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Abstract

Building huge and highly capable language
models has been a trend in the past years.
Despite their great performance, they incur
high computational cost. A common solu-
tion is to apply model compression or choose
light-weight architectures, which often need a
separate fixed-size model for each desirable
computational budget, and may lose perfor-
mance in case of heavy compression. This
paper proposes an effective dynamic inference
approach, called E-LANG, which distributes
the inference between large accurate Super-
models and light-weight Swift models. To this
end, a decision making module routes the in-
puts to Super or Swift models based on the
energy characteristics of the representations in
the latent space. This method is easily adopt-
able and architecture agnostic. As such, it
can be applied to black-box pre-trained mod-
els without a need for architectural manipula-
tions, reassembling of modules, or re-training.
Unlike existing methods that are only applica-
ble to encoder-only backbones and classifica-
tion tasks, our method also works for encoder-
decoder structures and sequence-to-sequence
tasks such as translation. The E-LANG perfor-
mance is verified through a set of experiments
with T5 and BERT backbones on GLUE, Su-
perGLUE, and WMT. In particular, we out-
perform T5-11B with an average computa-
tions speed-up of 3.3× on GLUE and 2.9×
on SuperGLUE. We also achieve BERT-based
SOTA on GLUE with 3.2× less computations.
Code and demo are available here.

1 Introduction

With the introduction of influential language mod-
els such as BERT (Devlin et al., 2019), a trend in
natural language processing (NLP) research has
been to develop high capacity models and push
their performance to new levels. Consequently,
state-of-the-art (SOTA) results were achieved on
various benchmarks using these models; GPT-3

(Brown et al., 2020), XLNet (Yang et al., 2019),
RoBERTa (Liu et al., 2019), T5 (Raffel et al., 2020),
ELECTRA (Clark et al., 2020), and DeBERTa (He
et al., 2021) to name a few. A potential down-side,
however, is that the number of parameters or float-
ing point operations (FLOPs) for these models can
get extremely large. For example, Gshard (Lep-
ikhin et al., 2021) comes with 600B parameters
with an enormous amount of computation. This in
turn results in a higher inference latency, which is
not desirable for latency-sensitive applications.

A common solution to speed-up the large lan-
guage models is to apply model compression
(Gupta et al., 2020). Although generally success-
ful, compression does come with a trade-off on
accuracy, and may lose performance if compres-
sion is heavy. In addition, these methods usually
compress a model to a fixed smaller size, where a
separate model is required for each possible compu-
tational budget. An alternative approach explored
in the literature is to leverage dynamic inferencing
in a way that examples may be routed to different
(potentially lower cost) paths throughout the net-
work. For example, a temporal early-exit model
(Shen et al., 2017; Yu et al., 2018) terminates the
procedure of reading the input sequence when suf-
ficient evidence has been found for accurate predic-
tions. Instance-wise early-exiting (Xin et al., ACL
2020) is another technique, which allows a sample
to adaptively choose from multiple available exit
nodes if some conditions are met. Consequently,
earlier exists require less computation and lead to
a lower latency. Adjusting the size of the model
at the inference time by choosing adaptive width
and depth is also another approach employed for
dynamic inference (Kim and Cho, 2021; Hou et al.,
2020). There is a variety of adaptive/dynamic in-
ference approaches proposed, however, a general
down-side for many of these methods is that often
times they require a careful architecture design, ma-
nipulation of network modules, or even re-training.
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In this paper, we propose a simple but rather ef-
fective approach of dynamically distributing the in-
ference between the original large model (called the
Super model) and a light-weight (e.g., compressed)
model referred to as the Swift model. To this end,
we design an energy-based decision making mod-
ule that routes examples to the appropriate model
based on the negative free energy of the latent space
representations, such that the Swift model attains
a high accuracy on the examples sent to it. The
remaining samples are then forwarded to the Super
model that is supposed to have a good performance
on all examples. Since the Swift model can make
highly accurate predictions over the majority of the
samples, E-LANG significantly reduces the overall
computational cost, while maintains the high ac-
curacy of the Super model. Although simple, this
strategy achieves SOTA results on multiple struc-
tures (e.g., T5 and BERT) and benchmarks (e.g.,
GLUE and SuperGLUE). Due to its desirable prac-
tical characteristics, this method is a strong candi-
date for the practical application of Super models.
The main contributions of the paper are as follows:

• Combining Super models with high accuracy
and latency and Swift models with lower accu-
racy and latency, to achieve high accuracy and
low latency. In other words, by employing our
method, we can achieve the high levels of accu-
racy provided by Super models, but at a lower
computational cost. Our method is easily adopt-
able, architecture agnostic, and orthogonal to
many other existing methods. It can be applied
to black-box pre-trained models without a need
for architectural manipulations, careful reassem-
bling of modules, or re-training.

