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Abstract
Generalized zero-shot text classification aims
to classify textual instances from both previ-
ously seen classes and incrementally emerg-
ing unseen classes. Most existing methods
generalize poorly since the learned parame-
ters are only optimal for seen classes rather
than for both classes, and the parameters keep
stationary in predicting procedures. To ad-
dress these challenges, we propose a novel
Learn to Adapt (LTA) network using a variant
meta-learning framework. Specifically, LTA
trains an adaptive classifier by using both seen
and virtual unseen classes to simulate a gen-
eralized zero-shot learning (GZSL) scenario
in accordance with the test time, and simul-
taneously learns to calibrate the class proto-
types and sample representations to make the
learned parameters adaptive to incoming un-
seen classes. We claim that the proposed model
is capable of representing all prototypes and
samples from both classes to a more consistent
distribution in a global space. Extensive exper-
iments on five text classification datasets show
that our model outperforms several competi-
tive previous approaches by large margins. The
code and the whole datasets are available at
https://github.com/Quareia/LTA.

1 Introduction

Text classification plays an important role in many
natural language processing (NLP) applications,
such as question classification, news categorization,
user intent classification and so on (Minaee et al.,
2021). Although a wide variety of methods have
been proved successful in supervised text classifica-
tion, they often break down when applied to make
predictions for incrementally emerging classes
without labeled training data (Pourpanah et al.,
2020). Unlike zero-shot learning (ZSL) that aims to
classify unseen class instances at test time (Romera-
Paredes and Torr, 2015; Wang et al., 2019), gener-
alized zero-shot learning (GZSL), which we focus
∗Corresponding author.

on in this work, aims to classify text samples from
both previous seen and emerging novel classes.
Since there is a strong bias towards seen classes
(Xian et al., 2019a), GZSL is a more challenging
yet critical problem.

Previously methods mainly focus on transduc-
tive approaches for generalized zero-shot text clas-
sification. Rios and Kavuluru (2018) use a graph
convolution network to enhance the unseen class
label embeddings. Zhang et al. (2019) and Song
et al. (2020) generate illusion feature embeddings
for unseen classes based on side information, i.e.,
class-level attributes or text description. More re-
cently, Ye et al. (2020) use reinforced self-training
methods to leverage unlabeled data during training.

With the assumption that no knowledge about
unseen categories is available during the model
learning phase, researchers resort to inductive ap-
proaches to handle generalized zero-shot text clas-
sification. ReCapsNet (Liu et al., 2019) uses a
dimensional attention-based intent capsule network
and constructs zero-shot class prototypes by simi-
larity matrix transformation. SEG (Yan et al., 2020)
exploits an outlier detection approach that can be di-
rectly applied on ReCapsNet, which discriminates
the domain first, then outputs the final class label.

However, the existing methods still have two key
limitations. Firstly, while the goal of these meth-
ods is to transfer beneficial knowledge for unseen
classes, these models merely learn optimal parame-
ters by minimizing the loss of instances from seen
classes, regardless of explicitly calibrating the pre-
dictions on unseen classes. Therefore, domain bias
problem (Xian et al., 2019a) towards seen classes
is not fairly resolved. Secondly, although some of
them take into account the inter-class relationship
when constructing prototypes for unseen classes
(Liu et al., 2019), the models keep static no matter
what different new classes emerge in future appli-
cations. As a result, these models show a large
quality gap between instances from seen classes
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and from emerging unseen classes.
To address these problems, motivated by the suc-

cess of meta-learning in the few-shot learning task
(Vinyals et al., 2016; Snell et al., 2017; Sung et al.,
2018; Finn et al., 2017), we present a novel Learn
to Adapt (LTA) network for generalized zero-shot
text classification. Concretely, the proposed LTA
learns over multiple learning episodes that mimic
GZSL setting explicitly during training, making
the learning setting consistent with the test environ-
ment and thereby improving generalization. The
model notably extends its ability from two views:
prototype adaptation and sample adaptation. In
each episode, the LTA adjusts the representative
prototypes of both seen classes and "fake" unseen
classes, with the assumption that unseen classes
will help in calibrating representation of seen ones
and thereby enable the model to learn the class-
sensitive representations. The updating for all pro-
totypes is then used to generate a set of calibration
parameters, called semantic components, to guide
the adaptation of sample embeddings, which is de-
signed to compensate for the shrinking features
(Chen et al., 2018) that are ignored during train-
ing if they are not discriminating for seen classes,
but could be critical for recognizing unseen classes.
The refined sample embeddings are then classified
based on similarity scores with all adapted class
prototypes. The same setting can be directly ap-
plied in testing, where the LTA executes class pre-
diction and adapts the learned model rationally in
an on-the-fly manner.

