can be applied to
forward generation models, e.g., transformer-based
models.

3 Methodology

In this section, we formalize the multi-hop question
generation (MQG) task and introduce our CQG. In
particular, we first describe our Graph Attention
Network (GAT) based key entities extractor. Fol-
lowing this, we describe the flag tag and finally we
introduce our novel controlled Transformer-based
generator with flag tag.

3.1 Problem Formulation

The input to the MQG task is a set of context
documents C = {d1, .., dk} where the k is
the number of documents and an answer A =
[a1, ..., am] where the m is the length of answer.
These documents can be long containing multiple
sentences, di = [s1, ..., sn], where each sj =

[wj
1, ..., w

j
t ] is composed of a sequence of tokens

and the n and t are the number of sentences
and the length of sentences respectively. The
desired goal of MQG is to generate a question
y = [y1, ..., yt] conditioned on the context and the
answer, where answering this question requires
reasoning about the content in more than one of the
context documents.

6898



3.2 GAT-based Key Entities Extractor
According to existing research in multi-hop QA
(De Cao et al., 2018), the reasoning chains
can be captured by propagating local contextual
information along edges in entity graph using
a GNN. Motivated by this, we construct the
entity graph from the input documents first and
then employ the Graph Attention Network (GAT)
(Veličković et al., 2017).

We follow the (Qiu et al., 2019) to construct the
entity graph and we use the Stanford corenlp toolkit
(Manning et al., 2014) to recognize named entities
from the context C. The entity graph is constructed
with the entities as nodes and edges built as follows.
The edges are added 1. for every pair of entities
that appear in the same sentence in C (sentence-
level links); 2. for every pair of entities with the
same mentioned text in C (context-level links); 3.
between a central entity node and other entities
within the same paragraph (paragraph-level links).
The central entities are extracted from the title
sentence for each paragraph. We do not apply
co-reference resolution for pronouns because it
introduces both additional useful and erroneous
links.

We concatenate the answer A with the context
C and pass the resulting sequence to a pre-
trained BERT model to obtain representations
H = [h1, h2, ..., hM ] where M is the length of
the context and answer. For each entity ei =
[wl, wl+1, ..., wj ], we obtain its representation by a
MaxPool and use it as the node embedding Ei in
entity graph:

ei = [wl, wl+1, ..., wj ] (1)

E0
i = MaxPooling(hl, hl+1, ..., hr) (2)

The next step is to aggregate the information in
the entity graph; here, we used a GAT to compute
the multi-head attention score between two entity
nodes by:

αij =
exp(σ(W[hi, hj ]))∑
k∈Ni

exp(σ(W[hi, hk])
(3)

σ(x) = LeakyReLU(x) (4)

where W is the trainable matrix and Ni is the
neighbors of entity i.

We aggregate the information by multi-head
attention at each step:

ht+1
i = ∥Kk=1σ(

∑
j∈Ni

αk
ijW

khj) (5)

where ∥ is the concatenate operation, Wk is the
trainable weighting matrix for the kth head and all
nodes share the same parameters of Wk. Then
we obtain the updated node embedding Et+1 =
[ht+1

1 , ht+1
2 , ..., ht+1

n ].
To generate a multi-hop question, we need

to select the key entities in complex multi-hop
reasoning chains. We formulate this as a node
classification task, i.e., deciding whether each node
should be involved in the process of asking, i.e.,
appearing in the reasoning chain for raising a multi-
hop question, as exemplified by Figure 2.

To this end, we add one feed-forward layer
on top of the final layer of the graph encoder,
taking the output node representations ET for
classification. We deem a node as a positive ground-
truth to train the key entities extract task if its
contents appear in the ground-truth question and
optimize it by cross-entropy loss.

3.3 Controlled Generator with Flag Tag

In order to ensure the complexity of the generated
question, the generated question must contain the
key entities extracted from the entity graph. To this
end, we need a controlled generator G(Y |X,Y )
where X is the input passage tokens and some
xi correspond to lexical constraints that must be
satisfied in the generated outputs.