• An energy-based routing mechanism for di-
recting examples to the Super or Swift. This pro-
vides a dynamic trade-off between the accuracy
and computational cost that outperforms the pre-
vious works in both fixed-size and dynamic in-
ference (with zero overhead for real-time adjust-
ment of speed/accuracy). As such, E-LANG acts
like a knob for adjusting the accuracy-latency
trade-off in real-time during model serving.

• To the best of our knowledge, our method is
the first generic approach to apply dynamic
inference on both encoder-only and encoder-
decoder architectures (e.g., T5) and also can
extend the usage beyond classification tasks, to
sequence-to-sequence tasks such as translation.

2 Related Works

As mentioned, compression is a widely used strat-
egy to speed-up the large language models (Gupta
et al., 2020; Gupta and Agrawal, 2022). This in-
volves incorporating techniques such as quantiza-
tion of weights and activations (Bai et al., 2021;
Shen et al., 2020; Kim et al., 2021; Zhang et al.,
2020; Jin et al., 2021), knowledge distillation (KD)
(Hinton et al., 2015; Jiao et al., 2020; Sanh et al.,
2019), pruning/sharing (Gordon et al., 2020; Chen
et al., 2020), multi-device distribution (Banitalebi-
Dehkordi et al., 2021), or a combination of these
techniques (Cheng et al., 2017; Polino et al., 2018).

Among all the compression techniques, creating
a fixed-size small version of large models along
with distillation has been popular in the recent
years. Sanh et al. (2019) introduced DistillBERT,
which was a smaller version of BERT trained with
distillation for general purposes. Another com-
pact variant of BERT was proposed by Mobile-
BERT (Sun et al., 2020) in which inverted bottle-
neck structures and progressive knowledge transfer
were used. TinyBERT (Jiao et al., 2020) also pre-
sented a novel two-stage transformer distillation
for both pre-training and task-specific fine-tuning.
In (Iandola et al., 2020), the usage of grouped
convolutions was studied to design SqueezeBERT.
ELM (Jiao et al., 2021), a layer mapping search
framework, was also proposed for improving down-
stream BERT distillation. A recent method, Ghost-
BERT (Huang et al., 2021), employed softmax-
normalized 1D convolutions as ghost modules to
generate more features with cheap operations.

Although compression techniques in general are
effective, they come with a trade-off on accuracy,
and may lose performance in case of high ratio
compression. In addition, an individual fixed-size
model is required for each possible computational
budget. As stated in the introduction, the alter-
native solution is dynamic inference, which can
be achieved with either early-exit or length/depth-
adaptive models. One of the first temporal early-
exit strategies was proposed by ReasoNet (Shen
et al., 2017), which stops its reading procedure
when sufficient evidence has been found for answer-
ing a question. Similarly, in (Yu et al., 2018), an
early stopping method applicable to classification
tasks was presented. DeeBERT (Xin et al., ACL
2020) also proposed an instance-wise multi-exit
method via the entropy of the output probability
distribution to speed-up BERT inference.
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Figure 1: Overall framework of the proposed energy-based joint inference strategy (E-LANG).

As a length-adaptive method, Kim and Cho
(2021) introduced a dynamic inference framework
with one-shot training of transformers for both
sequence- and token-level classification. Also, in
(Hou et al., 2020), an architecture named Dyn-
aBERT was proposed for adaptively adjusting the
computations by choosing sub-networks of differ-
ent widths and depths. Both Length-Adaptive and
DynaBERT utilized knowledge distillation and data
augmentation to improve their performance.

Although early-exit and adaptive methods have
made significant progress and work well in practice,
they often require architectural manipulation and
re-training. In addition, they are only applicable to
encoder-only backbones and classification tasks. In
contrast, our method can work with out-of-the-box
pre-trained models without a need for re-training
and are also applicable for encoder-decoder struc-
tures and sequence-to-sequence tasks.

3 Proposed Method

We propose a new energy-based joint inference
method called E-LANG, where a large/accurate
language model (Super) is jointly employed with
a small/fast one (Swift) to achieve efficient infer-
ence without sacrificing the accuracy. To this end,
inspired by the method in (Akbari et al., 2021), a
routing mechanism empowered by energy-based
models (EBM) is introduced to dynamically dis-
tribute the input samples between the Super and
Swift models. Similar to the out-of-distribution
(OOD) detection problem, our goal is to identify
the OOD samples that are hard to handle for the
Swift and forward them to the Super model. On
the other hand, we have the in-distribution data
for which the Swift can make highly reliable and
accurate predictions. In other words, the routing

mechanism needs to detect whether or not the input
data fits in the Swift’s distribution (i.e., the one
the Swift has been trained with). Inspired by the
success of EBMs in dealing with OOD detection
problems (Lee et al., 2019), the energy character-
istics of data samples for an efficient and effective
routing are investigated in our work. The overall
framework of E-LANG is shown in Figure 1.

