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Abstract
Dense retrieval has achieved impressive ad-
vances in first-stage retrieval from a large-
scale document collection, which is built on
bi-encoder architecture to produce single vector
representation of query and document. How-
ever, a document can usually answer multiple
potential queries from different views. So the
single vector representation of a document is
hard to match with multi-view queries, and
faces a semantic mismatch problem. This paper
proposes a multi-view document representation
learning framework, aiming to produce multi-
view embeddings to represent documents and
enforce them to align with different queries.
First, we propose a simple yet effective method
of generating multiple embeddings through
viewers. Second, to prevent multi-view embed-
dings from collapsing to the same one, we fur-
ther propose a global-local loss with annealed
temperature to encourage the multiple viewers
to better align with different potential queries.
Experiments show our method outperforms re-
cent works and achieves state-of-the-art results.

1 Introduction

Over the past few years, with the advancements in
pre-trained language models (Devlin et al., 2019;
Liu et al., 2019), dense retrieval has become an im-
portant and effective approach in open-domain text
retrieval (Karpukhin et al., 2020; Lee et al., 2019;
Qu et al., 2021; Xiong et al., 2020). A typical
dense retriever usually adopts a bi-encoder (Huang
et al., 2013; Reimers and Gurevych, 2019) archi-
tecture to encode input query and document into
a single low-dimensional vector (usually CLS to-
ken), and computes the relevance scores between
their representations. In real-world applications,
the embedding vectors of all the documents are pre
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Q1: Where can people using iPods on planes view the device's interface?

A1: Individual seat-back displays.

Q2: What are two airlines that considered implementing iPod connections but

did not join the 2007 agreement?

A2: KLM and Air France.

Q3: What are some examples of audio formats supported by the iPod?

A3: MP3, AAC/M4A, Protected AAC, AIFF, WAV, Audible audiobook, and

Apple Lossless.

Q4: What is the name of an audio format developed by Apple?

A4: Apple Lossless.

Title: IPod

Document: Beginning in mid-2007, four major airlines, United, Continental,

Delta, and Emirates, reached agreements to install iPod seat connections. The

free service will allow passengers to power and charge an iPod, and view

video and music libraries on individual seat-back displays. Originally KLM

and Air France were reported to be part of the deal with Apple, but they later

released statements explaining that they were only contemplating the

possibility of incorporating such systems. The iPod line can play several

audio file formats including MP3, AAC/M4A, Protected AAC, AIFF, WAV,

Audible audiobook, and Apple Lossless. The iPod Photo introduced the

ability to display JPEG, BMP, GIF, TIFF, and PNG image file formats.

(a) An example from SQuAD Open Dataset.

(b) Our proposed MVR method.

Doc

Query

Figure 1: The illustration of our multi-view document
representation learning framework. The triangles and
circles mean document and query vectors separately.
Usually, one document can be asked to different poten-
tial queries from multiple views. Our method comes
from this observation and generates multi-view repre-
sentations for documents to better align with different
potential queries.

-computed in advance, and the retrieval process can
be efficiently boosted by the approximate nearest
neighbor (ANN) technique (Johnson et al., 2019).
To enhance bi-encoder’s capacity, recent studies
carefully design sophisticated methods to train it
effectively, including constructing more challeng-
ing hard negatives (Zhan et al., 2021; Xiong et al.,
2020; Qu et al., 2021) and continually pre-train the

5990



language models (Gao and Callan, 2021a; Oğuz
et al., 2021) for a better transfer.

However, being limited to the single vector rep-
resentation, bi-encoder faces the upper boundary
of representation capacity according to theoretical
analysis in Luan et al. (2021). In the real exam-
ple from SQuAD dev dataset, we also find that a
single vector representation can’t match well to
multi-view queries, as shown in Figure.1. The doc-
ument corresponds to four different questions from
different views, and each of them matches to dif-
ferent sentences and answers. In the traditional
bi-encoder, the document is represented to a sin-
gle vector while it should be recalled by multiple
diverse queries, which limits the capacity of the
bi-encode.

As for the multi-vector models, cross-encoder
architectures perform better by computing
deeply-contextualized representations of query-
document pairs, but are computationally expensive
and impractical for first-stage large-scale re-
trieval (Reimers and Gurevych, 2019; Humeau
et al., 2020). Some recent studies try to borrow
from cross-encoder and extend bi-encoder by
employing more delicate structures, which allow
the multiple vector representations and dense inter-
action between query and document embeddings.
including late interaction (Khattab and Zaharia,
2020) and attention-based aggregator (Humeau
et al., 2020; Tang et al., 2021). However, most of
them contain softmax or sum operators that can’t
be decomposed into max over inner products, and
so fast ANN retrieval can’t be directly applied.