In summary, our contributions include: (i) We
propose a novel Learn to Adapt (LTA) network for
generalized zero-shot text classification which is
capable of adapting incrementally between seen
classes and emerging unseen classes at test time.
(ii) We propose a methodology for calibrating both
prototypes and sample embeddings to deduce a
global representation space, efficiently avoiding
over-fitting on seen classes. (iii) Experimental re-
sults on five generalized zero-shot text classifica-
tion datasets show that our method outperforms
previous methods with a large margin.

2 Related Work

Generalized Zero-Shot Learning The challenge
of zero-shot learning (ZSL) has been the focus of
attention in recent years, especially in the applica-
tions of image classification (Socher et al., 2013;
Xian et al., 2019a; Wang et al., 2019), intent detec-

tion (Xia et al., 2018; Liu et al., 2019; Yan et al.,
2020), and question classification (Fu et al., 2018).
Different from ZSL, generalized zero-shot learning
(GZSL) that attempts to categorize instances from
both seen and unseen classes is a more realistic con-
dition that matches with practical applications. For
example, a question classifier for a question answer-
ing system has to classify not only the questions
ever asked but also new questions incrementally
emerging from the users.

There are two key issues that GZSL has to ad-
dress: (1) how to incrementally learn beneficial
knowledge for unseen classes from seen ones, and
(2) how to tackle the domain bias caused by the
extremely imbalanced data of seen and unseen do-
mains.

To alleviate the first issue, some of the earliest
works on ZSL attempt to learn a matching model
between instance embedding and class prototype
embeddings represented by extra information in-
cluding class-level attribute, text description, or
their combinations (Frome et al., 2013; Nam et al.,
2016; Zhu et al., 2019; Xia et al., 2018). In a sim-
ilar vein, other methods (Wang et al., 2018; Rios
and Kavuluru, 2018; Si et al., 2021) also investigate
the semantic relationship between the side informa-
tion for obtaining better prototype representation.
Nevertheless, these models are trained using data
from seen classes and fail to incrementally adapt to
emerging new classes.

The key problem of the second issue is that the
model is trained with data from the seen classes
and the parameters are actually optimized on the
seen domain, thus they are not aware of unseen
classes. Assuming the extra information about un-
seen classes is available, another prominent ap-
proach attempts to use generative models to gener-
ate virtual samples or features for unseen domains
(Xian et al., 2018; Schönfeld et al., 2019; Zhang
et al., 2019; Song et al., 2020). By using syn-
thesized samples, the generative approaches can
convert GZSL problem to the conventional super-
vised learning problem where biases towards seen
classes are largely alleviated. Additionally, studies
also extend to exploit the unlabeled data for unseen
classes (Xian et al., 2019b; Rahman et al., 2019; Ye
et al., 2020). However, these models assume that
they have access to the extra information about the
unseen classes, which is not very realistic since of-
ten neither the test data nor their label descriptions
is available at the training phase (as supposed in
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this work). In contrast, our model can involve all
classes (seen and unseen) jointly during inference,
essentially it is trained towards continuous general-
ization for new classes, hence it is capable to adapt
to incoming new classes dynamically.

Episode-Based Training in GZSL Our ap-
proach is primarily based on the episodic training
paradigm that has been widely used in few-shot
learning (FSL) (Vinyals et al., 2016; Snell et al.,
2017; Sung et al., 2018). The primitive goal of
episodic training is to quickly learn a meta-task
from sampled classes. A particular advantage of
episodic training is that, by constructing meta-tasks,
the setting of training is consistent with that of test-
ing, which is essential for classification problems.

