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Abstract

We introduce MemSum (Multi-step Episodic
Markov decision process extractive SUMma-
rizer), a reinforcement-learning-based extrac-
tive summarizer enriched at each step with
information on the current extraction history.
When MemSum iteratively selects sentences
into the summary, it considers a broad infor-
mation set that would intuitively also be used
by humans in this task: 1) the text content of
the sentence, 2) the global text context of the
rest of the document, and 3) the extraction his-
tory consisting of the set of sentences that have
already been extracted. With a lightweight ar-
chitecture, MemSum obtains state-of-the-art
test-set performance (ROUGE) in summariz-
ing long documents taken from PubMed, arXiv,
and GovReport. Ablation studies demonstrate
the importance of local, global, and history in-
formation. A human evaluation confirms the
high quality and low redundancy of the gen-
erated summaries, stemming from MemSum’s
awareness of extraction history.

1 Introduction

Automatic text summarization is the task of au-
tomatically summarizing a long document into a
relatively short text while preserving most of the
information (Tas and Kiyani, 2007). Text summa-
rization methods can be categorized into abstractive
and extractive summarization (Gambhir and Gupta,
2017; Nenkova and McKeown, 2012). Given a
document d consisting of an ordered list of N sen-
tences, extractive summarization aims to pick up
M (M≪N ) sentences as the summary of the doc-
ument. The extracted summaries tend to be both
grammatically and semantically more reliable than
abstractive summaries (Liu* et al., 2018; Liu and
Lapata, 2019a; Luo et al., 2019; Liao et al., 2020),
as they are directly selected from the source text.

Extractive summarization is usually modeled as
two sequential phases (Zhou et al., 2018): 1) sen-
tence scoring and 2) sentence selection. In the
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Figure 1: We modeled extractive summarization as a
multi-step iterative process of scoring and selecting sen-
tences. si represents the ith sentence in the document D.

sentence scoring phase, an affinity score is com-
puted for each sentence by neural networks such
as bidirectional RNNs (Dong et al., 2018; Narayan
et al., 2018; Luo et al., 2019; Xiao and Carenini,
2019) or BERT (Zhang et al., 2019; Liu and Lapata,
2019b). In the sentence selection phase, sentences
are selected by either i) predicting a label (1 or 0)
for each sentence based on its score, and selecting
sentences with label 1 (Zhang et al., 2019; Liu and
Lapata, 2019b; Xiao and Carenini, 2019), or ii)
ranking sentences based on their scores and select-
ing the top K sentences as the summary (Narayan
et al., 2018), or iii) sequentially sampling sentences
without replacement, where the normalized scores
of the remaining sentences are used as sampling
likelihoods (Dong et al., 2018; Luo et al., 2019).

In these approaches, sentence scores are gener-
ally not updated based on the current partial sum-
mary of previously selected sentences, indicating a
lack of knowledge of extraction history. We deem
extractive summarizers that are not aware of the ex-
traction history to be susceptible to redundancy in
a document, because they will repeatedly add sen-
tences with high scores to a summary, regardless
of whether similar sentences have been selected
before. And, redundancy leads to performance de-
creases evaluated by ROUGE F1.

In this paper, we propose to model extractive
summarization as a multi-step episodic Markov
Decision Process (MDP). As shown in Figure 1, at
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each time step in an episode, we define a sentence
state composed of three sub-states: 1) the local
content of the sentence, 2) the global context of the
sentence within the document, and 3) information
on the extraction history, including the previously
selected set of unordered sentences and the remain-
ing sentences. At each time step, the policy net-
work (agent) takes the current sentence state as in-
put and produces scores used to select an action of
either stopping the extraction process or selecting
one of the remaining sentences into the candidate
summary. Unlike one-step episodic MDP-based
models (Narayan et al., 2018; Dong et al., 2018;
Luo et al., 2019) that encode the state informa-
tion only once at the beginning of the episode, in
our multi-step policy, the agent updates at each
time step the extraction history before selecting an
action. Such a step-wise state-updating strategy en-
ables the agent to consider the content of the partial
summary when selecting a sentence.

To efficiently encode local and global sentence
states, we design an extraction agent based on
LSTM networks (Hochreiter and Schmidhuber,
1997). To encode the extraction history and to
select actions, we use a reduced number of atten-
tion layers (Vaswani et al., 2017) of relatively low
dimensionality. These choices enable our model
to be easily trainable and to summarize long docu-
ments such as scientific papers (Cohan et al., 2018;
Huang et al., 2021) or reports (Huang et al., 2021).

The contributions of our work are as follows:
1) We propose to treat extractive summarization as
a multi-step episodic MDP that is aware of the ex-
traction history. 2) We show that extraction-history
awareness allows our model to extract more com-
pact summaries than models without history aware-
ness and behave more robustly to redundancies in
documents. 3) Our model outperforms both ex-
tractive and abstractive summarization models on
PubMed, arXiv (Cohan et al., 2018), and GovRe-
port (Huang et al., 2021) datasets. 4) Finally, hu-
man evaluators rate the MemSum summaries to be
of higher quality than those from a competitive ap-
proach, especially by virtue of lower redundancy1.

2 Related Work

Extraction history awareness was previously con-
sidered in NeuSum (Zhou et al., 2018), where a
GRU encoded previously selected sentences into

1Our code and data are available at https://github.
com/nianlonggu/MemSum

a hidden vector that then was used to update the
scores of the remaining sentences to bias the next
selection. NeuSum contains no stopping mecha-
nism and therefore it can only extract a fixed num-
ber of sentences, which likely is sub-optimal. Also,
the potential benefits of extraction history have not
been quantified and so the idea remains unexplored
to a large extent.

Recently, BERT-based extractors such as Match-
Sum (Zhong et al., 2020) achieved SOTA perfor-
mance in extractive summarization of relatively
short documents from the CNN/DM (Hermann
et al., 2015) dataset. However, the quadratic com-
putational and memory complexities (Huang et al.,
2021) of such models limit their scalability for
summarizing long documents with thousands of
tokens, which is common for scientific papers and
government reports. Although large pre-trained
transformers with efficient attention (Huang et al.,
2021) have been adapted for abstractive summariza-
tion of long documents, we believe that extractive
summarization is more faithful in general, which is
why we chose an extractive approach.