Based on these observations, we propose Multi-
View document Representations learning frame-
work, MVR in short. MVR originates from our
observation that a document commonly has several
semantic units, and can answer multiple potential
queries which contain individual semantic content.
It is just like given a specified document, differ-
ent askers raise different questions from diverse
views. Therefore, we propose a simple yet effec-
tive method to generate multi-view representations
through viewers, optimized by a global-local loss
with annealed temperature to improve the represen-
tation space.

Prior work has found [CLS] token tends to ag-
gregate the overall meaning of the whole input
segment (Kovaleva et al., 2019; Clark et al., 2019),
which is inconsistent with our goal of generating
multi-view embeddings. So we first modify the

bi-encoder architecture, abandon [CLS] token and
add multiple [Viewer] tokens to the document input.
The representation of the viewers in the last layer
is then used as the multi-view representations.

To encourage the multiple viewers to better
align with different potential queries, we propose
a global-local loss equipped with an annealed tem-
perature. In the previous work, the contrastive loss
between positive and negative samples is widely
applied (Karpukhin et al., 2020). Apart from global
contrastive loss, we formulate a local uniformity
loss between multi-view document embeddings, to
better keep the uniformity among multiple viewers
and prevent them from collapsing into the same
one. In addition, we adopt an annealed tempera-
ture which gradually sharpens the distribution of
viewers, to help multiple viewers better match to
different potential queries, which is also validated
in our experiment.

The contributions of this paper are as follows:

• We propose a simple yet effective method to
generate multi-view document representations
through multiple viewers.

• To optimize the training of multiple viewers,
we propose a global-local loss with annealed
temperature to make multiple viewers to better
align to different semantic views.

• Experimental results on open-domain retrieval
datasets show that our approach achieves state-
of-the-art retrieval performance. Further anal-
ysis proves the effectiveness of our method.

2 Background and Related Work

2.1 Retriever and Ranker Architecture

With the development of deep language model (De-
vlin et al., 2019), fine-tuned deep pre-trained BERT
achieve advanced re-ranking performance (Dai and
Callan, 2019; Nogueira and Cho, 2019). The ini-
tial approach is the cross-encoder based re-ranker,
as shown in Figure.2(a). It feeds the concatena-
tion of query and document text to BERT and
outputs the [CLS] token’s embeddings to pro-
duce a relevance score. Benefiting from deeply-
contextualized representations of query–document
pairs, the deep LM helps bridge both vocabulary
mismatch and semantic mismatch. However, cross-
encoder based rankers need computationally ex-
pensive cross-attention operations (Khattab and
Zaharia, 2020; Gao and Callan, 2021a), so it is
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Figure 2: The comparison of different model architectures designed for retrieval/re-ranking.

impractical for large-scale first-stage retrieval and
is usually deployed in second-stage re-ranking.

As for first-stage retrieval, bi-encoder is the most
adopted architecture (Karpukhin et al., 2020) for it
can be easily and efficiently employed with support
from approximate nearest neighbor (ANN) (John-
son et al., 2019). As illustrated in Figure.2(b),
it feeds the query and document to the individ-
ual encoders to generate single vector represen-
tations, and the relevance score is measured by
the similarity of their embeddings. Equipped with
deep LM, bi-encoder based retriever has achieved
promising performance (Karpukhin et al., 2020).
And later studies have further improved its perfor-
mance through different carefully designed meth-
ods, which will be introduced in Sec.2.2

Beside the typical bi-encoder, there are some
variants(Gao et al., 2020; Chen et al., 2020; Mehri
and Eric, 2021) proposing to employ dense interac-
tions based on Bi-encoder. As shown in Fig.2(c),
ColBERT (Khattab and Zaharia, 2020) adopts the
late interaction paradigm, which computes token-
wise dot scores between all the terms’ vectors, se-
quentially followed by max-pooler and sum-pooler
to produce a relevance score. Later on, Gao et al.
(2021) improve it by scoring only on overlapping
token vectors with inverted lists. Another vari-
ant is the attention-based aggregator, as shown
in Fig.2(d). It utilizes the attention mechanism
to compress the document embeddings to inter-
act with the query vector for a final relevance
score. There are several works (Humeau et al.,
2020; Luan et al., 2021; Tang et al., 2021) built on
this paradigm. Specifically, Poly-Encoder(learnt-
k) (Humeau et al., 2020) sets k learnable codes
to attend them over the document embeddings.
DRPQ (Tang et al., 2021) achieve better results
by iterative K-means clustering on the document
vectors to generate multiple embeddings, followed
by attention-based interaction with query. However,
the dense interaction methods can’t be directly de-