Studies extend to exploit episodic training in the
"generalized" settings. Verma et al. (2020) con-
structs model-agnostic meta-tasks to train gener-
ative models on GZSL. In addition, Gidaris and
Komodakis (2018) utilizes weight generators to up-
date unseen prototypes in generalized FSL(GFSL).
Subsequently, to update both seen and unseen pro-
totypes, Ye et al. (2021) exploits attention mech-
anism while Shi et al. (2020) takes advantage of
graph neural networks in GFSL. Yu et al. (2020)
use a generative network to generate unseen pro-
totypes in GZSL. These methods only consider
the prototype adaptation while the sample embed-
dings are still static whatever the unseen classes
are. Additionally, Bao et al. (2020) uses distribu-
tional signatures to update sample embeddings in
GFSL. Considering that distributional signatures
can be equal for two different tasks, our method
uses a novel semantic update extractor to update
samples following the prototype adaptation rather
than statistical information.

A compelling property of our method is that it
tackles knowledge transferring and domain bias si-
multaneously in an episodic training framework by
adapting both prototypes and sample embeddings,
and draws a fast adaptation to the novel classes
without the cost of dramatic damage in discriminat-
ing the seen classes.

3 Methodology

3.1 Problem Definition

Formally, let Ys = {ys1, ..., ysCs} and Yu =
{yu1 , ..., yuCu} denote Cs seen classes and Cu un-
seen classes respectively, and Y = Ys ∪ Yu de-
note the global label space with Ys ∩ Yu = ∅.

Suppose we have a collection of training samples
Ds = {(xsj , ysj , asj)}Mj=1, that consists of M sam-
ples from Cs seen classes, where xsj ∈ X s repre-
sents j-th text utterance, ysj and asj are its one-hot
class label and corresponding class-level textual
description, respectively. At the test time, provided
with a class description set Au = {auj }C

u

j=1 for un-
seen classes, the GZSL task is to classify the test
instance into either a seen or an unseen class.

3.2 Overview

Encoder An textual input x with T words is en-
coded by a BERT (Devlin et al., 2019) (or any other
textual encoder) into a sequence of hidden vectors
H = [h1,h2, ...,hT ] ∈ RT×dh , where dh is the di-
mension of the hidden vectors. The text embedding
f(x) ∈ Rdh is then obtained by averaging over the
T hidden vectors.

Training In the training stage, we apply an
episodic learning paradigm, which trains the model
by simulating multiple generalized zero-shot text
classification tasks on seen classes. Following the
principle that train and test conditions must match
(Vinyals et al., 2016) and recent studies on "gen-
eralized" setting (Gidaris and Komodakis, 2018;
Shi et al., 2020; Ye et al., 2021; Bao et al., 2020;
Verma et al., 2020; Yu et al., 2020), the i-th episode
involves an N s-way K-shot learning task for seen
classes, denoted as Ds

i = {(xsj , ysj , asj)}
Ns×K
j=1

with K labelled instances for each of the N s

classes, which are randomly sampled from the
seen data Ds, and a Nu-way K-shot learning
task for "fake" unseen classes, denoted as Du

i =
{(xuj , yuj , auj )}

Nu×K
j=1 which is also from Ds, with

N s + Nu ≤ Cs. More precisely, let Ys
i and

Yu
i denote the sampled seen class space and sam-

pled "fake" unseen class space respectively, with
Ys
i ⊂ Ys, Yu

i ⊂ Ys, and Ys
i ∩ Yu

i = ∅. For a
new query instance x, the generalized zero-shot
learning model performs:

ŷ = argmaxy∈{Ys
i ∪Yu

i }p(y|x,D
s
i ,Du

i ) (1)

The model has to maintain a globally consis-
tent joint class prototype space as well as dynamic
adaptation to unseen classes with zero labeled in-
stances. In this end, we design a Learn to Adapt
(LTA) network which first introduces a pre-trained
and learnable look-up table S to store embeddings
of the seen prototypes, and obtain the "fake" seen
classes Si from S. The "fake" unseen prototypes
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Figure 1: Illustration of the proposed LTA framework. The right part demonstrates the prototype adaptation and
sample adaptation, in which and respectively denote prototypes and samples, dotted border and solid border
represent before and after adaptation, respectively.

are encoded into a matrix Ui with a BERT en-
coder using "fake" unseen class descriptions. Then
the Si and the Ui are concatenated and fed into a
transformer encoder layer to explicitly calibrate the
seen prototype space and unseen prototype space.
Meanwhile, a matrix of semantic components C is
generated conditioned on the updating of the pro-
totypes. With the belief that the instance feature
space should be also calibrated according to the
prototypes in an on-the-fly manner, C is further
used for updating the feature embedding output by
the same encoder.