3 Model

This section outlines the multi-step episodic MDP
policy for extractive summarization.

3.1 Policy Gradient Methods

In an episodic task with a terminal state (i.e. end of
summary), policy gradient methods aim to max-
imize the objective function J(θ) = Eπθ

[R0],
where the return Rt =

∑T
k=t+1 rk is the cumu-

lative reward from time t + 1 until the end of the
episode when the summary is complete. In ap-
plications of RL to extractive summarization, the
instantaneous reward rt is zero except at the end
of the episode when the final reward r is computed
according to Equation (1), so Rt ≡ R0 = r. The
reward r is usually expressed as (Dong et al., 2018):

r =
1

3
(ROUGE-1f + ROUGE-2f + ROUGE-Lf )

(1)
According to the REINFORCE algorithm
(Williams, 1992), the policy gradient is defined as:

∇J(θ) = Eπ[Rt∇ log π(At|St,θ)], (2)

where π(At|St,θ) denotes the likelihood that at
time step t the policy πθ selects action At given the
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Figure 2: The architecture of our MemSum extractive summarizer with a multi-step episodic MDP policy. With the
updating of the extraction-history embeddings h at each time step t, the scores u of remaining sentences and the
stopping probability pstop are updated as well.

state St. With α as the learning rate, the parameter
update rule is (Sutton and Barto, 2018):

θt+1 ← θt + αRt∇ log π(At|St,θt), (3)

3.2 Multi-step Episodic MDP Policy

Different from one-step episodic MDP policies
(Narayan et al., 2018; Dong et al., 2018; Luo et al.,
2019) that extract the entire summary via a single
action, we define an episode, i.e., the generation
of a summary, consisting of multiple time steps.
At each time step t, corresponding to extracting
sentence number t, the action At is either to stop
extraction or to select a sentence sat from the re-
maining sentences. The agent’s policy is:

π(At|St,θt) = p(stop|St,θt)p(at|stop, St,θt)

p(at|stop, St,θt) =


uat (St,θt)∑
j∈It

uj(St,θt)
if stop = false

1
|It| if stop = true,

(4)
where It denotes the index set of remaining sen-
tences at time step t. If the agent does not
stop, it first computes a score uj for each remain-
ing sentence and samples a sentence sat accord-
ing to the probability distribution of normalized
scores. When the agent stops the extraction, no
sentence is selected and the conditional likelihood
p(at|stop=false, St,θt) is set to 1

|It| (where |It| rep-
resents the number of remaining sentences at time
t), which is independent of the policy parameters
to prohibit the gradient from being passed to the
policy parameters via the conditional likelihood.
After calculating the reward according to Equa-
tion (1), the policy parameters are updated accord-
ing to Equation (3) (for all time steps).

3.3 Policy Network

The state St in Equation (4) is designed to be infor-
mative on: 1) the local content of the sentence, 2)
the global context of the sentence within the docu-
ment, and 3) the current extraction history. To en-
code these three properties in the state, we use a lo-
cal sentence encoder, a global context encoder, and
an extraction history encoder, respectively. Subse-
quently, the state is mapped by an extractor to an
output score for each of the remaining sentences
and the extraction stop signal. The overall frame-
work of our model is depicted in Figure 2.

In the Local Sentence Encoder (LSE), ordered
words (w1, w2, . . . wM ) in a sentence si are first
mapped onto word embeddings using a word em-
bedding matrix. Subsequently, a Nl-layer bi-
directional LSTM (Hochreiter and Schmidhuber,
1997) transforms the word embeddings and maps
them onto sentence embeddings lsi via a multi-
head pooling layer (MHP) (Liu and Lapata, 2019a).

The Global Context Encoder (GCE) consists
of a Ng-layer bi-LSTM that takes the L local sen-
tence embeddings (ls1 , ls2 , . . . lsL) as inputs and
produces for each sentence si an embedding gsi
that encodes global contextual information such as
the sentence’s position in the document and infor-
mation on neighboring sentences.

The Extraction History Encoder (EHE) en-
codes the extraction history information and pro-
duces the extraction history embedding hsri for
each remaining sentence sri . The EHE is composed
of a stack of Nh identical layers. Within one layer,
there are two multi-head attention sublayers, as con-
tained in the transformer decoder in Vaswani et al.
(2017). One sublayer is used to perform multi-head
self-attention (MHA) among the local embeddings
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of the remaining sentences, so that each remaining
sentence can capture the context provided by other
remaining sentences. The other attention sublayer
is used to perform multi-head attention over the
embeddings of extracted sentences to enable each
remaining sentence to attend to all the extracted
sentences. The output of the two attention sub-
layers, one for each remaining sentence, captures
the contextual information of both extracted and
remaining sentences. The final output of the N th

h

layer of the EHE constitutes the extraction history
embedding, one for each remaining sentence.

There is no positional encoding and the EHE
produces the extraction history embeddings non-
autoregressively by attending to both precedent and
subsequent positions. Consequently, the extrac-
tion history embeddings hsri for the remaining sen-
tences are invariant to the order of the previously
selected sentences. We believe that the sequential
information of previously selected sentences is not
crucial for reducing redundancy and for deciding
whether to stop extraction or not.

The Extractor computes the score of each re-
maining sentence and outputs an extraction stop
signal. As input to the extractor, we form for each
of the remaining sentences sri an aggregated em-
bedding by concatenating the local sentence em-
bedding lsri , the global context embedding gsri , and
the extraction history embedding hsri . As shown in
Figure 2, to produce the score usri , the concatenated
embedding of remaining sentence sri is passed to
fully connected layers with ReLU activation and
then projected to a scalar by a Linear-1 layer fol-
lowed by a sigmoid function. Note that the same
fully connected layers are applied identically to all
remaining sentences. We deem that the extractor
can learn to stop extraction based on the remaining
sentences’ states. Therefore, we apply an MHP to
the last hidden vectors of all remaining sentences
to output a single vector. This vector is then passed
to a linear layer with a sigmoid function, producing
a stopping probability pstop.