3.1 Energy-Based Models
The goal of EBM is to build an energy function
denoted by E(x) : RD → R that maps an input
data x ∈ RD to a non-probabilistic energy value
y ∈ R. To turn a collection of arbitrary energies
for all possible outputs (denoted by Y ) into a nor-
malized probability distribution, Gibbs distribution
can be used as follows (LeCun et al., 2006):

p(y|x) = e−E(x,y)∫
y′∈Y e

−E(x,y′) , (1)

where the negative log of the denominator ex-
presses the Helmholtz free energy (LeCun et al.,
2006) defined as F (x) = −log

( ∫
y′∈Y e

−E(x,y′)).
In machine learning, there is a deep relation-

ship between the EBMs and discriminative models,
which can be seen by connecting the Gibbs distribu-
tion in Equation (1) and the categorical distribution
derived for a discriminative model. A discrimina-
tive classifier is defined as a function for mapping
the input x to C real-valued logits (i.e., for C num-
ber of class labels): f(x) : RD → RC . In order
to derive a categorical distribution over C possible
outputs, the softmax function is utilized:

p(y|x) = efy(x)∑C
i e

fi(x)
, (2)

where fy(x) denotes the logit (probability) of the
yth class label. Based on the inherent connection
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between the Gibbs and categorical distributions de-
fined in (1) and (2), the energy function for a given
input (x, y) can be defined as E(x, y) = −fy(x).
The free energy function F (x; f) can then be ob-
tained by taking the negative log of the categorical
distribution denominator as:

F (x; f) = −log
C∑
i

efi(x). (3)

3.2 Energy-Based Joint Inference
Our goal is to detect the easy samples suitable for
the Swift, which are indeed the ones with high
likelihood in the density function. The energy-
based density function for Swift is then defined as:

p(x) =
e−F (x;f)∫
x e
−F (x;f) , (4)

where the denominator is the normalized densities,
which can be intractable to compute or estimate.
By taking the logarithm of both sides, we obtain:

log
(
p(x)

)
= −F (x; f)− log(

∫
x
e−F (x;f)). (5)

The log(
∫

x e
−F (x;f)) term has no effect on the

distribution of the overall energy values because
it is constant for all x. As a result, −F (x; f), i.e.,
the negative free energy, has a linear alignment
with the log likelihood function, which makes it a
well-suited solution to the easy vs. hard detection
problem in our framework. To this end, lower en-
ergy values indicate higher likelihood and represent
easier (more fit) samples for the Swift model.

More precisely, for a threshold δ on the density
function such that p(x) < δ, then a threshold t on
the negative free energy can be calculated accord-
ing to (5) as −F (x; f) < t = log(δ

∫
x e
−F (x;f)).

In practice, for a given input, an energy function
is applied to the outputs of the Swift model during
inference time to calculate the energy score. Then,
if the negative energy value is smaller than a thresh-
old, the input is identified as a bad sample for the
Swift, and is sent to the Super model.

Given the energy threshold t, the Swift clas-
sifier f(x), and the Super classifier defined as
g(x) : RD → RC , the joint inference function
J(x; f, g, t) ∈ [1, C] for a classification task with
C classes can then be expressed by:

J(x; f, g, t) =

{
f(x) if − F (x; f) ≥ t
g(x) otherwise.

(6)

3.2.1 Encoder-Decoder Architectures
The proposed energy-based joint inference solu-
tion can be directly applied to the encoder-only
models such as BERT that are designed for text
classification tasks. To this end, the energy scores
corresponding to the BERT-based Swift model are
obtained using Equation (3) and the joint inference
is performed based on Equation 6.

On the other hand, for the encoder-decoder (auto-
encoder) architectures such as T5, which are usu-
ally considered as generative models, some mod-
ifications are required. Encoder-decoder models
are basically designed for sequence-to-sequence
(e.g., text-to-text) problems such as translation or
summarization. Although such models can also be
employed for classification tasks, they still consider
the task as a text generation (sequence-to-sequence)
problem, where the target labels and the output pre-
dictions are treated as a sequence or a piece of text.

In Section 3.1, it was discussed that there is an in-
herent connection between the discriminative clas-
sifiers and the EBMs. In order to benefit from this
characteristic for encoder-decoder architectures,
we consider adding an extra classification head (i.e.,
a single linear layer) to the Swift model. As en-
coders are commonly considered as better feature
extractors for training a classifier rather than the
decoders, we place the extra head after the Swift
encoder. While freezing the pre-trained encoder
model (denoted by fE), the extra energy head (de-
noted by h) is trained as a regular classifier head
with C class labels. Note that the decoder is not
required for training the head. The corresponding
free energy function is then defined as follows:

F (x; fE , h) = −log
C∑
i

ehi

(
fE(x)

)
, (7)

where fE(x) denotes the outputs of the encoder’s
last hidden state. These features are then fed to the
extra head h to obtain the logits for the ith class
required for computing the energy scores.

In this approach, as the decoder part of the Swift
model is not required for calculating the energy
scores, less computations are involved and the joint
inference is performed more efficiently.