We describe the flag tag firstly, at decoding
step t, the flag tag indicates whether each lexical
constraint has been satisfied up until this step.
Notably, the flag tag for each token at step t is
that:

flagti =


0 xi is not a constrain
1 xi does not appear in y1:t
2 xi appear in y1:t

where flagti is the flag tag for ith input token at
decoding step t, and y1:t is the generated tokens
thus far. The tokens with the values 1 or 2 of
the flag is a lexical constraint and the token with
0 is not constrained to appear in the question.
Obviously, the flag tag for any token can only
remain unchanged or updated to value 2. As shown
in Figure 3, the input tokens X is that X = [The,
six, Celtic, nations, Western, Europe] and the flag
tag at the beginning is that flag0 = [0,1,0,0,1,1]
because the tokens are not constrained except six,
Western and Europe. At step 4, the flags update
to [0,2,0,0,0,1,1] because the token six has been
generated but Western and Europe have not.

6899



Figure 3: An example for flag tag update.

During the training of models, all the constraints
have been satisfied before stopping the generation.
This is a strong signal for the model to satisfy all
the constraints. In addition, the flag tag is simple
enough, which only adds the embedding with three
tokens.

To utilize the rich information in flag tag, we
employ a Transformer-based decoder as a generator
to incorporate it and construct a simple controlled
generation framework. We inject the flag tag into
the embedding vector and use this embedding
as the relative position embedding to bridge the
decoder and the encoder.

In particular, at decoding step t, we incorporate
the flag tag embedding by cross-attention in
decoder. The conventional cross-attention module
is computed by:

Cross(Q,K, V ) = softmax(
Q⊤K√

dk
)V (6)

where Q is the decoder states, K and V are encoder
states and dk is the dimensions of K vectors.

We introduce the flag tag at step t F t ∈ R3∗lenP

where lenP is the length of the input passage, to
transformer decoder as relative position embedding
to compute the cross attention at step t as follows:

αt
cross = softmax(Et) (7)

Et =
Qt(K +Rt)⊤√

d
(8)

Rt = Embedding(F t) (9)

where Qt is the states of decoder at step t and the
K is the outputs of encoder. And then the outputs
of cross module is:

Cross(Qt,K, V, F t) = αt
crossV (10)

where V is the outputs of encoder.

Figure 4: The controlled Transformer-based decoder
where incorporate the flag tag as relational position
embedding.

We train our model by the negative log likeli-
hood for the target sequence y:

L =
1

T

T∑
t=1

logP (ỹt = yt) (11)

4 Experiments

4.1 Data and Metrics

To evaluate the model’s ability to generate multi-
hop questions, we conduct experiments on Hot-
potQA (Yang et al., 2018), which contains about
100,000 crowd-sourced questions that require
reasoning over separate Wikipedia articles. Each
question has two supporting documents that con-
tain the necessary evidence to infer the answer. In
this paper, we take the fact supporting sentences
with the answer as inputs to generate the multi-
hop questions. We follow the split of the original
dataset including 90,447 and 7405 examples for
training and developing respectively. Because the
test set is not available publicly, so we set the
original developing set as the test set and extract
500 samples from the training set as the developing
set. Overall, we use the 89,947/500/7405 samples
as training set, developing set and testing set,
respectively.

Following the previous work, we employ BLEU
(Papineni et al., 2002), ROUGE-L (Lin, 2004) and
METEOR (Lavie and Agarwal, 2007) as automated
evaluation metrics. BLEU measures the average n-
gram overlap on a set of reference sentences. Both
METEOR and ROUGE-L specialize BLEU’s n-
gram overlap idea for machine translation and text
summarization evaluation, respectively.

6900



Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L
Seq2Seq + attn (Bahdanau et al., 2014) 32.97 21.11 15.41 11.81 18.19 33.48
NQG++ (Zhou et al., 2018) 35.31 22.12 15.53 11.50 16.96 32.01
ASs2s (Kim et al., 2019) 34.60 22.77 15.21 11.29 16.78 32.88
s2sa-at-mp-gsa (Zhao et al., 2018) 38.74 24.89 17.88 13.48 18.39 34.51
UniLM (Dong et al., 2019) 42.37 29.95 22.61 17.61 25.48 40.34
MuLQG (Su et al., 2020) 40.15 26.71 19.73 15.20 20.51 35.30
Semantic Graph (Pan et al., 2020) 40.55 27.21 20.13 15.53 20.15 36.94
IGND (Fei et al., 2021) 41.22 24.71 18.99 16.36 24.19 38.34
BART (Lewis et al., 2020) 41.41 30.90 24.39 19.75 25.20 36.13
Strong Transformers (Sachan et al., 2020) - - - 20.02 22.40 39.49
CQG 49.71 37.04 29.93 25.09 27.45 41.83

Table 1: Automatic evaluation results on HotpotQA. Our CQG achieves the best performance and have significant
improvement in all metrics.