3.4 Training

We train the parameterized policy network accord-
ing to the update rule in Equation (3). At each
training iteration, an episode is sampled to com-
pute the final return r and the action probabili-
ties π(At|St,θt) for all time steps t. An exam-
ple episode with T extracted sentences looks like:
(S0, sa0 , . . . , ST−1, saT−1 , ST , Astop, r), where St

represents the concatenated state information intro-
duced in Section 3.3, sat represents the selection of
sentence at, Astop represents the extraction stops at
the final time step T , and r is the reward as defined
in Equation (1). To encourage the agent to select
compact summaries, we multiply the final reward
r by a length penalty term 1/(T + 1) (Luo et al.,
2019). Consequently, the return Rt ≡ r

T+1 .

Algorithm 1 The training algorithm.
Parameters: learning rate α

1: for each document-summary pair (Di, Gi) do
2: LSE outputs local sent. embed ls1 ,. . . ,lsL
3: GCE outputs global context embed

gs1 ,. . . ,gsL
4: Sample an episode S0,sa0 ,. . . ,ST−1,saT−1 ,

ST ,Astop,r from the high-ROUGE episodes set
Ep of document Di

5: for each time step: t = 0,1,...,T: do
6: if t > 0 then
7: EHE outputs extraction history em-

bed hsr1 ,. . . ,hsrL−Et
for remaining sentences

8: else
9: Initialize hsr1 ,...,hsrL−E0

to 0

10: Extractor outputs scores usr1 ,...,usrL−Et

for remaining sentences and outputs pstop
11: Compute the action probability

π(At|St,θ) according to Equation (4)
12: θ ← θ + α r

T+1∇ log π(At|St,θ)

Algorithm 1 summarizes the training procedure
of MemSum. We initialize the extraction history
embeddings to 0, because at t = 0 no sentences
have been extracted. Et represents the number of
sentences that have been extracted into the sum-
mary up to time step t. Following the strategy in
Narayan et al. (2018) and Mohsen et al. (2020), in-
stead of sampling an episode following the current
policy π(·|·,θt), we sample an episode from a set
Ep of episodes with high ROUGE scores, which
enables the agent to quickly learn from optimal
policies and to rapidly converge. Details on creat-
ing a set of high-ROUGE episodes for training are
described in Appendix E.

4 Experiments

In this section, we report implementation details
of our model and describe the datasets used for
training and for evaluation.
Datasets. The documents to be summarized in the
PubMed and arXiv datasets (Cohan et al., 2018)
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Datasets

avg. doc.
length

avg. summ.
length

# of doc.-summ.
pairs

# of
words

# of
sent.

# of
words

# of
sent. Train Valid Test

PubMed 2,730 88 181 7 116,937 6,633 6,658
arXiv 5,206 206 238 10 202,880 6,436 6,440

PubMedtrunc 408 13 185 7 83,233 4,676 5,025
GovReport 7,932 307 501 18 17,517 974 973
CNN/DM 692 35 49 4 - - -

Table 1: An overview of datasets used in this paper. We
count only strings composed of letters and numbers for
# of words.

are the full bodies of scientific papers and the gold
summaries are the corresponding abstracts. Zhong
et al. (2020) proposed a truncated version of the
PubMed dataset (PubMedtrunc for simplicity) by
defining a doument as the introduction section of a
paper. The GovReport dataset (Huang et al., 2021)
contains U.S. government reports with gold sum-
maries written by experts. Except PubMedtrunc, all
the other datasets contain significantly longer docu-
ments than the popular dataset CNN/DM (Table 1).
Baselines. Extractive baselines include Lead
(directly using the first several sentences as the
summary) (Gidiotis and Tsoumakas, 2020), Sum-
maRuNNer (Nallapati et al., 2017), Atten-Cont
(Xiao and Carenini, 2019), Sent-CLF and Sent-
PTR (Pilault et al., 2020), MatchSum (Zhong et al.,
2020), and the NeuSum model (Zhou et al., 2018)
that we trained on our datasets.

Abstractive summarization models include PE-
GASUS (Zhang et al., 2020), BigBird (Zaheer et al.,
2020), Dancer (Gidiotis and Tsoumakas, 2020),
and Hepos (Huang et al., 2021) that achieved the
state-of-the-art in long document summarization
using a large-scale pretrained BART model (Lewis
et al., 2020) with memory-efficient attention encod-
ing schemes including Locality Sensitive Hashing
(Kitaev et al., 2020) (Hepos-LSH) and Sinkhorn at-
tention (Hepos-Sinkhorn). We also present the per-
formance of the oracle extraction model based on
the greedy approach (Nallapati et al., 2017) which
sequentially selects from the document the sen-
tence that maximally improves the average of R-1
and R-2 of selected sentences.
Implementation Details. We computed local sen-
tence embeddings using pretrained Glove word em-
beddings (Pennington et al., 2014) of dimension
d = 200, keeping the word embeddings fixed dur-
ing training. For the LSE, we used Nl = 2 bi-
LSTM layers and for the GCE Ng = 2. For the

EHE, we used Nh = 3 attention layers, and we
set the number of attention heads to 8 and the di-
mension of the feed-forward hidden layer to 1024;
during training we set the dropout rate to 0.1. The
extractor consisted of 2 fully-connected hidden lay-
ers with output dimensions 2d and d, respectively.

We trained our model using the Adam optimizer
with β1 = 0.9, β2 = 0.999 (Kingma and Ba, 2015),
fixed learning rate α = 1e−4, and weight decay
1e−6. The training was stopped when the validation
performance started to degrade. During validating
and testing, the agent extracted sentences in a deter-
ministic way: after computing the scores usri for the
remaining sentences and the stop likelihood pstop,
the agent stopped the extraction if pstop ≥ pthres
or if the maximum admissible number Nmax of ex-
tracted sentences was reached; otherwise, the agent
selected the sentence with the largest score. The
model was trained on eight RTX 2080 Ti GPUs.