For text-to-text (or sequence-to-sequence) prob-
lems such as translation, the output is a sequence
of M word-pieces from a vocabulary/dictionary of
size N . To still utilize the relationship of discrimi-
native models and EBMs in designing and training
the extra energy head, we can treat the text-to-text
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models as M multi-class classifiers. In this case,
the number of class labels, i.e., C in (7), is equal to
N . The final energy score is then calculated as the
average of M energy values as follows:

F (x; fE , h) = − 1
M

∑M
m

(
log
∑C

i e
hm,i

(
fE(x)

))
, (8)

where hm,i(.) denotes the logits corresponding to
the mth word in the sequence and ith class label.

Denote the Swift’s decoder by fD, the joint in-
ference function, J(x; f, g, h, t), based on energy
scores in either Equation (7) or (8) is expressed as:

J =

{
fD
(
fE(x)

)
if − F (x; fE , h) ≥ t

g(x) otherwise.
(9)

3.3 Softmax and Entropy Mechanisms
In addition to energy, softmax and entropy (Xin
et al., ACL 2020) scores can also be used for ana-
lyzing the Swift model’s performance in the routing
mechanism. In this sub-section, we study the math-
ematical connection of them with the energy score
and their potential to solve our problem.

3.3.1 Softmax-Based Mechanism
The softmax score for a classifier is expressed by:

max
y
p(y|x) = max

y

efy(x)∑C
i e

fi(x)
=

efmax(x)∑C
i e

fi(x)
. (10)

By taking the logarithm of both sides, we see the
connection between the log of the softmax and the
free energy score formulated in Equation (3):

logmax
y
p(y|x) = log(efmax(x))− log

C∑
i

efi(x)

= fmax(x) + F (x; f), (11)

where all logits are shifted by their maximum
fmax(x). Plugging in the energy term to (5) yields:

logmax
y
p(y|x) = −log(p(x)) + fmax(x)

−log
( ∫

x
e−F (x;f)). (12)

It is observed that for the samples with high like-
lihood of being in the Swift’s distribution, the free
energy goes lower, but the max logit tends to go
higher. Due to this shifting, unlike the energy score,
the softmax score is not well-aligned with the prob-
ability density p(x). As a result, the softmax score
is less reliable for our routing module to analyze
the performance of the Swift.

3.3.2 Entropy-Based Mechanism
The entropy score is a measure of randomness in
the processed information, and is calculated as:

H(x; f) = −
C∑
i

fi.log(fi), (13)

where fi(x) is the probability (logit) corresponding
to the ith class label. Let U be the internal energy,
i.e., the expectation value of the energy function
(Oh et al., 2020), defined by:

U(x; f) =
C∑
i

E(x, i)fi. (14)

According to Oh et al. (2020), the entropy can
be defined in terms of the internal and free energy
functions as: H(x; f) = U(x; f)−F (x; f), where
all logits are shifted by the internal energy U . Sub-
stituting the free energy from (5) yields:

H(x; f) = log(p(x)) + U(x; f) + log
( ∫

x e
−F (x;f)), (15)

which shows, due to the shifting caused by internal
energy, the entropy is not reliably aligned with the
probability density p(x). Thus, it is a less suitable
routing mechanism unlike the energy score.

4 Experimental Results

In this section, the performance of E-LANG on
different architectures such as T5 and BERT; and
benchmarks such as GLUE (Wang et al., 2019b),
SuperGLUE (Wang et al., 2019a), and WMT (Bojar
et al., 2016) is evaluated and compared with the
Super models and previous works.

4.1 T5-Based Joint Inference

In Table 1, the T5-based results on GLUE, Super-
GLUE, and WMT benchmarks are reported. For all
the tasks, we use T5-11B (with 87×1011 FLOPs)
and T5-large (with 4.25×1011 FLOPs) as our Super
and Swift models, respectively. The average GPU-
based running time and accuracy of both models
compared with E-LANG are also summarized in
the table. Note that the T5 models used in this ex-
periment have been separately fine-tuned on each
of the downstream tasks given in Table 1. The extra
energy head for each of these tasks was also sepa-
rately trained and used based on the task-specific
number of classes, i.e., C in Equation (7).
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GLUE SuperGLUE WMT

MNLI QNLI SST2 RTE MRPC COLA RTE BoolQ MRC COPA CB WIC WSC EnRo
Sw

ift
(L

ar
ge

) Time (ms) 216 283 57 263 160 56 287 303 201 96 223 185 133 1609
Accuracy (%) 89.7 93.9 95.5 90.3 90.9 62.7 88.5 84.3 80.7 81.0 92.0 72.7 86.5 28.6

Su
pe

r
(1

1B
) Time (ms) 821 980 281 964 433 213 818 3205 1731 268 844 671 2211 3041

Accuracy (%) 91.7 95.9 96.6 92.4 91.7 69.1 93.1 89.4 84.9 93.0 93.1 77.4 89.4 28.9