3.3 Prototype adaptation

The proposed LTA network first introduces a learn-
able look-up table S ∈ RCs×dh from which to ex-
tract the "fake" seen prototypes Si ∈ R(Cs−Nu)×dh

on demand. Following Gidaris and Komodakis
(2018); Ye et al. (2021); Shi et al. (2020), the
S is firstly initialized by the prototypes trained
using a supervised metric learning classifier on
seen classes. The detail of the supervised met-
ric learning classifier will be described in the ex-
periment section. We claim that this initializa-
tion step will reduce the variance caused by the
sampling episode sequences. The "fake" unseen
prototypes Ui is produced by the BERT encoder
f(·) using their corresponding class descriptions:

Ui = [f(ay)]y∈Yu
i
∈ RNu×dh .

Then the joint prototype matrix R is obtained by
concatenating Si and Ui, R = [Si,Ui] ∈ RCs×dh ,
with rk as the k-th prototype. Then R is fed into a
single Transformer encoder layer (Vaswani et al.,
2017) to explicitly model the updates for both seen
prototypes and novel prototypes:

Z = TransformerEncoder(R)

= Concat(head1, ..., headh)Wo

where headi = Softmax(
RWqWkR

dh
)RWv

(2)

R̂ = R+ Z (3)

where Z ∈ RCs×dh highlights the adjustment after
mutual reflections, Wo,Wq,Wk,Wv ∈ Rdh×dh

are trainable parameters, and the updated proto-
types R̂ ∈ RCs×dh is regarded as the calibrated
representative prototypes of both seen and unseen
categories, with r̂k as the adjusted k-th prototype.
The self-attentions used in Transformer is agile to
capture the inter-class relationship of seen and un-
seen classes and thereby it is beneficial to derive
globally discriminative prototypes. The prototype
adaptations simultaneously update both seen and
unseen classes, which enables the model to rep-
resent and discriminate the newly incoming cate-
gories in an on-the-fly manner.
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3.4 Sample adaptation
As been discussed in (Chen et al., 2018), the zero-
shot learning tasks are prone to produce semantics
loss, where some features would be discarded dur-
ing training if they are not discriminating for seen
classes, but critical for recognizing unseen classes.
We observe that the similar problem is exacerbated
in GZSL task due to the extreme unbalance be-
tween seen and unseen classes. We tackle this
problem by introducing sample adaptation follow-
ing the trajectories of prototypes adaptation. In
concrete, we apply a semantic update extractor via
attention mechanism to capture synchronous updat-
ing of the prototypes:

F = ZW1 (4)

A = Softmax(W3ReLU(W2F
T )) (5)

C = AF (6)

where W1 ∈ Rdh×dh ,W2 ∈ Rda×dh ,W3 ∈
Rdr×da are trainable parameters, A denotes the
attention weight matrix and C ∈ Rdr×dh extracts
different semantic components with cl as its l-th
semantic components. To offset the semantic loss
mentioned above, we use these semantic compo-
nents to guide the adaptation of sample embed-
dings. Concretely, we compare the attention score
for each ht to get the most related semantic ad-
justment and reconstruct the contribution of each
word-level feature:

et = Softmax(αmax
l

(
htcl

∥ht∥∥cl∥
)) (7)

g(x) =
T∑
t=1

etht (8)

where the self-attention weight et is used to re-
weight the t-th word of sample x to be classified,
and α is a learnable temperature scalar to control
the differentiation of Softmax scores (Gidaris and
Komodakis, 2018). In this way, the different atten-
tion weights discriminate the importance of words
rather than averaging them.