ployed with ANN, because both the sum-pooler
and attention operator can’t be decomposed into
max over inner products, and the fast ANN search
cannot be applied. So they usually first approxi-
mately recall a set of candidates then refine them
by exhaustively re-ranking, While MVR can be
directly applied in first-stage retrieval.

Another related method is ME-BERT(Luan et al.,
2021), which adopts the first k document token
embeddings as the document representation. How-
ever, only adopting the first-k embeddings may lose
beneficial information in the latter part of the doc-
ument, while our viewer tokens can extract from
the whole document. In Sec.5.2, we also find the
multiple embeddings in MEBERT will collapse to
the same [CLS], while our global-local loss can
address this problem.

2.2 Effective Dense Retrieval

In addition to the aforementioned work focusing
on the architecture design, there exist loads of work
that proposes to improve the effectiveness of dense
retrieval. Existing approaches of learning dense
passage retriever can be divided into two categories:
(1) pre-training for retrieval (Chang et al., 2020;
Lee et al., 2019; Guu et al., 2020) and (2) fine-
tuning pre-trained language models (PLMs) on la-
beled data (Karpukhin et al., 2020; Xiong et al.,
2020; Qu et al., 2021).

In the first category, Lee et al. (2019) and Chang
et al. (2020) propose different pre-training task
and demonstrate the effectiveness of pre-training
in dense retrievers. Recently, DPR-PAQ (Oğuz
et al., 2021) proposes domain matched pre-training,
while Condenser (Gao and Callan, 2021a,b) en-
forces the model to produce an information-rich
CLS representation with continual pre-training.

As for the second class, recent work (Karpukhin
et al., 2020; Xiong et al., 2020; Qu et al., 2021;
Zhan et al., 2021) shows the key of fine-tuning an
effective dense retriever revolves around hard nega-
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tives. DPR (Karpukhin et al., 2020) adopts in-batch
negatives and BM25 hard negatives. ANCE (Xiong
et al., 2020) proposes to construct hard negatives
dynamically during training. RocketQA (Qu et al.,
2021; Ren et al., 2021b) shows the cross-encoder
can filter and mine higher-quality hard negatives.
Li et al. (2021) and Ren et al. (2021a) demonstrate
that passage-centric and query-centric negatives
can make the training more robust. It is worth men-
tioning that distilling the knowledge from cross-
encoder-based re-ranker into bi-encoder-based re-
triever (Sachan et al., 2021; Izacard and Grave,
2021; Ren et al., 2021a,b; Zhang et al., 2021) can
improve the bi-encoder’s performance. Most of
these works are built upon bi-encoder and naturally
inherit its limit of a single vector representation,
while our work modified the bi-encoder to produce
multi-view embeddings, and is also orthogonal to
these strategies.

3 Methodology

3.1 Preliminary
We start with a bi-encoder using BERT as its back-
bone neural network, as shown in Figure 2(b). A
typical Bi-encoder adopts dual encoder architec-
ture which maps the query and document to single
dimensional real-valued vectors separately.

Given a query q and a document collection
D = {d1, . . . , dj , . . . , dn}, dense retrievers lever-
age the same BERT encoder to get the representa-
tions of queries and documents. Then the similarity
score f(q, d) of query q and document d can be cal-
culated with their dense representations:

f(q, d) = sim(EQ(q), ED(d)) (1)

Where sim(·) is the similarity function to estimate
the relevance between two embeddings, e.g., co-
sine distance, euclidean distance, etc. And the
inner-product on the [CLS] representations is a
widely adopted setting (Karpukhin et al., 2020;
Xiong et al., 2020).

A conventional contrastive-learning loss is
widely applied for training query and passage en-
coders supervised by the target task’s training set.
For a given query q, it computed negative log like-
lihood of a positive document d+ against a set of
negatives {d−1 , d

−
2 , ..d

−
l }.