4.2 Baselines

We compare our proposed model against several
strong baselines on question generation.

Seq2Seq + attn: (Bahdanau et al., 2014) the
basic sequence-to-sequence (Seq2Seq) model with
attention, which takes the document as input to
decode the question.

NQG++ (Zhou et al., 2018): a Seq2Seq model
with feature-enrich encoder.

s2sa-at-mp-gsa (Zhao et al., 2018): employs
a gated attention encoder and a maxout pointer
decoder to deal with long text inputs.

ASs2s (Kim et al., 2019): proposes an answer
separated Seq2Seq model by replacing the answer
in the input sequence with some specific words.

Semantic Graph (Pan et al., 2020): a graph-to-
seq model for MQG, which constructs a semantic
graph to capture the global information.

MuLQG (Su et al., 2020): a graph-to-seq model
employs an encoder reasoning gate to capture the
entity graph information.

IGND (Fei et al., 2021): a graph-to-seq model
that introduces the copy tag and iterative graph-
based decoder, it is the state-of-the-art model for
shallow QG. We construct the graph following (Pan
et al., 2020) to match the HotpotQA dataset.

BART (Lewis et al., 2020): The strong pre-
training generation model that obtains the state-
of-the-art performance on shallow question.

UniLM (Dong et al., 2019): Another strong pre-
training generation model.

Strong Transformers (Sachan et al., 2020): the
state-of-the-art model for MQG, which propose a
series of strong Transformer models for MQG.

4.3 Implementation Details

We use the BERT base model loaded from
transformers in huggingface library 2. The
embedding size and head hidden size of the flag tag
are 64. The number of heads in BERT, transformer-
based decoder and GAT attention is 8. The number
hop of GAT in the entity graph is 3. As for entity
extracting, if the number of key entities is more
than 5, we use the top-5 entities with the highest
probability. We use the AdamW (Loshchilov and
Hutter, 2017) as the optimizer and the learning rate
is set to 2e-5. We stop the training if the validation
BLEU-4 score stops improving for 10 epochs. We
clip the gradient at length 10. The batch size is 128
and the beam search width 5. All hyperparameters
are tuned on the development set. We implement
all models in MindSpore.

4.4 Main Results

Table 1 shows the experimental results of the
HotpotQA dataset. In terms of BLEU-4 regarded
as the main evaluation metric for text genera-
tion, our model greatly improves performance; it
outperforms the strong Transformers about 25%
by 5 BLEU points. We achieve state-of-the art
results on HotpotQA. Not only in BLEU-4, our
CQG achieves the best performance and shows
significant improvement in all metrics.

4.5 Human Evaluation

Metrics for automatic evaluation based on n-grams
may not truly reflect the quality of generated
questions. Hence, we further randomly sample
300 examples in the test set for human evaluation.
Following by (Pan et al., 2020), we conduct human

2huggingface.co/transformers

6901



Model
Short Contexts Medium Contexts Long Contexts Average

Flu. Rel. Cpx. Flu. Rel. Cpx. Flu. Rel. Cpx. Flu. Rel. Cpx.

MulQG (Su et al., 2020) 3.78 3.56 3.49 3.53 3.47 3.44 3.39 3.36 3.26 3.56 3.47 3.39
Semantic Graph (Pan et al., 2020) 3.79 3.55 3.51 3.54 3.46 3.42 3.40 3.37 3.28 3.57 3.46 3.40
UniLM (Dong et al., 2019) 4.27 4.11 3.86 4.23 4.06 3.84 4.18 4.01 3.82 4.22 4.06 3.84
BART (Lewis et al., 2020) 4.32 4.16 3.94 4.29 4.15 3.92 4.25 4.11 3.88 4.28 4.14 3.91
Our CQG 4.41 4.28 4.21 4.40 4.26 4.18 4.38 4.27 4.17 4.39 4.27 4.18

Ground Truth 4.94 4.92 4.97 4.93 4.93 4.96 4.89 4.92 4.98 4.91 4.93 4.97

Table 2: The human evaluation for different models.