One notable reason of choosing of the above
feature-level calibration is that, in classification
task, the encoder is trained to produce feature em-
bedding that collapses to its ground-truth proto-
type, therefore the adjustment of feature embed-
ding should cater to the adjustment of a reliable
global prototype space. In addition, since this cal-
ibration is applied after the encoding, it reduces

the complicated parameter tuning for a massive
encoder (e.g., BERT), which elegantly helps the
GZSL task to fast adapt to the incoming test in-
stances.

3.5 Loss function
With the adapted prototypes R̂ and the adapted
sample g(x), a Softmax classifier is used:

p (ŷ = y | x) = exp(s(g(x), r̂y))∑
ŷ exp(s(g(x), r̂ŷ))

(9)

where s(a, b) = γ·ab
∥a∥∥b∥ is cosine similarity with a

learnable temperature scalar γ. Finally the model is
trained by minimizing the losses across N episodes:

L =
1

N

∑
i

Li (10)

where Li is the loss of the i-th episode:

Li = − 1

(N s +Nu)K

∑
(x,y,a)∈Ds

i∪Du
i

log p (ŷ = y | x)

(11)
The training process is summarized in Algorithm 1.

Algorithm 1: LTA training algorithm.
Input: distribution over tasks p(T ), class

set Ys

Output: learned model parameters
1 while not done do
2 Randomly sample a meta GZSL task

Ti ∼ p(T ) with seen meta-test Ds
i and

unseen meta-test Du
i .

3 Get adapted prototypes R̂ by Eq 2~3.
4 Get semantic components C by Eq 4~6.
5 for all Ds

i ∪ Du
i do

6 Get adapted sample embeddings by
Eq 7~8.

7 end
8 Update model by Eq 9~11.
9 end

4 Experiments

4.1 Datasets
Intent Classification Datasets. We collect four
intent classification datasets. (1) SNIPS-SLU
(Coucke et al., 2018), a widely used benchmark for
English GZSL intent detection with 5 seen intents
and 2 unseen intents. (2) SMP-18 (Zhang et al.,
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2017), a Chinese dialogue corpus for user intent
detection with 24 seen intents and 6 unseen intents.
(3) ATIS (Hemphill et al., 1990), an English airline
travel domain dataset, from which we extract 17
intents with at least 5 samples, and split them into
12 seen intents and 5 unseen intents. (4) CLINC
(Larson et al., 2019) is a recently published intent
detection dataset includes 22,500 in-scope queries
covering 150 intent classes from 10 domains. We
randomly split them into 120 seen intents and 30
unseen intents.

Question Classification Dataset. In order to
draw a comprehensive analysis of the proposed
method, we construct a question classification task
from the Quora Question Pairs dataset 1, which is
aimed to identify duplicate questions. We collect
questions with at least 5 duplicate samples into
classes. In each class, we choose the question with
minimum words as the label description, called the
standard question, which is widely used in real-
world question-answering systems (Sakata et al.,
2019). Table 1 summarizes all datasets statistics.
It is worth to note that intents in ATIS are highly
unbalanced with flight accounts for about 87% of
training data.

Table 1: Dataset statistics. "FS" indicates "few-shot",
"BAL" indicates "balance", "IBAL" indicates "imbal-
ance". The "avg #samples" indicates the average number
of samples per class.

Dataset #classes #samples sent
len typeseen unseen total avg

SNIPS 5 2 13802 1384 9.10 BAL
SMP 24 6 2460 60 4.83 FS
ATIS 12 5 4972 245 11.44 IBAL
Clinc 120 30 22500 105 8.23 BAL
Quora 1360 340 17394 7 10.46 FS

Dataset Settings. Following (Siddique et al.,
2021), we randomly sample seen and unseen
classes for 10 runs instead of manual selection used
in (Yan et al., 2020), which leads to more fair re-
sults because every class could be unseen class. We
randomly take 70% samples of each seen class as
the training set and the remaining 30% as the seen
test, and take all the samples of unseen classes as
the unseen test. All the textual labels of the same
class are regarded as the description for this class.