L = − log
ef(q,d

+)/τ

ef(q,d+)/τ +
∑
l

ef(q,d
−
l )/τ

(2)

Where τ is hyper-parameter of temperature-
scaled factor, and an appropriate temperature can
help in better optimization (Sachan et al., 2021; Li
et al., 2021).

3.2 Multi-Viewer Based Architecture

Limited to single vector representation, the typical
bi-encoder faces a challenge that a document con-
tains multiple semantics and can be asked by dif-
ferent potential queries from multi-view. Though
some previous studies incorporate dense interaction
to allow multiple representations and somehow im-
prove the effectiveness, they usually lead to more
additional expensive computation and complicated
structure. Therefore, we propose a simple yet effec-
tive method to produce multi-view representations
by multiple viewers and we will describe it in de-
tail.

As pre-trained BERT has benefited a wide scale
of the downstream tasks including sentence-level
ones, some work has found [CLS] tend to aggregate
the overall meaning of the whole sentence (Koval-
eva et al., 2019; Clark et al., 2019). However, our
model tends to capture more fine-grained seman-
tic units in a document, so we introduce multiple
viewers. Rather than use the latent representation
of the [CLS] token, we adopt newly added multiple
viewer tokens [VIE] to replace [CLS], which are
randomly initialized. For documents input, we add
different [V IEi](i=1,2,..., n) at the beginning of
sentence tokens. To avoid effect on the positional
encoding of the original input sentences, we set all
the position ids of [V IEi] to 0, and the document
sentence tokens start from 1 as the original. Then
We leverage the dual encoder to get the representa-
tions of queries and documents:

E(q) = Encq([V IE] ◦ q ◦ [SEP ])

E(d) =Encd([V IE1] · · · [V IEn] ◦ d ◦ [SEP ])
(3)

Where ◦ is the concatenation operation. [VIE] and
[SEP] are special tokens in BERT. Encq and Encd
mean query and document encoder. We use the
last layer hidden states as the query and document
embeddings.

The representations of the [VIE] tokens are
used as representations of query q and document
d, which are denoted as E0(q) and Ei(d)(i =
0, 1, ..., k − 1), respectively. As the query is much
shorter than the document and usually represents
one concrete meaning, we retain the typical setting
to produce only one embedding for the query.
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Figure 3: The general framework of multi-view representation learning with global-local loss. The gray blocks
indicates the categories of scores in different layers.

Then the similarity score f(q, d) of query q and
document d can be calculated with their dense
representations. As shown in Figure.3, we first
compute the Individual Scores between the single
query embedding and document’s multi-view em-
beddings, in which we adopt the inner-product. The
resulted score corresponding to [V IEi] is denoted
as fi(q, d)(i = 0, 1, ..., k − 1). The we adopt a
max-pooler to aggregate individual score to the Ag-
gregate Score f(q, d) as the similarity score for the
given query and document pairs:

f(q, d) = Max
i

{fi(q, d)}

= Max
i

{sim(E0(q), Ei(d))}
(4)

3.3 Global-Local Loss
In order to encourage the multiple viewers to better
align to different potential queries, we introduce
a Global-Local Loss to optimize the training of
multi-view architecture. It combines the global
contrastive loss and the local uniformity loss.

L = Lglobal + λLlocal (5)

The global contrastive loss is inherited from
the traditional bi-encoder. Given the query and
a positive document d+ against a set of negatives
{d−1 , d

−
2 , ..d

−
l }, It is computed as follows:

Lglobal = − log
ef(q,d

+)/τ

ef(q,d+)/τ +
∑
l

ef(q,d
−
l )/τ

(6)

To improve the uniformity of multi-view embed-
ding space, we propose applying Local Uniformity
Loss among the different viewers in Eq.7. For a
specific query, one of the multi-view document
representations will be matched by max-score in

Eq.4. The local uniformity loss enforces the se-
lected viewer to more closely align with the query
and distinguish from other viewers.

Llocal = − log
ef(q,d

+)/τ∑
k

efi(q,d+)/τ
(7)

To further encourage more different viewers to
be activated, we adopt an annealed temperature in
Eq.8, to gradually tune the sharpness of viewers’
softmax distribution. In the start stage of training
with a high temperature, the softmax values tend
to have a uniform distribution over the viewers, to
make every viewer fair to be selected and get back
gradient from train data. As the training process
goes, the temperature decreases to make optimiza-
tion more stable.