Model BLEU
CQG 25.09
CQG w/o entity graph 24.12
CQG w/o inference dynamical flag tag 22.96
CQG w/o controlled decoder 20.87
CQG w/o key entities + controlled decoder 19.89

Table 3: The ablation study for CQG.

evaluations on 300 random test samples consisting
of 100 short (<50 tokens), 100 medium (50-200
tokens), and 100 long (>200 tokens) documents.
We ask three workers to rate the 300 generated
questions as well as the ground-truth questions
between 1 (poor) and 5 (good) on three criteria:
(1) fluency, which indicates whether the question
follows the grammar and accords with the correct
logic; (2) relevance, which indicates whether
the question is answerable and relevant to the
passage; (3) complexity, which indicates whether
the question involves reasoning over multiple
sentences from the document. We average the
scores from raters on each question and report the
performance of UniLM, MuLQG Semantic Graph,
BART and our CQG. Workers were unaware of the
identity of the models in advance. We show the
results in Table 2.

We can see that the performance of pre-training
generation models is much better than MulQG and
Semantic Graph. Our CQG model shows the best
performance for all three criteria and all lengths
of context. Furthermore, CQG is outstanding in
complexity where other models are weak in it, and
this result proves that our model is effective in
solving the complexity control issue of MQG task.

4.6 Ablation Study

To further evaluate and investigate the performance
of different components and strategies in our model,
we perform the ablation study in the HotpotQA test
set and show the results in Table 3.

CQG w/o entity graph The model removes the
entity graph and employs the context embedding
passed BERT to extract the entity, which does not
change the setting of the controlled generator.

CQG w/o controlled decoder The model
removes the controlled decoder and employs the
standard transformer model, where the BERT
encoder encodes both input passage and key
entities and feeds then into the decoder.

CQG w/o inference dynamical flag tag The
model does not update flag tag in inference stage,
which means all the values of flag tag at the last
step are the same as those at the first step.

CQG w/o key entities + controlled decoder
The model removes the key entities extractor
and controlled generator; we can see it as a
baseline model consisting of a BERT encoder and
a Transformer decoder.

First of all, there is a huge gap between CQG
and CQG w/o key entities + controlled decoder,
which demonstrates that our controlled generation
framework plays an important role. Comparing
between CQG and CQG w/o controlled decoder,
we find that the controlled generator with the flag
tag is the critical module in CQG.

Secondly, CQG is higher than CQG w/o entity
graph 0.97 of BLEU points. We can see that the
entity graph constructed from the input passage
contains rich structure information among entities
and captures the information by GAT, which can
improve the performance for CQG.

Thirdly, although the CQG w/o dynamical
inference flag tag is worse than CQG, it is
much higher than CQG w/o controlled decoder.
This phenomenon shows that the flag tag is a
strong signal that prompts the model to satisfy as
many constraints as possible in the training stage.
Although CQG w/o dynamical inference flag tag
does not update the flag tag in the inference stage,
the model also tries to generate the key entities to
improve the performance.

6902



Figure 5: The coverage percentage of key entity

CQG w/o controlled decoder removes the hard
controlled generator and employs the soft con-
trolled method, which encodes the key tokens and
feeds them to the decoder. CQG w/o controlled
decoder is 0.98 higher than CQG w/o key entities +
controlled decoder, which shows the soft controlled
method is effective but is far from the hard method
in CQG.

4.7 Analysis for controlled generator

We conduct some experiments to analyze the
controlled generator in this section. At first, we
compare the key entity coverage percentage for
different models. In particular, we compute the
coverage percentage of the appeared key entity
in question generated by different models, where
we think all the entities that appear in the gold
question are key entities. This metric reflects the
complexity of generated questions because the
multi-hop reasoning chains are composed of these
key entities. As shown in Figure 5, we can find
that the coverage of CQG is much higher than in
the other models, and this improvement is from the
controlled generator according to the comparison
between CQG and CQG w/o controlled generator.
This result shows that our CQG improves the
control of the model generation process.

4.8 Case Study

We present a case study to show the control ability
of our model and compare the strong baseline
BART model, CQG and the gold. The cases are
presented in Table 4.