1 www.kaggle.com/c/quora-question-pairs

4.2 Baseline Methods
To validate the benefits of the proposed LTA, we
compare against with other approaches in three
aspects:

Supervised Learning Methods. To show the per-
formances on seen classes with supervised learn-
ing instead of GZSL setting, we use (1) BiLSTM
(Schuster and Paliwal, 1997) and (2) BERT (De-
vlin et al., 2019) as the encoder with a linear Soft-
max classifier, which only requires samples and
one-hot label.

Metric Learning Methods. Metric-based em-
bedding methods are commonly used as baselines
for GZSL. Thus we introduce three different met-
ric learning methods: (1) EucSoftmax: We adapt
(Snell et al., 2017) that uses squared Euclidean
distance as the metric and Softmax classifies; (2)
Zero-shot DNN: We adapt (Kumar et al., 2017)
that uses squared Euclidean distance and triplet
loss to maintain a margin for different classes. We
choose the label embedding (prototype) as the an-
chor and the closest sample as negative sample in
each triplet tuple; (3) CosT: We adapt (Gidaris and
Komodakis, 2018) which uses cosine distance as
the metric with a learnable temperature scalar.

SOTA Methods. We also compare our model
with two recent state-of-the-art (SOTA) methods:
(1) ReCapsNet (Liu et al., 2019) uses a dimen-
sional attention-based intent capsule network and a
matrix transformation method for GZSL. (2) SEG
(Yan et al., 2020) is an outlier detection approach
that can be directly applied on ReCapsNet. SEG
acts as a domain discriminator which first deter-
mines whether a test sample belongs to seen classes
or unseen classes and then classifies in their own
domain. RIDE (Siddique et al., 2021) is not con-
sidered because they use outer knowledge that is
not available in our settings, and they limit the in-
tent labels to only two components "Action" and
"Object".

4.3 Experimental Setup
Evaluation Metrics. We basically use accuracy
(Acc) to estimate the performances on seen and
unseen test sets. Besides, we adopt Macro-F1 (F1)
rather than Micro-F1 to better evaluate the per-
formances on imbalanced and few-shot datasets,
because Macro-F1 gives the average weight of F1
scores for each class. For overall assessments, we
adopt the widely used Harmonic Mean (HM) of
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Table 2: Results (in %) on four intent benchmarks. The Top1 results of GZSL methods are highlighted in bold and
underline for Top2 results, the same below.

Model
SNIPS-NLU SMP-18

Seen Unseen HM Seen Unseen HM
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Bi-LSTM 98.23 98.23 0.00 0.00 0.00 0.00 93.65 93.43 0.00 0.00 0.00 0.00
BERT 98.91 98.91 0.00 0.00 0.00 0.00 95.28 94.87 0.00 0.00 0.00 0.00
EucSoftmax 81.09 65.50 45.89 58.21 58.61 61.64 89.84 87.85 76.65 77.51 82.72 82.36
Zero-shot DNN 81.09 65.28 45.91 58.53 58.63 61.72 90.97 87.67 75.38 77.32 82.44 82.17
CosT 91.68 75.76 47.73 62.84 62.77 68.70 90.65 88.41 72.59 73.89 80.62 80.50
ReCapsNet 96.26 67.70 11.57 18.45 20.66 29.00 76.32 74.92 20.56 15.09 32.39 25.10

+ SEG 92.11 73.08 50.29 62.33 65.06 67.28 67.10 67.39 36.65 32.84 47.70 44.16
LTA (Ours) 74.05 74.11 90.09 84.22 81.28 78.84 89.84 90.79 79.19 75.20 84.18 82.26

w / o Init 82.57 75.22 64.36 71.63 72.34 73.87 89.03 87.23 80.71 81.74 84.67 84.40
w / o SA 67.31 70.56 84.70 77.51 75.01 73.87 84.52 81.40 75.89 74.40 79.97 77.75
w / o A 75.26 71.82 83.85 80.77 79.33 76.03 84.35 86.93 76.90 73.54 80.72 80.50