E
-L

A
N

G

Accuracy (%) 91.7 96.0 96.6 92.4 92.2 69.5 93.2 88.7 84.9 90.0 93.1 78.1 89.4 28.9
FLOPs (×1011) 47.8 25.7 29.5 50.4 11.5 39.9 42.0 50.8 46.9 52.6 13.4 40.3 20.6 63.4
Time (ms) 582 495 132 716 190 147 671 1978 1022 222 302 447 545 2800
Swift Ratio (%) 49 75 70 46 91 58 56 45 50 43 89 57 81 30
Speed-up (FLOPs) 1.8X 3.4X 2.9X 1.7X 7.6X 2.2X 2.1X 1.7X 1.9X 1.7X 6.5X 2.2X 4.2X 1.4X
Speed-up (time) 1.4X 2.0X 2.1X 1.4X 2.3X 1.5X 1.2X 1.6X 1.7X 1.2X 2.8X 1.5X 4.1X 1.1X

Table 1: Joint inference results with T5 architecture on GLUE and SuperGLUE development sets, and WMT’s English-to-
Romanian translation. The FLOPs for Super and Swift are respectively 87×1011 and 4.25×1011.

Figure 2: Joint inference trade-off curves with T5 architecture on GLUE and SuperGLUE development sets. Each point is
obtained with a different energy threshold.

The total FLOPs for our method is measured as
a weighted average of the Super and Swift FLOPs
based on their usage frequency as:

FLOPs =
1

Nsw +Nsu

(
Nsw.(F

E
sw+Fh+F

D
sw)

+Nsu.(F
E
sw + Fh + Fsu)

)
, (16)

where Nsu and Nsw are respectively the number of
samples processed by the Super (with Fsu FLOPs)
and Swift (with FE

sw, FD
sw, and Fh FLOPs for the

encoder, decoder, and energy head). Note that Fh

is equal to ≈0.00001×1011, which has a very in-
significant overhead in our framework.

As presented in Table 1, E-LANG can reach the
Super model’s accuracy on all GLUE tasks with
an average 3.3X in FLOPs and 1.8X in running
time speed-ups. For some tasks such as QNLI,
MRPC, and COLA, we even outperform the Super
model, which leads to a higher average accuracy

of 89.7% than the Super model with 89.5% on
GLUE. For the SuperGLUE benchmark, with an
average FLOPs and running time speed-up of 2.9X
and 2.0X, our method achieves the same accuracy
as the Super model on MRC and CB; and better
accuracy on RTE and WIC. On BoolQ and COPA,
although 99% and 97% of the Super’s accuracy are
respectively obtained, it is with 1.7X and 1.4X less
FLOPs and latency, on average.

In order to analyze the generality of E-LANG to
other NLP problems rather than text classification
(Section 3.2.1), we also apply our method to two
text-to-text tasks including SuperGLUE’s WSC
and WMT’s English-to-Romanian (EnRo) transla-
tion. As given in the table, our method achieves the
Super model’s accuracy on both WSC and EnRo
with 4.2X and 1.4X less FLOPs, respectively.

Figure 2 illustrates the accuracy vs. FLOPs
trade-off curves for some tasks in GLUE and Super-
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GLUE benchmarks. The curves related to all tasks
are given in the supplementary materials. The trade-
off points on the curves are dynamically achieved at
the inference time by selecting different thresholds,
i.e., t in Equations (6) and (9). Larger values for t
will result in routing more input data to the Super
model, which consequently provides more accu-
rate, but slower inference. As the Swift is able to
make accurate predictions for the majority of input
data, the dynamic inference with a small enough
t can reach the Super model’s accuracy but with a
much lower computational cost and latency.

Figure 3 illustrates the distribution of the energy
scores across the input samples in GLUE tasks.
For each task, the distributions of the samples pro-
cessed by the Super and the Swift models are plot-
ted. As shown, the samples routed to the Super
model tend to have lower energy scores that are
indeed considered as out-of-distribution samples
for the Swift. On the other hand, in overall, higher
scores are observed for the Swift distribution, that
is for the samples handled by the Swift only. For
some tasks such as MRPC and QNLI, the Swift
is shown to be highly capable of handling the ma-
jority of the input samples. This is also supported
by the results in Table 1 and Figure 2, where 91%
(for MRPC) and 75% (for QNLI) of the samples
are accurately processed by the Swift. In contrast,
for other datasets including RTE and MNLI with
Swift ratio of less than 50%, most of the samples
are hard for the Swift, which are transferred to the
Super model. Based on our experiments, the most
optimal results for our joint inference framework
is achieved when the crossing point of the two dis-
tributions (highlighted in green in the figures) is
chosen as the threshold t in Equation (9).