On the validating datasets we selected the best
checkpoint of each model and determined the
optimal Nmax and stopping criterion p∗thres. For
Pubmed, arXiv, Pubmedtrunc, and GovReport, Nmax
was set to 7, 5, 7, and 22, and p∗thres was set to 0.6,
0.5, 0.8, and 0.6, respectively. For the detailed se-
lection procedure of the optimal stopping threshold,
see Appendix D. Information on reproducibility is
available in Appendix I.
Evaluation. We evaluated the performance of our
model using F1 ROUGE (Lin, 2004), including
ROUGE-1,2, and L for measuring unigram, bigram,
and longest common subsequence. We also con-
ducted human evaluation in Section 5.4.

5 Results and Discussion

Here we present the results on various extractive
summarization tasks and analyze the contribution
of different modules via ablation studies.

5.1 Results Comparison

By comparing with extractive baselines on the
PubMed and arXiv datasets, we observed that mod-
els utilizing extraction history, such as NeuSum
and our MemSum, perform significantly better than
other models, revealing the effectiveness of the ex-
traction history. MemSum also significantly out-
performed NeuSum, suggesting a better utilization
of extraction history, which we ascribed to the fol-
lowing factors: 1) In MemSum, we treat stopping
extraction also as an action and train the policy
network to output a stopping probability. There-
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Model PubMed arXiv

R-1 R-2 R-L R-1 R-2 R-L

ORACLE 61.99 34.95 56.76 60.00 30.60 53.03

Extractive summarization baselines
Lead-10 37.45 14.19 34.07 35.52 10.33 31.44
SummaRuNNer 43.89 18.78 30.36 42.81 16.52 28.23
Atten-Cont 44.85 19.70 31.43 43.62 17.36 29.14
Sent-CLF 45.01 19.91 41.16 34.01 8.71 30.41
Sent-PTR 43.30 17.92 39.47 42.32 15.63 38.06
NeuSum 47.46 21.92 42.87 47.49 21.56 41.58

Abstractive summarization baselines
PEGASUS 45.97 20.15 41.34 44.21 16.95 38.83
BigBird 46.32 20.65 42.33 46.63 19.02 41.77
Dancer 46.34 19.97 42.42 45.01 17.60 40.56
Hepos-Sinkhorn 47.93 20.74 42.58 47.87 20.00 41.50
Hepos-LSH 48.12 21.06 42.72 48.24 20.26 41.78

MemSum (ours) 49.25* 22.94* 44.42* 48.42 20.30 42.54*

Table 2: Results on the PubMed and arXiv test sets. “*"
indicates that they are statistically significant in com-
parison to the closest baseline with a 95% bootstrap
confidence interval estimated by the ROUGE script2.

Model PubMedtrunc GovReport

R-1 R-2 R-L R-1 R-2 R-L

ORACLE 45.12 20.33 40.19 75.56 45.91 72.51

Extractive summarization baselines
Lead 37.58 12.22 33.44 50.94 19.53 48.45
MatchSum 41.21 14.91 36.75 - - -
NeuSum - - - 58.94 25.38 55.80

Abstractive summarization baselines
Hepos-LSH - - - 55.00 21.13 51.67
Hepos-Sinkhorn - - - 56.86 22.62 53.82

MemSum (ours) 43.08* 16.71* 38.30* 59.43* 28.60* 56.69*

Table 3: Results on PubMedtrunc and GovReport.

fore, MemSum is able to automatically stop ex-
tracting at an optimal time step based on extraction
history, while NeuSum can only extract a prede-
fined number of sentences; 2) With the policy gra-
dient method REINFORCE we can train MemSum
to maximize the ROUGE score directly, while in
NeuSum the loss was set to the KL-divergence be-
tween the model-computed sentence scores and the
ROUGE score gains at each step, which is less intu-
itive. We further compare MemSum with NeuSum
via human evaluation in Section 5.4.

We observed that the ROUGE performance on
the PubMedtrunc dataset is significantly lower than
that on the PubMed dataset, with a 16.87 drop
in R-1 for the extractive oracle and a 6.23 drop
in R-1 for MemSum, indicating that the introduc-
tion section is not sufficient to generate summaries
close to the ground truth (abstracts). Even so, our
model still significantly outperformed MatchSum
on PubMedtrunc, and we attribute this improvement
to the fact that MatchSum truncates the introduc-

2https://pypi.org/project/rouge-score/
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Figure 3: The position distribution of extracted sen-
tences in the PubMedtrunc dataset.

Human-written Summary:
(...) While CMS is generally required to disallow, or re-
coup, federal funds from states for eligibility-related im-
proper payments if the state’s eligibility error rate exceeds
3 percent, it has not done so for decades, (...) CMS issued
revised procedures through which it can recoup funds
for eligibility errors, beginning in fiscal year 2022. (...)
Hepos-Sinkhorn (abstractive):
(...) The selected states also reported that they did not have
adequate processes to address these issues. CMS has taken
steps to improve its oversight of the Medicaid program,
including issuing guidance to states on the use of MAGI-
exempt bases for determining eligibility, but these efforts
have not been fully implemented. (...)
MemSum (ours, extractive):
(...) implemented its statutory requirement to recoup funds
associated with Medicaid eligibility-related improper pay-
ments for states with an eligibility error rate above 3 per-
cent through its MEQC program. (...) However, the agency
has introduced new procedures through which it can, un-
der certain circumstances, begin to recoup funds based
on eligibility errors in fiscal year 2022. (...)

Table 4: Comparison of the summary extracted by
MemSum and the summary abstractively generated by
Hepos-Sinkhorn (Huang et al., 2021). Compared with
the abstractive summary, the MemSum-extracted sum-
mary has higher overlap with the human-written sum-
mary.

tion section further to 512 tokens because it needs
to compute document embeddings using Bert. Con-
sequently, MatchSum extracts sentences mainly
from the first 15 sentences of the document, while
our MemSum produces a similar distribution of
extracted sentence positions as the extractive ora-
cle, Figure 3. Thus, summarizing long documents
is a non-trivial task, and models that work well
on summarizing short documents (e.g., CNN/DM)
may fail to generalize to long documents.