τ = max{0.3, exp(−αt)} (8)

Where α is a hyper-parameter to control the an-
nealing speed, t denotes the training epochs, and
the temperature updates every epoch. To simplify
the settings, we use the same annealed temperature
in Llocal and Lglobal and our experiments validate
the annealed temperature works mainly in conjunc-
tion with Llocal through multiple viewers.

During inference, we build the index of all the
reviewer embeddings of documents, and then our
model directly retrieves from the built index lever-
aging approximate nearest neighbor (ANN) tech-
nique. However, both Poly-Encoder (Humeau
et al., 2020) and DRPQ (Tang et al., 2021) adopt
attention-based aggregator containing softmax or
sum operator so that the fast ANN can’t be directly
applied. Though DRPQ proposes to approximate
softmax to max operation, it still needs to first re-
call a set of candidates then rerank them using the
complex aggregator, leading to expensive computa-
tion and complicated procedure. In contrast, MVR
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Method
SQuAD Natural Question Trivia QA

R@5 R@20 R@100 R@5 R@20 R@100 R@5 R@20 R@100
BM25 (Yang et al., 2017) - - - - 59.1 73.7 - 66.9 76.7
DPR (Karpukhin et al., 2020) - 76.4 84.8 - 74.4 85.3 - 79.3 84.9
ANCE (Xiong et al., 2020) - - - - 81.9 87.5 - 80.3 85.3
RocketQA (Qu et al., 2021) - - - 74.0 82.7 88.5 - - -
Condenser (Gao and Callan, 2021a) - - - - 83.2 88.4 - 81.9 86.2
DPR-PAQ (Oğuz et al., 2021) - - - 74.5 83.7 88.6 - - -
DRPQ (Tang et al., 2021) - 80.5 88.6 - 82.3 88.2 - 80.5 85.8
coCondenser (Gao and Callan, 2021b) - - - 75.8 84.3 89.0 76.8 83.2 87.3
coCondenser(reproduced) 73.2 81.8 88.7 75.4 84.1 88.8 76.4 82.7 86.8
MVR 76.4 84.2 89.8 76.2 84.8 89.3 77.1 83.4 87.4

Table 1: Retrieval performance on SQuAD dev, Natural Question test and Trivia QA test. The best performing
models are marked bold and the results unavailable are left blank.

can be directly applied in first-stage retrieval with-
out post-computing process as them. Though the
size of the index will grow by viewer number k, the
time complexity can be sublinear in index size (An-
doni et al., 2018) due to the efficiency of ANN
technique(Johnson et al., 2019).

4 Experiments

4.1 Datasets

Natural Questions (Kwiatkowski et al., 2019) is
a popular open-domain retrieval dataset, in which
the questions are real Google search queries and
answers were manually annotated from Wikipedia.
TriviaQA (Joshi et al., 2017) contains a set of
trivia questions with answers that were originally
scraped from the Web.
SQuAD Open(Rajpurkar et al., 2016) contains the
questions and answers originating from a reading
comprehension dataset, and it has been used widely
used for open-domain retrieval research.

We follow the same procedure in (Karpukhin
et al., 2020) to preprocess and extract the passage
candidate set from the English Wikipedia dump, re-
sulting to about two million passages that are non-
overlapping chunks of 100 words. Both NQ and
TQA have about 60K training data after processing
and SQuAd has 70k. Currently, the authors release
all the datasets of NQ and TQ. For SQuAD, only
the development set is available. So we conduct
experiments on these three datasets, and evaluate
the top5/20/100 accuracy on the SQuAD dev set
and test set of NQ and TQ. We have counted how
many queries correspond to one same document
and the average number of queries of SQuAD, Nat-
ural Questions and Trivia QA are 2.7, 1.5 and 1.2,
which indicates the multi-view problem is common

in open-domain retrieval.

4.2 Implementation Details

We train MVR model following the hyper-
parameter setting of DPR (Karpukhin et al., 2020).
All models are trained for 40 epochs on 8 Tesla
V100 32GB GPUs. We tune different viewer num-
bers on the SQuAD dataset and find the best is
8, then we adopt it on all the datasets. To make
a fair comparison, we follow coCondenser (Gao
and Callan, 2021b) to adopt mined hard negatives
and warm-up pre-training strategies, which are also
adopted in recent works (Oğuz et al., 2021; Gao
and Callan, 2021a) and show promotion. Note that
we only adopt these strategies when compared to
them, while in the ablation studies our models are
built only with the raw DPR model. During in-
ference, we apply the passage encoder to encode
all the passages and index them using the Faiss
IndexFlatIP index (Johnson et al., 2019).