Model
ATIS CLINC

Seen Unseen HM Seen Unseen HM
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Bi-LSTM 93.24 79.51 0.00 0.00 0.00 0.00 92.07 92.06 0.00 0.00 0.00 0.00
BERT 97.18 93.71 0.00 0.00 0.00 0.00 97.37 97.37 0.00 0.00 0.00 0.00
EucSoftmax 67.67 16.11 7.78 5.50 13.96 8.20 96.02 87.07 58.02 66.00 72.33 75.08
Zero-shot DNN 63.56 23.12 8.05 12.02 14.29 15.82 95.31 86.65 58.49 65.89 72.49 74.68
CosT 98.02 59.55 46.04 45.21 62.66 51.40 96.31 87.33 62.73 70.28 75.98 77.89
ReCapsNet 86.19 23.88 12.80 4.89 22.32 8.12 88.53 69.83 4.24 3.33 8.10 6.36

+ SEG 93.75 40.90 14.78 6.36 25.53 11.01 81.04 78.89 9.07 5.44 16.31 10.18
LTA (Ours) 96.28 63.13 66.09 55.02 78.38 58.80 92.22 87.57 73.18 75.74 81.60 81.23

w / o Init 89.96 47.48 69.79 52.14 78.60 49.70 93.07 88.19 73.80 77.54 82.32 82.52
w / o SA 90.20 51.74 66.23 47.24 76.38 49.38 92.46 87.30 69.27 73.26 79.20 79.67
w / o A 94.94 63.25 57.52 49.19 71.64 55.34 93.81 88.12 70.11 74.58 80.25 80.79

Table 3: Results (in %) on Quora question classification
dataset.

Model Seen Unseen HM
Acc F1 Acc F1 Acc F1

BiLSTM 71.70 69.04 0.00 0.00 0.00 0.00
EucSoftmax 79.88 74.42 56.85 62.39 66.43 67.88
Zero-shot DNN 72.52 67.42 48.68 53.27 58.26 59.52
CosT 88.50 81.39 62.21 73.55 73.06 77.27
LTA (Ours) 84.69 83.56 74.83 76.93 79.45 80.11

w / o Init 82.11 81.99 75.49 76.53 78.66 79.17
w / o SA 84.95 82.79 73.56 76.67 78.84 79.62
w / o A 84.21 82.40 72.50 75.23 77.92 78.65

Acc and F1 on seen and unseen test sets rather than
the overall metrics on the whole test set, because
the overall metrics are disturbed by the ratio of seen
and unseen test set sizes.

Implementation Details. We use the pretrained
BERT-base encoder with dh = 768 on intent clas-
sification datasets and BiLSTM with dh = 128
hidden vector size each direction on Quora dataset.
The scalars of our model is set to be α = 10.0, τ =
10.0, da = dh, which is trained via Adam (Kingma
and Ba, 2015) optimizer, with learning rates 10−5

for BERT encoder, 10−4 for BiLSTM encoder and
10−3 for the other parameters. We use h = 4 heads

Transformer encoder layer in prototype adaptation.
During training, in order to treat seen classes and
unseen classes as equal, we set N si = Nui in ev-
ery meta-test set, and we set K = 5 and N si =
Nui = [2, 2, 2, 10, 20], dr = [4, 16, 32, 64, 64] for
SNIPS-NLU, SMP-18, ATIS, CLINC and Quora
datasets, respectively.

We also conduct an ablation study to investigate
the effectiveness of each proposed component. As
depicted in Table 2 and Table 3, "w / o Init" refers to
the model that randomly initializes R rather than
pretrained prototypes. "w / o SA" refers to the
model that only uses prototype adaptation without
"sample adaptation". "w / o A" means none of the
adaptation steps is applied.

4.4 Results
The results on four intent datasets and Quora
dataset are given in Table 2 and Table 3, respec-
tively. It is observed that our proposed methods
achieve the overall best performances compared to
baselines.

Detailed and interesting observations can also be
derived from the results: (1) The metric-learning
methods as the basic baselines, achieve compa-
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Figure 2: PCA plots of encoded unseen sample representations(·) and prototype representations( ) from (a) LTA
w/o sample adaptation model and (b) full LTA model with sample adaptation (c) is an unseen example with sample-
level raw attention and adapted attention. denotes the raw prototype before adaptation. ◦ and • respectively
denote the example representations before and after sample adaptation.