MemSum also significantly outperformed the
state-of-the-art abstractive summarization model
Hepos as measured by ROUGE scores, especially
on the GovReport dataset. A comparison of an ex-
emplary MemSum-extracted summary and the cor-
responding Hepos-Sinkhorn-generated summary
from the GovReport dataset (Table 4) is consis-
tent with the ROUGE comparison, showing that
the MemSum-extracted summary is more accurate
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Model R-1 R-2 R-L

MemSum 49.25 22.94 44.42
MemSum w/o LSE 48.12 22.04 43.36
MemSum w/o GCE 46.85 20.31 41.95
MemSum w/o EHE 48.08 22.77 43.55
MemSum with GRU-EHE 49.11 22.86 44.28
MemSum w/o auto-stop 48.25 22.63 43.70
MemSum with “STOP” 47.18 21.81 42.20

Table 5: Ablation study on the PubMed dataset.

than the Hepos-Sinkhorn-generated summary and
has higher overlap with the gold summary. We
deem that this particularly good extraction perfor-
mance on the GovReport dataset results from the
higher “extractiveness” of the gold summaries in
the GovReport dataset compared to other datasets,
which may be due in part to technical language
being difficult to abstractively summarize without
a change in meaning. This is evidenced by the fact
that the ROUGE scores of the extractive oracle on
the GovReport dataset (Table 3) are higher than
those of the PubMed and arXiv datasets (Table 2).
Therefore, extractive summarization may be more
proper than abstractive summarization due to the
requirement of stringent faithfulness of government
report summaries.

5.2 Ablation Test

We conduct ablation studies by comparing the full
MemSum model with the following variations in
structures: 1) MemSum w/o LSE, where we ob-
tain local sentence embeddings by replacing the
bi-LSTM based LSE by simple averages of word
embeddings; 2) MemSum w/o GCE where we re-
move the GCE; 3) MemSum w/o EHE where we
remove EHE, compute the scores for all sentences
in one step, and samples sentences following the
BanditSum policy (Dong et al., 2018); 4) MemSum
with GRU-EHE where we use a GRU to encode pre-
viously extracted sentences at each time step, and
uses the last hidden state as the extraction history
embedding for all remaining sentences, following
Zhou et al. (2018).

Meanwhile, we also tested two variations that
adopted different stopping mechanisms: 1) Mem-
Sum w/o auto-stop that does not stop extraction au-
tomatically based on pstop, but that extracts a fixed
number of sentences; 2) MemSum with “STOP”
that inserts a special stop sentence (e.g. “STOP")
into the document, and stops extraction once the
agent selects this sentence.
Contribution of Modules. Removing GCE has

Model R-1 R-2 R-L
duplicate

percentage

MemSum 49.16 22.78 44.39 0%
MemSum w/o auto-stop 48.21 22.59 43.76 0%
MemSum w/o EHE 42.82 18.18 36.68 41%
MemSum w/o EHE

+3gram blocking 46.85 19.93 42.40 0%

Table 6: Performance on the redundant PubMed dataset.

a greater impact on performance than removing
LSE (Table 5), suggesting that modeling global
contextual information is more critical than mod-
eling local sentence information in our MemSum
framework, which contrasts with the result that
modeling local sentence information is more im-
portant in the Atten-Cont (Xiao and Carenini, 2019)
framework. Furthermore, we observed a significant
performance degradation when removing EHE, but
no significant difference between MemSum and
MemSum with GRU-EHE, indicating that EHE is
necessary, but our MemSum policy is not strongly
dependent on the specific structure of this module
(e.g., attention-based or RNN-based).
Influence of Stopping Mechanisms. MemSum
w/o auto-stop achieves lower ROUGE scores than
MemSum, revealing the necessity of auto stopping
in our MemSum architecture. Meanwhile, Mem-
Sum with “STOP” produced summaries with fewer
extracted sentences (3.9 vs. 6.0 sentences on aver-
age) and significantly lower ROUGE scores. We
attribute this reduction to the predictable positive
reward obtained from selecting the special stop
sentence that ends an episode, which leads to a
preference for this final action and increases the
likelihood of taking this action prematurely.

5.3 History Awareness Avoids Redundancy
We hypothesized that the extraction history al-
lows MemSum to avoid sentences that are similar
to existing sentences in the current partial sum-
mary, intuitively mimicking what humans do when
extractively summarizing documents. To verify
this, we created a redundant PubMed dataset in
which we repeated each sentence in the document,
with the replicated sentences immediately follow-
ing the originals. On this dataset, we trained and
tested MemSum and MemSum w/o EHE (no his-
tory awareness), and we compared different models
in terms of ROUGE scores and average duplicate
percentage that is defined as the average percent-
age of the duplicated sentences among all extracted
sentences in a summary.
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Figure 4: The sentence scores of 50 sentences computed
by MemSum at extraction steps 0 to 3. In the document,
there is artificial redundancy in that the (2n)th and the
(2n+ 1)th sentences are identical (n = 0, 1, ..., 24).

As reported in Table 6, for MemSum w/o EHE,
on average 41% of sentences in the extracted sum-
maries were duplicated. Along with the high dupli-
cate ratio came a significant decrease in ROUGE
score. By contrast, the performance of the full
MemSum model with history awareness was only
slighted affected when comparing the results of the
MemSum on the PubMed dataset (Table 2) and on
the redundant PubMed dataset (Table 6).

Meanwhile, using the Trigram Blocking method
that skips a sentence if it has a trigram that overlaps
with the current summary (Liu and Lapata, 2019b)
is also successful in avoiding repetitive sentences.
However, the ROUGE scores associated with Tri-
gram Blocking were significantly lower than those
of the MemSum with awareness of extraction his-
tory. In summary, the history-aware MemSum
model spontaneously learns an optimized strategy
to avoid redundant sentences without explicit hu-
man guidance or crude rules, and thus shows better
performance.
Case Study: How does MemSum Avoid Redun-
dancy?