4.3 Retrieval Performance

We compare our MVR model with previous
state-of-the-art methods. Among these methods,
DRPQ (Tang et al., 2021) achieved the best re-
sults in multiple embeddings methods, which is the
main compared baseline for our model. In addi-
tion, we also compare to the recent strong dense
retriever, including ANCE (Xiong et al., 2020), Ro-
cekteQA (Qu et al., 2021), Condenser (Gao and
Callan, 2021a), DPR-PAQ (Oğuz et al., 2021) and
coCondenser (Gao and Callan, 2021b). For co-
Condenser, we reproduced its results and find it
a little lower than his reported one, maybe due to
its private repo and tricks. Overall, these meth-
ods mainly focus on mining hard negative samples,
knowledge distillation or pre-training strategies to
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Models R@5 R@20 R@100
DPR(k=1) 66.2 76.8 85.2
ME-BERT(k=4) 66.8 77.6 85.5
ME-BERT(k=8) 67.3 77.9 86.1
MVR(k=4) 68.5 78.5 85.8
MVR(k=6) 72.3 80.3 86.4
MVR(k=8) 75.5 83.2 87.9
MVR(k=12) 74.8 82.9 87.4

Table 2: Performance of different viewers’ number in
MVR and compared models.

Models R@5 R@20 R@100
(0) MVR (α = 0.1) 75.5 83.2 87.9
(1) w/o LC loss 73.7 82.1 86.5
(2) w/o Annealed τ (Fixed=1) 74.3 81.9 86.8
(3) w/o LC loss + Annealed τ 72.8 81.0 85.8
(4) w/o Multiple Viewers 66.7 77.1 85.7
(5) Fixed τ = 10 70.2 79.3 85.4
(6) Fixed τ = 0.3 74.6 82.4 87.3
(7) Fixed τ = 0.1 72.3 81.2 85.9
(8) Annealed τ (α = 0.3) 74.7 82.0 87.4
(9) Annealed τ (α = 0.03) 73.9 81.8 86.5

Table 3: Ablation study on Global-local Loss on
SQuAD dev set.

improve dense retrieval. And our MVR framework
is orthogonal to them and can be combined with
them for better promotion.

As shown in Table 1, we can see that our pro-
posed MVR performs better than other models.
Compared to DRPQ which performs best in the
previous multi-vector models, MVR can outper-
form it by a large margin, further confirming the
superiority of our multi-view representation. It’s
worth noting that our model improves more on the
SQuAD dataset, maybe due to the dataset contain-
ing more documents that correspond to multiple
queries as we state in Sec.4.1. It indicates that
MVR can address the multi-view problem better
than other models.

4.4 Ablation Study

Impact of Viewers’ Number: We conduct abla-
tion studies on the development set of SQuAD open.
For fair comparison, we build all the models men-
tioned in the following based on DPR toolkit, in-
cluding MEBERT and MVR. The results are shown
in Table 2, and the first block shows the results of
DPR and MEBERT which adopt the first k token
embeddings. Compared to DPR and MEBERT, our
model shows strong performance, which indicates
the multi-view representation is effective and use-
ful. Then, we analyze how the different numbers
of viewers (k = 4, 6, 8, 12) affect performance in

Method Doc Encoding Retrieval
DPR 2.5ms 10ms
ColBERT 2.5ms 320ms
MEBERT 2.5ms 25ms
DRPQ 5.3ms 45ms
MVR 2.5ms 25ms

Table 4: Time cost of online and offline computing in
SQuAD retrieval task.

MVR. We find that the model achieves the best per-
formance when k = 8. When k increase to k = 12
or larger, it leads little decrease in the performance,
maybe due to there being not so many individual
views in a document.

Analysis on Global-local Loss: In this part, we
conduct more detailed ablation study and analysis
of our proposed Global-local Loss. As shown in Ta-
ble 3, we gradually reduce the strategies adopted in
our model. We find not having either local unifor-
mity loss (LC loss in table) or annealed temperature
damages performance, and it decreases more with-
out both of them. We also provide more experimen-
tal results to show the effectiveness of the annealed
temperature. We first tune the fixed temperature,
find it between 0.3 to 1 is beneficial. We adopt the
annealed temperature annealed from 1 to 0.3 grad-
ually as in Eq.8, finding a suitable speed(α = 0.1)
can better help with optimization during training.
Note that the model w/o Multiple Viewers can be
seen as DPR with annealed τ , just little higher than
raw DPR in Table 2, while annealed τ improves
more when using multi-viewer. It indicates our
annealed strategy plays a more important role in
multi-view learning.