4.1.1 Ablation Studies
In Sections 3.3.1 and 3.3.2, the possibility of using
softmax and entropy scores instead of energy score
was theoretically analyzed. To support that analysis
and also experimentally evaluate the performance
of different routing mechanisms, an ablation study
on GLUE is performed, which is presented in Table
2. In this study, we report the joint inference results
based on softmax, entropy, and random scores (i.e.,
randomly distributing the samples between Super
and Swift). Our experiments show that, compared
to the random score, softmax and entropy can result
in satisfactory performance on routing the samples.
However, as also discussed in Sections 3.3.1 and
3.3.2, the energy score is still a better mechanism

with about 14% less FLOPs. Another potential
mechanism is the perplexity (Chen et al., 1998), but
since it provides the same information as entropy,
we did not add any extra experiment on it.

The results with the usage of different Swift mod-
els including T5-small (with 0.33×1011 FLOPs)
and T5-base (with 1.24×1011 FLOPs) are also
given in Table 2. Using these models as Swifts
can lead to good performance on some tasks, but
not all of them. For example, on SST2, the joint
inference with T5-small and T5-base Swifts can
respectively reach the Super’s accuracy with 1.9X
and 2.X less computations. In general, although
these models are smaller and require less FLOPs,
our results in Table 2 indicate that they perform
worse than T5-large in our joint inference structure.
In Figure 2, the trade-off curves for different Swift
models are shown for GLUE and SuperGLUE.

Moreover, to show the effectiveness of the extra
energy head for the Swift encoder, the E-LANG re-
sults based on last linear layer of the Swift decoder
is also given and compared in Table 2. As reported,
the E-LANG empowered by the energy head on
the Swift encoder outperforms the case with the
decoder’s head in both FLOPs (36.8% less) and
accuracy (0.7% better). As explained in Section
3.2.1, this shows the deep connection between the
encoder’s features, discriminative models, and the
proposed routing mechanism via the energy head.

We observed that E-LANG can achieve a high
performance even when applied to individually pre-
trained Super and Swift models. But, more im-
provement can still be obtained by performing KD
from the Super to the Swift model, especially at
the fine-tuning process for downstream tasks. To
study this, we apply the KD technique in (Sanh
et al., 2019) to the Super and Swift models for
some GLUE tasks. As summarized in Table 3,
the Super model’s accuracy for QNLI, SST2, and
COLA is respectively attained by the distillation-
based E-LANG with 29.2%, 48.5%, and 14.3% less
FLOPs than E-LANG (without distillation). The
results show the effectiveness of E-LANG along
with other compression techniques such as distilla-
tion. The trade-off curves for this experiment will
be provided in the supplementary materials.

4.2 BERT-Based Joint Inference

In this section, the proposed energy-based joint
inference method is applied to the BERT archi-
tecture (Devlin et al., 2019) and compared with
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Figure 3: Energy score distribution for GLUE tasks. t shows the optimal threshold.

MNLI QNLI SST2 RTE MRPC COLA Average
Super (11B) 87.0 / 91.7 87.0 / 95.9 87.0 / 96.6 87.0 / 92.4 87.0 / 91.7 87.0 / 69.1 87.0 / 89.5
Random (Encoder) 78.5 / 91.5 61.9 / 95.3 58.7 / 96.3 60.2 / 91.2 47.5 / 91.9 61.6 / 67.2 61.4 / 88.9
Softmax (Encoder) 57.7 / 91.6 36.5 / 95.9 34.6 / 96.5 52.0 / 92.3 13.8 / 92.1 45.7 / 69.3 40.1 / 89.6
Entropy (Encoder) 55.7 / 91.6 27.1 / 96.0 40.2 / 96.5 50.7 / 92.0 23.0 / 92.2 48.1 / 69.3 40.8 / 89.6
Energy (Swiftsmall) 71.3 / 91.0 58.8 / 95.6 47.0 / 96.6 71.2 / 88.5 55.0 / 91.4 75.3 / 68.3 63.1 / 88.5
Energy (Swiftbase) 54.5 / 91.5 50.5 / 95.8 35.9 / 96.6 55.8 / 90.6 44.0 / 91.9 50.6 / 68.4 48.5 / 89.1
Energy (Decoder) 57.9 / 90.6 68.1 / 95.5 75.8 / 96.3 60.5 / 91.5 20.2 / 90.9 45.1 / 69.3 54.6 / 89.0
Energy (Encoder) 47.8 / 91.7 25.7 / 96.0 32.0 / 96.6 50.4 / 92.4 11.5 / 92.2 39.9 / 69.5 34.5 / 89.7

Table 2: Ablation study on different T5-based scenarios. Each cell shows FLOPs/Accuracy.

QNLI SST2 COLA
Super (11B) 87.0 / 95.9 87.0 / 96.6 87.0 / 69.1
Swift (Large) 4.25 / 93.9 4.25 / 95.5 4.25 / 62.7

+ Distillation 4.25 / 95.0 4.25 / 95.7 4.25 / 63.3
Ours 25.7 / 96.0 29.5 / 96.6 39.9 / 69.5

+ Distillation 18.2 / 96.0 15.2 / 96.6 34.2 / 69.5

Table 3: Distillation-based results with T5 in terms of
FLOPs/Accuracy.