We let MemSum summarize a document sam-
pled from the test set of the redundant PubMed
dataset and monitored the sentence scores produced
by the Extractor during each extraction step. The
results are shown in Figure 4. At time step 0, the
10th sentence obtained the maximum score and was
thus selected into the summary. At time step 1, we
noticed that the 11th sentence, which is a replica of
the 10th sentence, had a score close to zero. The
same was also true for the other selected sentences
and their following sentences, revealing competent

Criteria
Experiment I Experiment II

NeuSum MemSum NeuSum MemSum w/o
auto-stop

overall 1.58 1.37 1.57 1.38
coverage 1.46 1.49 1.44 1.51
non-redundancy 1.67 1.28* 1.65 1.30*
avg. summ. length

# of sentences 7.0 5.6* 7.0 7.0
# of words 248.8 189.3* 263.6 239.5*

Table 7: The average ranking of NeuSum and Mem-
Sum is reported. The smaller the ranking, the better
the model. Four volunteers participated in these experi-
ments, and evaluated 67 and 63 pairs of summaries in
Experiment 1 and 2, respectively. “*” indicates statis-
tical significance (p<0.005) in a Wilcoxon signed-rank
test (Woolson, 2008).

repetition avoidance of the Extractor. Because the
EHE is insensitive to the extraction order and to sen-
tence position information, as described in Section
3.3, we can conclude that the full MemSum avoids
redundancy by evaluating the similarity between
selected and remaining sentences, rather than by
“remembering" selected sentences’ positions.

5.4 Human Evaluation

We conducted human evaluation following Wu and
Hu (2018); Dong et al. (2018); Luo et al. (2019).
For each document sampled from the test set of the
PubMed dataset, we provide a reference summary,
and volunteers are asked to rank a pair of randomly
ordered summaries produced by two models ac-
cording to three criteria: non-redundancy, cover-
age, and overall quality. The better model will be
ranked #1 while the other is ranked #2, and if both
models extract the same summary, then they will
both get the #1 rank. In experiment 1, we compared
NeuSum, which always extracts 7 sentences, and
MemSum, which extracts a flexible number of sen-
tences thanks to automatic stopping. In experiment
2, we discounted for differences in the number of
extracted sentences by making MemSum w/o auto-
stop to also extract 7 sentences. A user-friendly
interactive web interface was implemented to assist
the evaluation process, with details in Appendix G.

Table 7 reports the human evaluation results for
both experiments. Both MemSum and MemSum
w/o auto-stop ranked significantly higher (p<0.005)
than NeuSum in terms of non-redundancy and
achieved a better average overall quality. In terms
of word count, MemSum produces shorter sum-
maries than NeuSum in both experiments, even
though both models extract the same number of
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sentences in experiment 2. These results show that
redundancy avoidance of MemSum is particularly
good, even without the auto-stop mechanism. The
slightly better performance of NeuSum in terms of
coverage needs to be weighed against it extracting
significantly longer summaries. Note that neither
NeuSum nor our model is trained to optimize the
order of the extracted sentences. Therefore, we
did not use fluency, which depends on sentence
order, as a metric for human evaluation. Improving
the fluency of the extracted summaries will be the
subject of our future research.

6 Conclusion

Extractive summarization can be achieved effec-
tively with a multi-step episodic Markov decision
process with history awareness. Using encoders
of local sentence, global context, and extraction
history, MemSum is given information that is intu-
itively also used by humans when they summarize
a document. Awareness of the extraction history
helps MemSum to produce compact summaries
and to be robust against redundancy in the docu-
ment. As a lightweight model (Appendix C), Mem-
Sum outperforms both extractive and abstractive
baselines on diverse long document summarization
tasks. Because MemSum achieves SOTA perfor-
mance on these tasks, MDP approaches will be
promising design choices for further research.
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A Computing Hardware

We trained our MEMSUM model and its variations
on 8 NVIDIA GeForce RTX 2080 Ti 11GB GPUs.
During testing, we used a single NVIDIA TITAN
X Pascal 12GB GPU.

B Comparison of Validating and Testing
Performance

We compare the validating and testing performance
of the MemSum model on the following datasets:
PubMed (Cohan et al., 2018), arXiv (Cohan et al.,
2018), and GovReport (Huang et al., 2021). The
results are reported in Table 8.

C Summarization Time

We analyzed the average time taken by MemSum
to extractively summarize a source document from
the test set. The average summarizaion time is
positively correlated with the document length and
the number of extracted sentences, Table 9. On the
one hand, on longer documents, it takes longer to
compute the scores of remaining sentences, which
delays the action of either stopping extraction or

Datasets Validating Test
R-1 R-2 R-L R-1 R-2 R-L

PubMed 49.14 22.92 44.33 49.25 22.94 44.42
arXiv 48.23 20.17 42.31 48.42 20.30 42.54
PubMedtrunc 43.46 16.77 38.65 43.08 16.71 38.30
GovReport 59.29 28.57 56.46 59.43 28.60 56.69

Table 8: Validating and testing scores of the MemSum
model tested on the PubMed, the arXiv and the GovRe-
port datasets.

Datasets
avg. doc.

length
(words)

Avg. extractive
summ. length
(# sentences)

Avg. extractive
summ. time

(ms)

PubMed 2,730 6.0 ± 1.2 91.7 ± 8.6
arXiv 5,206 4.8± 0.5 114.0 ± 5.0
PubMedtrunc 408 5.3± 1.4 27.7 ± 4.6
GovReport 7,932 21.7 ± 1.8 197.0 ± 14.8

Table 9: Average extractive summarization time of
MemSum on different datasets.

selecting a sentence. On the other hand, the more
sentences must be extracted, the more actions are
needed of selecting sentences within an episode.

D Selection of optimal stopping threshold
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Figure 5: The ROUGE scores for different stopping
thresholds pthres on the PubMed validating set.