It is clearly shown the BART model generates
the question only involved paragraph A, which
is not the multi-hop question. As for CQG, we
provide three examples with the different key entity

Paragraph A: Letters to Cleo
Letters to Cleo are an alternative rock band
from Boston, Massachusetts, best known for
the 1994 single, "Here & Now, from their
full-length debut album, "Aurora Gory Alice".
The band’s members are Kay Hanley, Greg
McKenna, Michael Eisenstein, Stacy Jones,
Scott Riebling, and later, Tom Polce.
Paragraph B: Screaming Trees
Screaming Trees was an American rock band
formed in Ellensburg, Washington in 1985
by vocalist Mark Lanegan, guitarist Gary Lee
Conner, bass player Van Conner and drummer
Mark Pickerel. Pickerel had been replaced by
Barrett Martin by the time the band reached its
most successful period.
Answer: Letters to Cleo
Gold Question: Which band, Letters to Cleo or
Screaming Trees, had more members?
BART: Which band’s members are Kay Hanley,
Greg Mckenna, Michael Eisenstein, Stacy Jones,
Scott Riebling, and Tom Polce ?
Key Entity: Letters to Cleo, Screaming Trees
CQG: Which band has more members, Letters
to Cleo or Screaming Trees?
Key Entity: Letters to Cleo, Kay Hanley
CQG: Is Kay Hanley the member of Letters to
Cleo’s member ?
Key Entity: Boston
CQG: Which rock band are from Boston ?

Table 4: Case study of one example from HotpotQA
test set. We indicate the key entity by different color.

and the questions generated by CQG contain the
given key entity. The given key entity can control
the semantic of the generated question, and we
can see that the question in the first example,
where the given key entities are the same entity as
gold, have the same semantic as the gold question.
The examples demonstrate that our CQG can be
controlled to generate the high-quality multi-hop
question with the given key entity.

5 Conclusion

The MQG task is more challenging and worthy of
exploration compared with conventional shallow
QG. To address the complexity control problem
of MQG, we propose a simple control framework
CQG, which consists of a GAT-based key entity
extractor and a controlled generated. CQG greatly
improves the performance and we hope our model

6903



will help researchers to study the MQG task.

6 Acknowledgments

The authors wish to thank the anonymous reviewers
for their helpful comments. This work was
partially funded by National Natural Science
Foundation of China (No. 61976056, 62076069),
Shanghai Municipal Science and Technology
Major Project (No.2021SHZDZX0103). This
research was supported by Meituan, Beijing
Academy of Artificial Intelligence(BAAI), and
CAAI-Huawei MindSpore Open Fund.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua

Bengio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Ying-Hong Chan and Yao-Chung Fan. 2020. A
recurrent BERT-based model for question generation.
In Proceedings of the 2nd Workshop on Machine
Reading for Question Answering, pages 154–162,
Hong Kong, China. Association for Computational
Linguistics.

Yu Chen, Lingfei Wu, and Mohammed J. Zaki.
2020. Reinforcement learning based graph-to-
sequence model for natural question generation. In
Proceedings of the 8th International Conference on
Learning Representations.

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2018.
Question answering by reasoning across documents
with graph convolutional networks. arXiv preprint
arXiv:1808.09920.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong
Liu, Yu Wang, Jianfeng Gao, Ming Zhou, and
Hsiao-Wuen Hon. 2019. Unified language model
pre-training for natural language understanding and
generation. In Advances in Neural Information
Processing Systems, pages 13063–13075.

Xinya Du, Junru Shao, and Claire Cardie. 2017.
Learning to ask: Neural question generation
for reading comprehension. In Proceedings of
the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1342–1352, Vancouver, Canada. Association
for Computational Linguistics.

Zichu Fei, Qi Zhang, and Yaqian Zhou. 2021. Iterative
GNN-based decoder for question generation. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages
2573–2582, Online and Punta Cana, Dominican
Republic. Association for Computational Linguistics.

Michael Heilman and Noah A. Smith. 2010. Good
question! statistical ranking for question generation.
In Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the
Association for Computational Linguistics, pages
609–617, Los Angeles, California. Association for
Computational Linguistics.

J. Edward Hu, Huda Khayrallah, Ryan Culkin, Patrick
Xia, Tongfei Chen, Matt Post, and Benjamin
Van Durme. 2019. Improved lexically constrained
decoding for translation and monolingual rewriting.
In Proceedings of the 2019 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
839–850, Minneapolis, Minnesota. Association for
Computational Linguistics.