Efficiency Analysis: We test the efficiency of
our model on 4 Nvidia Tesla V100 GPU for the
SQuAD dev set, as shown in Table 4. We record
the encoding time per document and retrieval time
per query, and don’t include the query encoding
time for it is equal for all the models. To compare
our approach with other different models, we also
record the retrieval time of other related models.
We can see that our model spends the same encod-
ing time as DPR, while DRPQ needs additional
time to run K-means clustering. With the support
of Faiss, the retrieval time MVR cost is near to
DPR and less than ColBERT (Khattab and Zaharia,
2020) and DRPQ (Tang et al., 2021) which need
additional post-computing as we state in Sec.2.1.

5996



Models R@5 R@20 R@100
DPR 66.2 76.8 85.2
MVR 75.5 83.2 87.9
Sentence-level 62.1 73.2 81.9
4-equal-splits 57.2 69.3 78.5
8-equal-splits 44.2 57.9 69.4

Table 5: Performance of different sentence-level re-
trieval models on SQuAD dev.

5 Further Analysis

5.1 Comparison to Sentence-level Retrieval
To analyze the difference between MVR and
sentence-level retrieval which is another way to
produce multiple embeddings, we design several
models as shown in Table 5. Sentence-level means
that we split all the passages into individual sen-
tences with NLTK toolkit1, resulting to an average
of 5.5 sentences per passage. The new positives
are the sentences containing answers in the original
positives, and new negatives are all the split sen-
tences of original negatives. K-equal-splits means
the DPR’s original 100-words-long passages are
split into k equal long sequences and training pos-
itives and negatives as Sentence-level’s methods.
Compared to MVR, Sentence-level drops a lot even
lower than DPR maybe for they lose contextual in-
formation in passages. It also indicates that the
multi-view embeddings of MVR do not just cor-
respond to sentence embeddings, but capture se-
mantic meanings from different views. For even
a single sentence may contain diverse information
that can answer different potential queries (as in
Fig.1). The k-equal-split methods perform worse
much for it further lose the sentence structure and
may contain more noise.

5.2 Analysis of Multi-View Embeddings
To further show the effectiveness of our proposed
MVR framework, we evaluate the distribution of
multi-view document representations. We con-
duct evaluations on the randomly sampled subset
of SQuAD development set, which contains 1.5k
query-doc pairs and each document has an average
of 4.8 corresponding questions. We adopt two met-
rics Local Variation and Perplexity (Brown et al.,
1992)(denoted as LV and PPL) to illustrate the ef-
fect of different methods. We first compute the
normalized scores between the document’s multi-
view embeddings and query embedding as in Eq.4,

1www.nltk.org

Models PPL LV
ME-BERT 1.02 0.159
MVR 3.19 0.126
MVR w/o LC loss 3.23 0.052
MVR w/o Annealed τ 2.95 0.118

Table 6: Analysis of multi-view embeddings produced
by different methods.

and record the scores fi(q, d) of all the viewers.
Then Local Variation of a query-doc pair can be
computed as follows, and then we average it on all
the pairs.

LV = Max(fi(q, d))−

∑
k

fi(q, d)−Max(fi(q, d))

k − 1
(9)

The Local Variation measures the distance of
the max scores to the average of the others, which
can curve the uniformity of different viewers. The
higher it is, the more diversely the multi-view em-
beddings are distributed.

Then we collect the index of the viewer having
the max score, and group the indexes of differ-
ent queries corresponding to the same documents.
Next, we can get the distributions of different in-
dexes denoted as pi. The Perplexity can be com-
puted as follows:

PPL = exp(−
∑
m

pi log pi) (10)

If different viewers are matched to totally differ-
ent queries, the pi tends to be a uniform distribu-
tion and PPL goes up. The comparison results are
shown in Table 6. When evaluating MEBERT, we
find its multiple embeddings collapse into the same
[CLS] embeddings rather than using the different
token embeddings. So its PPL is near to one and
Local Variation is too high. For MVR model, we
find that without local uniformity loss (LC loss in
short), the Local Variation drops rapidly, indicating
our proposed LC loss can improve the uniformity
of different viewers. In addition, MVR w/o an-
nealed τ will damage the PPL, which also confirms
it does help activate more viewers and align them
better with different queries.