The stopping threshold pthres is an important hy-
perparameter that sets the stopping probability in
an episode, as described in the Implementation De-
tails. We determined the optimal stopping thresh-
old p∗thres as follows: For each data set and each
stopping threshold pthres ∈ {0.1, 0.2, . . . , 1.0}, we
chose as optimal stopping threshold p∗thres the one
with maximal ROUGE score on the corresponding
validating set.

The ROUGE scores as a function of stopping
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Figure 6: The ROUGE scores for different stopping
thresholds pthres on the arXiv validating set.
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Figure 7: The ROUGE scores for different stopping
thresholds pthres on the PubMedtrunc validating set.

threshold are shown in Figure 5, 6 and 8 on the
validating set of the PubMed, the arXiv, and the
GovReport data set, respectively. The functions
exhibit a local maximum between 0.1 and 1.0,
which implies that when pthres is too low, sum-
maries tend to be too short, while when pthres is too
high, summaries will be unduly lengthy. We chose
p∗thres = 0.6, 0.5, 0.8 and 0.6 for the PubMed, the
arXiv, the PubMedtrunc, and the GovReport dataset,
respectively.

E Creating High-ROUGE Episodes for
Training

As introduced in Section 3.4 and Algorithm 1 in
the main paper, at each training iteration, we sam-
pled a high-ROUGE episode from the set Ep. An
episode can be viewed as a sequence of state-
action pairs as well as the final reward, such
as (S0,sa0 ,. . . ,ST−1,saT−1 , ST ,Astop,r). Here,
{sa0 . . . saT−1} is the extracted summary consist-
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Figure 8: The ROUGE scores for different stopping
thresholds pthres on the GovReport validating set.

ing of a set of T sentences, and r is the average of
the associated ROUGE-1, ROUGE-2, and ROUGE-
L F1 scores.

In (Nallapati et al., 2017), a greedy approach
was proposed to select candidate summaries by
sequentially selecting from the source document
the optimal sentence that maximally improves the
average ROUGE-1/2/L score once added to the
current subset of selected sentences.

In this paper, we define a high-ROUGE episodes
set Ep as the set of multiple episodes where each
episode has a high average ROUGE-1/2/L F1 score.
To obtain not a single episode in Ep but multiple
episodes with high average ROUGE-1/2 scores, we
modified the greedy approach by considering not
only the optimal sentence at each sentence selec-
tion step but also B − 1 sub-optimal sentences.
This sentence-sampling step is repeated for each of
these B new subsets to result in a potentially expo-
nentially growing number of high ROUGE-score
episodes. This process stops until no sentence can
further improve the average ROUGE-1/2/L score or
a maximum number Nmax of selected sentences per
episode is reached. B can be considered the branch-
ing size, analogous to beam search strategies in
neural machine translation (Sutskever et al., 2014;
Freitag and Al-Onaizan, 2017). We set B = 2 by
default.

In practice, we notice that ROUGE-L F1 score
is computationally intensive. Because when creat-
ing Ep we need to iteratively re-compute ROUGE
scores once a new sentence is added to the current
summary, including the ROUGE-L F1 score into
computation would heavily slow down the process
of creating the high-ROUGE episodes set for train-
ing. As a compromise, we do not incorporate the
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ROUGE-L F1 score into the intermediate steps of
our modified greedy approach. Instead, we cal-
culate the ROUGE-L F1 score only once after a
complete high-ROUGE episode is selected, and use
this ROUGE-L F1 score together with ROUGE-
1/2 F1 scores to compute the reward r for each
episode. A similar strategy was adopted in Zhou
et al. (2018) to create the training dataset by maxi-
mizing ROUGE-2 F1 scores only.

We refer to an episode
(S0,sA,S1,sB ,S2,sC ,S3,Astop,r) as “(sA, sB, sC)"
for simplicity. Because permuted episodes
(sA, sB, sC), (sA, sC , sB), and (sC , sB, sA) have
nearly the same average ROUGE-1/2 scores
(although ROUGE-L score may differ), we decided
to equally sample them with the hope to avoid
overfitting. This decision does not interfere with
our usage of extraction history, because under
(sA, sB, sC), the agent learns to extract sC from
{sA, sB}, while under (sC , sB, sA) it learns to
extract sA from {sB, sC}. Thus, history plays a
role in both cases.

F Padding and Truncation of Sentences
and Documents

In the training process, we used mini-batch gra-
dient descent. To enable efficient batch-wise par-
allel GPU computation, each document in a mini
batch needs to have the same number of sentences,
and each sentence needs to have the same number
of tokens. Therefore, in order to unify the sen-
tence length to a common value Lsen, we appended
“PAD" tokens at the end of sentences shorter than
Lsen, and we truncated sentences longer than Lsen.
To unify the document length in terms of number
of sentences to a common value Ldoc, we appended
empty-string sentences at the end of documents
shorter than Ldoc, and truncated documents longer
than Ldoc. To ensure consistency between training
and testing we also performed the same padding
and truncation setting during testing. We set Ldoc
to 500 for the PubMed, the arXiv, and the GovRe-
port datasets and 50 for the PubMedtrunc dataset
based on the document length statistics shown in
Table 1 in the main paper. We set Lsen to 100 for
the PubMed, the PubMedtrunc, and the GovReport
datasets and 150 for the arXiv dataset, because we
noticed a larger variance in the length of sentences
in the arXiv dataset.