BERT-based SOTA in both fixed-size and dynamic
inference. The majority of the previous methods
employ knowledge distillation and data augmenta-
tion techniques for training their student models.
For a fair comparison, we follow the same practice
and use the transformer distillation and augmenta-
tion strategies in TinyBERT (Jiao et al., 2020) to
train and prepare our Swift model (i.e., BERTT iny

with 1.2 × 109 FLOPs). Moreover, similar to the
other works, we use BERTBase (with 21.8 × 109

FLOPs) as our Super (i.e., teacher) model.
In Table 4, the comparison results with the base-

line BERTBase and SOTA on GLUE benchmark
are presented in terms of accuracy, FLOPs, and
latency. Compared to the Super model, E-LANG
delivers better accuracy on SST2 and RTE with
3.5X and 2.0X FLOPs speed-up; and the same ac-
curacy on QNLI, MRPC, and QQP with 2.4X, 2.7X,

and 7.0X FLOPs speed-up, respectively. On MNLI
and COLA, 99.8% and 97.3% of the Super model’s
accuracy are achieved, but with an average FLOPs
speed-up of 2.3X. On average, E-LANG outper-
forms the Super model with 0.1% higher accuracy,
3.2X less FLOPs, and 1.6X less latency.

Compared with SOTA, our method achieves the
best performance on all GLUE tasks, except MRPC
for which SqueezeBERT outperforms all due to
having a more accurate teacher (Iandola et al.,
2020). There are some works such as ELECTRA
(Clark et al., 2020) and MobileBERT (Sun et al.,
2020) that require less FLOPs than our method,
but they only reach 95% of the baseline’s accuracy.
Compared to other methods, GhostBERT (Huang
et al., 2021) and DynaBERT (Hou et al., 2020) give
the closest performance to the baseline and even
the same as ours on some tasks such as QNLI. How-
ever, on average, they still need about 30% more
FLOPs on GLUE compared to E-LANG.

The E-LANG accuracy vs. FLOPs trade-off
curves compared to SOTA on some of GLUE tasks
are shown in Figure 4. The trade-off curves for all
the tasks are reported in the supplementary materi-
als. Among the SOTA methods presented in Table
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MNLI (m/mm) QNLI SST2 RTE MRPC COLA QQP Avg. FLOPs (G) Time (ms)

Pr
ev

io
us

w
or

ks
BERTTiny (Swift) 82.8 / 82.9 87.9 92.6 65.7 85.8 49.7 90.5 78.5 1.2 7
BERTBase (Super) 84.9 / 85.5 92.2 93.5 71.1 87.3 60.3 91.5 83.3 21.8 20
DistillBERT 82.2 / - 89.2 92.7 59.9 87.5 51.3 88.5 78.8 11.3 -
ELECTRA 78.9 / - 87.9 88.3 68.5 84.4 56.8 88.3 79.0 3.7 -
DeeBERT 83.9 / 82.9 90.9 93.4 69.5 - - - - - 17
MobileBERT 84.3 / - 91.5 92.5 70.4 87.0 51.1 - 79.5 5.7 -
SqueezeBERT 82.5 / 82.9 90.9 92.2 71.8 89.8 53.7 89.5 81.7 7.4 -
Len-Adaptive 84.4 / - - 93.1 - - - - - 8.8 -
TinyBERT 84.5 / 84.5 91.8 93.0 69.3 87.2 54.0 91.0 81.9 11.3 10
ELM 84.2 / - 90.8 92.7 72.2 89.0 54.2 91.1 82.0 10.9 -
GhostBERT 84.7 / - 92.2 92.9 72.2 87.3 58.1 91.2 82.7 11.3 -
DynaBERT 84.7 / 85.2 92.2 93.3 73.0 84.8 58.4 91.3 82.9 10.9 16

E
-L

A
N

G

Accuracy (%) 84.7 / 85.4 92.2 93.7 73.3 87.3 58.7 91.5 83.4 - -
FLOPs (G) 9.1 9.2 6.3 10.8 8.2 9.9 3.1 8.1 - -
Time (ms) 14 14 11 16 13 15 9 13 - -
Swift Ratio (%) 64 63 77 56 68 60 91 68 - -
Speed-up (FLOPs) 2.4X 2.4X 3.5X 2.0X 2.7X 2.2X 7.0X 3.2X - -
Speed-up (time) 1.4X 1.4X 1.8X 1.3X 1.5X 1.3X 2.2X 1.6X - -

Table 4: Joint inference results with BERT architecture on GLUE development set compared with SOTA.

Figure 4: Joint inference trade-off curves with BERT on GLUE development set compared with SOTA.