5.3 Qualitative Analysis
As shown in Table 7, there are two examples re-
trieved by DPR and MVR for qualitative analysis.
The top scoring passages retrieved by DPR can’t
give a clear answer for the queries, though they

5997

www.nltk.org


Question Passage received by DPR Passage retrieved by MVR

What continent ranged over
the majority of the southern
hemisphere of earth in the
Cambrian?

Title: Mesozoic Title: Geological history of Earth
. . . and the Khingan Mountains in Manchuria. This orogeny
was related to the opening of the Arctic Ocean and subduction
of the North China and Siberian cratons under the Pacific
Ocean. In contrast, the era featured the dramatic rifting of the
supercontinent Pangaea, which gradually split into a northern
continent, Laurasia, and a southern continent, Gondwana. This
created the passive continental margin that characterizes most
of the Atlantic coastline (such as along the U.S. East Coast)
today. By the end of the era, the continents . . .

. . . Laurentia, Baltica and Siberia remained independent con-
tinents following the break-up of the supercontinent of Pan-
notia. Gondwana started to drift toward the South Pole. Pan-
thalassa covered most of the southern hemisphere, and minor
oceans included the Proto-Tethys Ocean, Iapetus Ocean and
Khanty Ocean. The Ordovician period started at a major
extinction event called the Cambrian -Ordovician extinction
event some time about 485.4 ± 1.9 Ma. During the Ordovician
the southern continents were collected into a single continent
called Gondwana. Gondwana started the period in . . .

How long ago did the
Ordovician period begin?

Title: Ordovician Title: Geological history of Earth
. . . is a geologic period and system, the second of six periods
of the Paleozoic Era. The Ordovician spans 41.2 million years
from the end of the Cambrian Period million years ago (Mya)
to the start of the Silurian Period Mya. The Ordovician, named
after the Celtic tribe of the Ordovices, was defined by Charles
Lapworth in 1879 to resolve a dispute between followers of
Adam Sedgwick and Roderick Murchison, who were placing
the same rock beds in northern Wales into the Cambrian and
Silurian systems, respectively. . . .

. . . Laurentia, Baltica and Siberia remained independent conti-
nents following the break-up of the supercontinent of Pannotia.
Gondwana started to drift toward the South Pole. Panthalassa
covered most of the southern hemisphere, and minor oceans
included the Proto-Tethys Ocean, Iapetus Ocean and Khanty
Ocean. The Ordovician period started at a major extinction
event called the Cambrian-Ordovician extinction event some
time about 485.4 ± 1.9 Ma. During the Ordovician the south-
ern continents were collected into a single continent called
Gondwana. Gondwana started the period in . . .

Table 7: Examples of passages returned from DPR and MVR. Correct answers are written in bold.

seem to have a similar topic to the queries. In con-
trast, our MVR is able to return the correct answers
when the passages contain rich information and
diverse semantics. Take the second sample as an
example, the passage retrieved by DPR is around
Ordovician in the question but there are no more de-
tails answering the question. In comparison, MVR
mines more fine-grained information in the passage
and return the correct answer 485.4 ± 1.9 Ma (Ma
means million years ago). It indicates that DPR can
only capture the rough meaning of a passage from
a general view, while our MVR is able to dive into
the passage and capture more fine-grained semantic
information from multiple views.

6 Conclusions

In this paper, we propose a novel Multi-View Rep-
resentation Learning framework. Specifically, we
present a simple yet effective method to generate
multi-view document representations through mul-
tiple viewers. To optimize the training of multiple
viewers, we propose a global-local loss with an-
nealed temperature to enable multiple viewers to
better align with different semantic views. We con-
duct experiments on three open-domain retrieval
datasets, and achieve state-of-the-art retrieval per-
formance. Our further analysis proves the effective-
ness of different components in our method.
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A Scale Factor of Global-Local Loss

We have tuned the scale factor λ of the Global-local
loss in Eq.5. The performances on SQuAD dev set
are shown in Table 8. We find that a suitable scal-
ing factor (λ=0.01) can improve more than others.
Analysing other results, we infer that a large factor
of local uniformity loss may lead to much impact
on optimization of global loss, while a smaller one
will degenerate into the form without local unifor-
mity loss.

λ R@5 R@20 R@100
0.5 72.4 80.4 85.9

0.05 74.7 82.5 87.3
0.01 75.5 83.2 87.9
0.001 72.9 82.2 85.7

Table 8: Performance on SQuAD dev set under different
setting of scale factor.
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