G Interactive Web Interface for Human
Evaluation

To provide for a convenient evaluation procedure
for volunteers, we designed an interactive web in-
terface based on Jupyter Widgets3. As shown in
Figure 9, for each document, we display the refer-
ence summary, summary A, and summary B from
left to right. The reference summary contains the
ground-truth abstract. Summaries A and B are
the summaries extracted by the two models as-
signed in a random order, so that the volunteers
do not know which model either summary came
from. Meanwhile, the volunteers were allowed to
read the source document by clicking the button
“Show Source Document >>>”. We also provided
a sentence highlighting function to help the volun-
teers rapidly retrieve relevant content. We allowed
evaluators to copy a sentence from the reference
summary and paste it to the text box above. After
clicking the button “Highlight relevant sentences
given a query”, relevant sentences in both sum-
maries were highlighted, to help the volunteers
rapidly find information of interest. The relevance
score of a pair of sentences was given by the co-
sine similarity of the two sentences’ embeddings
computed with Sent2vec (Pagliardini et al., 2018).
In the evaluation panel the volunteers selected the
better summary (A or B) by comparing the model-
produced summary with the reference summary on
three criteria: overall quality, coverage (in terms of
information content), and non-redundancy. After
making a choice they clicked the button “Submit &
Eval Next" to submit the current evaluation result
and evaluate the next summaries, or click “Skip"
if they were not sure which summary was indeed
better.

H Examples of Extracted Summaries

We provide summarization examples in Table 10
and 11. In Table 10, we compared MemSum
trained on the arXiv dataset with Dancer Pegasus
(Gidiotis and Tsoumakas, 2020) on a typical paper
on which MemSum achieved higher ROUGE-1 F
score than Dancer Pegasus. In Table 11 we provide
the extractive summary of this paper itself using
our MemSum model. Sentences with similar mean-
ings in different summaries are highlighted in the
same color.

3https://ipywidgets.readthedocs.io/
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Figure 9: We designed an interactive web interface for the human evaluation experiments introduced in Section 5.4.

I Reproducibility

The MemSum code and variants of MemSum that
we used in our ablation study, as well as the Mem-
Sum parameters trained on the PubMed dataset,
can be found in the submitted code.zip file. Also,
we provide a sample of the datasets used in this
paper in the data.zip file, as well as the raw data
for the human evaluation. This will ensure that the
results in this work are well reproducible.
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Title BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Original
abstract We introduce a new language representation model called BERT, which stands for

Bidirectional Encoder Representations from Transformers. Unlike recent langua-

ge representation models (Peters et al., 2018a; Radford et al., 2018), BERT is

designed to pretrain deep bidirectional representations from unlabeled text by
jointly conditioning on both left and right context in all layers. As a result, the
pre-trained BERT model can be finetuned with just one additional output layer to
create state-of-the-art models for a wide range of tasks, such as question answering and
language inference, without substantial taskspecific architecture modifications. BERT
is conceptually simple and empirically powerful. It obtains new state-of-the-art
results on eleven natural language processing tasks, including pushing the GLUE

score to 80.5% (7.7% point absolute improvement), MultiNLI accuracy to 86.7%
(4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5
point absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute
improvement)

DANCER
PEGASUS Language model pre-training has been shown to be effective for improving many

natural language processing tasks such as sentence-level paraphrasing and entity recog-
nition tasks. However, current approaches to pre-trained language models are restricted
to unidirectional language models. In this paper, we propose a new approach to pre-

trained language models based on bidirectional encoder transformers (BERT).
BERT is inspired by the pre-training objective of cloze task (Taylor et al., 1953),
where the goal is to predict some masked language representations from the input. We
introduce BERT and its detailed implementation in this paper. The BERT model is
first initialized with the pre-trained parameters, and all of the parameters are fine-tuned
using labeled data from the downstream tasks. Rich unsupervised pre-training is an
integral part of many language understanding systems. In particular, these results
enable even low-resource tasks to benefit from deep unidirectional architectures.
Our major contribution is further generalizing these findings to deep bidirectional

architectures, allowing the same pre-trained model to successfully tackle a broad set

of NLP tasks.

ROUGE1-F1 36.52

MemSum Language model pre-training has been shown to be effective for improving many
natural language processing tasks. In this paper, we improve the fine-tuning based

approaches by proposing BERT: Bidirectional Encoder Representations from Trans-

formers. The masked language model randomly masks some of the tokens from the
input, and the objective is to predict the original vocabulary id of the masked word
based only on its context. Unlike Radford et al. (2018), which uses unidirectional
language models for pre-training, BERT uses masked language models to enable

pretrained deep bidirectional representations. BERT is the first finetuning based

representation model that achieves state-of-the-art performance on a large suite of

sentence-level and token-level tasks, outperforming many task-specific architec-
tures.

ROUGE1-F1 44.29

Table 10: Example summaries for Dancer Pegasus (Gidiotis and Tsoumakas, 2020) and MemSum.

6521



Title (This paper) MemSum: Extractive Summarization of Long Documents using
Multi-step Episodic Markov Decision Processes

Original abstract We introduce MemSum (Multi-step Episodic Markov decision process ex-

tractive SUMmarizer), a reinforcement-learning-based extractive summarizer
enriched at each step with information on the current extraction history. When
MemSum iteratively selects sentences into the summary, it considers a broad
information set that would intuitively also be used by humans in this task:
1) the text content of the sentence, 2) the global text context of the rest of

the document, and 3) the extraction history consisting of the set of sentences

that have already been extracted. With a lightweight architecture, MemSum

obtains state-of-the-art test-set performance (ROUGE) in summarizing long

documents taken from PubMed, arXiv, and GovReport. Ablation studies
demonstrate the importance of local, global, and history information. A human
evaluation confirms the high quality and low redundancy of the generated
summaries, stemming from MemSum’s awareness of extraction history.

MemSum summary In this paper, we propose to model extractive summarization as a multi-step

episodic Markov Decision Process (MDP). As shown in Figure 1, at each
time step in an episode, we define a sentence state composed of three
sub-states: 1) the local content of the sentence, 2) the global context of

the sentence within the document, and 3) information on the extraction
history, including the previously selected set of unordered sentences and

the remaining sentences. To efficiently encode local and global sentence
states, we design an extraction agent based on LSTM networks. We show
that extraction-history awareness allows our model to extract more compact
summaries than models without history awareness and behave more robustly to
redundancies in documents. 3) Our model outperforms both extractive and

abstractive summarization models on PubMed, arXiv, and GovReport datasets.

ROUGE1-F1 48.57

Table 11: MemSum summary of this paper.
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