4 and Figure 4, only DeeBERT (Xin et al., ACL
2020), Length-Adaptive (Kim and Cho, 2021), and
DynaBERT (Hou et al., 2020) are in the category
of dynamic inference, where a single model can
operate at different trade-off points between accu-
racy and computational cost. The other approaches
propose fixed-size smaller versions of BERTBase,
which require re-training for every trade-off point.

To investigate the orthogonality of E-LANG
with others, we integrate our energy-based joint
inference strategy with DynaBERT that is SOTA
in BERT-based adaptive inference. In other words,
we analyze whether E-LANG can be added on top
of other efficient methods to benefit both from their
designs and our approach. In this experiment, the
DynaBERT configurations with the highest accu-
racy (i.e., width=0.75 & depth=1.0) and the lowest
FLOPs (i.e., width=0.5 & depth=0.25) are respec-
tively employed as the Super and Swift models in
our framework. The corresponding joint inference
results on MNLI, SST2, and QQP are reported in
Table 5. As observed, we accomplish the Dyn-
aBERT Super’s accuracy for MNLI and SST2 with
1.7X and 3.1X less FLOPs. For QQP, our method
combined with DynaBERT even outperforms Dyn-
aBERT by 0.1% with 2.6X FLOPs speed-up.

MNLI SST2 QQP
DynaBERT (Swift)

(w=0.5, d=0.25)

2.7 / 82.0 2.7 / 91.9 2.7 / 90.4

DynaBERT (Super)

(w=0.75, d=1.0)

16.3 / 84.7 16.3 / 93.3 16.3 / 91.4

Ours+DynaBERT 9.4 / 84.7 5.2 / 93.3 6.2 / 91.5

Table 5: Orthogonality of E-LANG (ours) with DynaBERT
in terms of FLOPs/Accuracy.

5 Conclusion

In this paper, we introduced E-LANG, an energy-
based joint inference approach, which integrates
Super and Swift language models for achieving ef-
ficient inference without sacrificing the accuracy.
Our method can work with both encoder-only (e.g.,
BERT) and encoder-decoder (e.g., T5) architec-
tures, and is also applicable for text classification
and sequence-to-sequence problems. The proposed
joint inference strategy was theoretically and exper-
imentally analyzed with an extensive set of experi-
ments and ablation studies. Our results showed that
E-LANG outperforms SOTA in both fixed-size and
dynamic inference over different benchmarks such
as GLUE and SuperGLUE. One future direction to
this work is to apply E-LANG to multiple Super
and Swift models with different sizes.
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A Supplementary Materials

This section contains the supplementary materials.

A.1 Code and Demo

We shared our code to make it easy to reproduce
our BERT-based results. In addition to the code,
we included a video demo that contains a demon-
stration of T5-based E-LANG. The BERT-based
E-LANG source-code with the detailed running
instructions and the T5-based E-LANG demo are
available here1.

Please note that the demo is based on screen
recording of a web application we built to show the
use-cases of our method in real-world scenarios.
Figure 5 shows a screenshot of the demo applica-
tion.

The T5-based E-LANG code with detailed in-
structions is also shared in a ‘code’ directory in the
supplementary materials file.

A.2 Additional Results and Visualizations

The trade-off curves (for the experiments given in
Table 1) with T5 architecture on GLUE and Super-
GLUE tasks are respectively shown in Figures 6
and 7. The ablation over different Swift models are
also given in the figures.

In Figure 8, the accuracy vs. FLOPs trade-off
curves for distillation-based experiments (reported
in Table 3) are also given. On QNLI, distillation-
based E-LANG (denoted by DE-LANG) with 4.8×

1https://developer.huaweicloud.com/develop/aigallery/notebook/detail?id=64199726-
9aaf-4905-8f6f-4cae290df874

less computations than the Super model outper-
forms E-LANG with 3.4× FLOPs speed-up, al-
though both methods performs 0.1% more accurate
than the Super model. DE-LANG on SST2 can
also achieve the Super model’s accuracy with 5.7×
less computations, while the original E-LANG
achieves the same performance with only 2.9×
speed-up. Moreover, DE-LANG can improve the
Super model’s accuracy by 0.1% with 2.9× speed-
up on SST2. For COLA, DE-LANG achieves a
better FLOPs speed-up of 2.5× than E-LANG with
2.2× speed-up, where both outperform the Super
model’s accuracy by 0.4%.

Figure 9 also illustrates the corresponding curves
for the BERT-based results of Table 4, which are
compared with previous works in fixed-size and
adaptive inference.

Figure 5: A demo application to show-case the adaptive inference with the proposed method.
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Figure 6: Trade-off curves with T5 backbone on GLUE tasks.

5241



Figure 7: Trade-off curves with T5 backbone on SuperGLUE tasks.
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Figure 8: Distillation-based trade-off curves with T5 backbone on some GLUE tasks.
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Figure 9: Trade-off curves compared with BERT-based SOTA on GLUE tasks.
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