Divyansh Kaushik and Zachary C. Lipton. 2018. How
much reading does reading comprehension require?
a critical investigation of popular benchmarks. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
5010–5015, Brussels, Belgium. Association for
Computational Linguistics.

Nitish Shirish Keskar, Bryan McCann, Lav R
Varshney, Caiming Xiong, and Richard Socher.
2019. Ctrl: A conditional transformer language
model for controllable generation. arXiv preprint
arXiv:1909.05858.

Yanghoon Kim, Hwanhee Lee, Joongbo Shin, and
Kyomin Jung. 2019. Improving neural question
generation using answer separation. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 33, pages 6602–6609.

Alon Lavie and Abhaya Agarwal. 2007. METEOR:
An automatic metric for MT evaluation with high
levels of correlation with human judgments. In
Proceedings of the Second Workshop on Statistical
Machine Translation, pages 228–231, Prague, Czech
Republic. Association for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
Bart: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and
comprehension. In Proceedings of the 58th Annual
Meeting of the Association for Computational
Linguistics, pages 7871–7880.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

I. Loshchilov and F. Hutter. 2017. Decoupled weight
decay regularization.

C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, and
D. Mcclosky. 2014. The stanford corenlp natural
language processing toolkit. In Proceedings of 52nd

6904

https://doi.org/10.18653/v1/D19-5821
https://doi.org/10.18653/v1/D19-5821
https://doi.org/10.18653/v1/P17-1123
https://doi.org/10.18653/v1/P17-1123
https://aclanthology.org/2021.emnlp-main.201
https://aclanthology.org/2021.emnlp-main.201
https://www.aclweb.org/anthology/N10-1086
https://www.aclweb.org/anthology/N10-1086
https://doi.org/10.18653/v1/N19-1090
https://doi.org/10.18653/v1/N19-1090
https://doi.org/10.18653/v1/D18-1546
https://doi.org/10.18653/v1/D18-1546
https://doi.org/10.18653/v1/D18-1546
https://aclanthology.org/W07-0734
https://aclanthology.org/W07-0734
https://aclanthology.org/W07-0734


Annual Meeting of the Association for Computational
Linguistics: System Demonstrations.

Nasrin Mostafazadeh, Ishan Misra, Jacob Devlin, Mar-
garet Mitchell, Xiaodong He, and Lucy Vanderwende.
2016. Generating natural questions about an image.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1802–1813, Berlin, Germany.
Association for Computational Linguistics.

Jack Mostow and Wei Chen. 2009. Generating
instruction automatically for the reading strategy of
self-questioning.

Liangming Pan, Yuxi Xie, Yansong Feng, Tat-Seng
Chua, and Min-Yen Kan. 2020. Semantic graphs
for generating deep questions. In Proceedings of
the 58th Annual Meeting of the Association for
Computational Linguistics, pages 1463–1475.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: A method for automatic
evaluation of machine translation. In Proceedings
of the 40th Annual Meeting on Association for
Computational Linguistics, ACL ’02, page 311–318,
USA. Association for Computational Linguistics.

Matt Post and David Vilar. 2018. Fast lexically
constrained decoding with dynamic beam allocation
for neural machine translation. In Proceedings of
the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
Papers), pages 1314–1324, New Orleans, Louisiana.
Association for Computational Linguistics.

Lin Qiu, Yunxuan Xiao, Yanru Qu, Hao Zhou, Lei Li,
Weinan Zhang, and Yong Yu. 2019. Dynamically
fused graph network for multi-hop reasoning. In
Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
6140–6150.

Devendra Singh Sachan, Lingfei Wu, Mrinmaya Sachan,
and William Hamilton. 2020. Stronger transformers
for neural multi-hop question generation. arXiv
preprint arXiv:2010.11374.

Lei Sha. 2020. Gradient-guided unsupervised lexically
constrained text generation. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 8692–8703,
Online. Association for Computational Linguistics.

Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle
Pineau, and William L. Hamilton. 2019. CLUTRR:
A diagnostic benchmark for inductive reasoning from
text. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP),
pages 4506–4515, Hong Kong, China. Association
for Computational Linguistics.