rable results on Seen Test for all datasets. How-
ever, they all suffer from the domain bias problem
and the performance drops with a large margin on
Unseen Test, where the prediction is complicated
due to zero-shot scenarios. (2) The performances
on SNIPS-NLU and SMP-18 of ReCapsNet and
SEG are worse than those in their original paper
although we use the open-source codes in our ex-
periments, that is because we randomly split the
test unseen classes thus making it more challeng-
ing. Besides, these methods fail to recognize un-
seen samples well on datasets with a large scale
of categories, yielding worse 0% Acc and F1 on
Quora. The most likely reason is that ReCapsNet
uses label embedding similarities to construct un-
seen prototypes in capsule network, which imposes
a non-trivial computational and memory burden.
(3) Our method shows its privilege for all datasets.
In particular, with the help of continuous adapting
ability, it observes a smaller gap between seen and
unseen domains, which proves the adaptation on
the testing phase effectively works. Although the
performance on seen domain drops sightly, LTA
outperforms the competitive metric-learning base-
lines by 9.54% HM Acc and 12.90% HM F1 av-
eragely on the whole datasets, indicating that our
model fairly balances the seen and unseen classes.

Ablation Study. To better understand the con-
tribution of each component of our method, we
explore three variants of LTA. We can observe that
LTA with both prototype adaptation and sample
adaptation outperforms those without any adapta-
tion step in all cases. The "LTA w / o Init" has
relatively stable performances. Note that "LTA w
/ o SA" with only prototype adaptation achieves
worse performance compared to "LTA w / o A" on
SNIPS-NLU, SMP-18 and CLINC. It indicates that
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Figure 3: The performance with increasing numbers of
test unseen classes on CLINC dataset.

the single prototype adaptation step may cause neg-
ative transfer, further illustrating the importance of
the sample adaptation.

4.5 Results on Emerging Unseen Classes

As the partition of seen and unseen classes is fixed
in previous experiments, to study the robustness
of the proposed adaptation method, we conduct
the experiment across unseen class sets of differ-
ent scales on CLINC dataset. Specifically, we se-
lect 70 classes as seen classes and 10 classes as
validating unseen classes. The number of testing
unseen classes is varied from 1 to 70, which are
randomly sampled from the remaining 70 classes.
Each experiment is repeated 50 times with different
sampling sets for a more stable result. Figure 3 (a)
shows the HM accuracy on all classes as the num-
ber of the unseen classes increases. We can see that
our LTA model outperforms the metric learning
baseline and ablation models in all cases, where
the improved performance is mainly attributed to
the improvements on unseen classes as shown in
Figure 3 (b). These results suggest that our adap-
tation method is robust and effective for adapting
to increasing new classes as well as improving the
overall performance of all classes.
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4.6 Visualization
To demonstrate how our adaptation method works,
we further visualize the encoded representation
via PCA in Figure 2. When there is no unseen
class, seen classes (yellow and red) is discrimina-
tive enough. But when the new class "tire change"
(purple) comes, it is ambiguous with class "oil
change when" (red). We observe that the seen
and unseen class prototypes are updated to be far
away from each other after prototype adaptation as
shown in (a), which eases the domain bias problem.
However, the performance is unsatisfactory since
the sample representations are still not discrimina-
tive no matter how the prototype updates. As we
can see, with the sample adaptation as shown in
(b), the sample representations are independently
clustered by the adapted prototypes and easy to be
distinguished.

To further study how the sample adaptation
works, we select a representative case "when is
it time for a tire change" and show its atten-
tion weights used as calibration parameters in (c).
The case is still misclassified after the prototype
adaptation due that the common word "time" and
"change" also appear in seen classes. After the
sample adaptation, however, it can be seen that
the word "tire" which is a keyword for classifying,
gets the highest attention while the other confusing
words do not. This result suggests that calibrating
using attention weights helps acquire a prototype-
aware representation that guides the sample adap-
tation.

5 Conclusion

This paper proposed a novel adaptive meta-learning
network for generalized zero-shot text classifica-
tion. The model was trained under a consistent
setting with testing. In particular, it efficiently al-
leviated the bias towards seen classes by utilizing
both prototype adaptation and sample adaptation.
Experiments on five text classification datasets val-
idated that our model achieved compelling results
on both seen classes and unseen classes meanwhile
was capable of fast adapting to new classes.
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