Linfeng Song, Zhiguo Wang, Wael Hamza, Yue
Zhang, and Daniel Gildea. 2018. Leveraging
context information for natural question generation.
In Proceedings of the 2018 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, Volume 2 (Short Papers), pages 569–
574, New Orleans, Louisiana. Association for
Computational Linguistics.

Dan Su, Yan Xu, Wenliang Dai, Ziwei Ji, Tiezheng
Yu, and Pascale Fung. 2020. Multi-hop question
generation with graph convolutional network. In
Findings of the Association for Computational
Linguistics: EMNLP 2020, pages 4636–4647, Online.
Association for Computational Linguistics.

Xingwu Sun, Jing Liu, Yajuan Lyu, Wei He, Yanjun Ma,
and Shi Wang. 2018. Answer-focused and position-
aware neural question generation. In Proceedings
of the 2018 Conference on Empirical Methods in
Natural Language Processing, pages 3930–3939,
Brussels, Belgium. Association for Computational
Linguistics.

Duyu Tang, Nan Duan, Tao Qin, Zhao Yan, and
Ming Zhou. 2017. Question answering and
question generation as dual tasks. arXiv preprint
arXiv:1706.02027.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio.
2017. Graph attention networks. arXiv preprint
arXiv:1710.10903.

Yufei Wang, Ian Wood, Stephen Wan, Mark Dras,
and Mark Johnson. 2021. Mention flags (MF):
Constraining transformer-based text generators. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 103–113,
Online. Association for Computational Linguistics.

Yuxi Xie, Liangming Pan, Dongzhe Wang, Min-Yen
Kan, and Yansong Feng. 2020. Exploring question-
specific rewards for generating deep questions. In
Proceedings of the 28th International Conference on
Computational Linguistics, pages 2534–2546.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
2369–2380, Brussels, Belgium. Association for
Computational Linguistics.

Jianxing Yu, Xiaojun Quan, Qinliang Su, and Jian Yin.
2020. Generating multi-hop reasoning questions
to improve machine reading comprehension. In
Proceedings of The Web Conference 2020, pages 281–
291.

6905

https://doi.org/10.18653/v1/P16-1170
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/N18-1119
https://doi.org/10.18653/v1/N18-1119
https://doi.org/10.18653/v1/N18-1119
https://doi.org/10.18653/v1/2020.emnlp-main.701
https://doi.org/10.18653/v1/2020.emnlp-main.701
https://doi.org/10.18653/v1/D19-1458
https://doi.org/10.18653/v1/D19-1458
https://doi.org/10.18653/v1/D19-1458
https://doi.org/10.18653/v1/N18-2090
https://doi.org/10.18653/v1/N18-2090
https://doi.org/10.18653/v1/2020.findings-emnlp.416
https://doi.org/10.18653/v1/2020.findings-emnlp.416
https://doi.org/10.18653/v1/D18-1427
https://doi.org/10.18653/v1/D18-1427
https://doi.org/10.18653/v1/2021.acl-long.9
https://doi.org/10.18653/v1/2021.acl-long.9
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259


Xingdi Yuan, Tong Wang, Caglar Gulcehre, Alessandro
Sordoni, Philip Bachman, Sandeep Subramanian,
Saizheng Zhang, and Adam Trischler. 2017. Machine
comprehension by text-to-text neural question
generation.

Yao Zhao, Xiaochuan Ni, Yuanyuan Ding, and
Qifa Ke. 2018. Paragraph-level neural question
generation with maxout pointer and gated self-
attention networks. In Proceedings of the 2018
Conference on Empirical Methods in Natural
Language Processing, pages 3901–3910, Brussels,
Belgium. Association for Computational Linguistics.

Qingyu Zhou, Nan Yang, Furu Wei, Chuanqi Tan,
Hangbo Bao, and Ming Zhou. 2018. Neural Question
Generation from Text: A Preliminary Study, pages
662–671.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu,
Tom B Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. 2019. Fine-tuning
language models from human preferences. arXiv
preprint arXiv:1909.08593.

6906

https://doi.org/10.18653/v1/D18-1424
https://doi.org/10.18653/v1/D18-1424
https://doi.org/10.18653/v1/D18-1424
https://doi.org/10.1007/978-3-319-73618-1_56
https://doi.org/10.1007/978-3-319-73618-1_56

