
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 3774 - 3784

May 22-27, 2022 c©2022 Association for Computational Linguistics

Token Dropping for Efficient BERT Pretraining

Le Hou1∗ Richard Yuanzhe Pang2§∗ Tianyi Zhou13§ Yuexin Wu1 Xinying Song1

Xiaodan Song1 Denny Zhou1

1 Google 2 New York University 3 University of Maryland, College Park
lehou@google.com, yzpang@nyu.edu

Abstract

Transformer-based models generally allocate
the same amount of computation for each to-
ken in a given sequence. We develop a sim-
ple but effective “token dropping” method to
accelerate the pretraining of transformer mod-
els, such as BERT, without degrading its per-
formance on downstream tasks. In particular,
we drop unimportant tokens starting from an
intermediate layer in the model to make the
model focus on important tokens more effi-
ciently if with limited computational resource.
The dropped tokens are later picked up by the
last layer of the model so that the model still
produces full-length sequences. We leverage
the already built-in masked language model-
ing (MLM) loss to identify unimportant to-
kens with practically no computational over-
head. In our experiments, this simple approach
reduces the pretraining cost of BERT by 25%
while achieving similar overall fine-tuning per-
formance on standard downstream tasks.

1 Introduction

Nowadays, the success of neural networks in a va-
riety of NLP tasks heavily relies on BERT-type lan-
guage models containing millions to billions of pa-
rameters. However, the pretraining process of these
models is computationally expensive, generating
significant carbon dioxide emission (Strubell et al.,
2019; Patterson et al., 2021). In practice, there is
the need to perform large-scale language model pre-
training for diverse applications (Lee et al., 2020;
Chalkidis et al., 2020; Zou et al., 2021; Rogers
et al., 2020) in different languages (Antoun et al.,
2020; Sun et al., 2021). In this paper, we develop a
technique that significantly reduces the pretraining
cost of BERT models (Devlin et al., 2019) without
hurting their test performance on a diverse set of
fine-tuning tasks.

∗ Equal contribution.
§ Work done at Google Brain.

Recent efforts of efficient training involve mixed-
precision training (Shoeybi et al., 2019), distributed
training (You et al., 2020), better modeling on rare
words and phrases (Wu et al., 2021), designing
more effective and data-efficient pretraining ob-
jectives (Lan et al., 2020; Clark et al., 2020; Raf-
fel et al., 2020), progressive stacking (Gong et al.,
2019), and so on. While these approaches con-
tribute to efficient training with reduced compu-
tational cost, most of them focus on the model
architecture or the optimization process.

In this paper, we focus on a simple but efficient
BERT-pretraining strategy that has been under-
explored before, i.e., “token dropping,” which re-
moves the redundant tokens in each sequence that
are less informative to training. Since not all to-
kens contribute equally to the output or the train-
ing objective, and the computational complexity of
transformer-based models grows at least linearly
with respect to the sequence length, shortening the
input sequences can accelerate the training effec-
tively.

Among existing studies, the depth-adaptive trans-
former approach aims to reduce the autoregressive
inference time by allocating less computation on
easy-to-predict tokens (Elbayad et al., 2020). To
improve the training efficiency, Dai et al. (2020)
perform pooling on the embeddings of nearby to-
kens. However, directly dropping tokens during
pretraining was not studied until very recently in
faster depth adaptive transformer (Liu et al., 2021),
where the important tokens are identified either
through (1) mutual information-based estimation
between tokens and predefined labels or through (2)
a separate BERT model that exhaustively computes
the masked language model (MLM) loss for each
token. On the contrary, we focus on accelerating
the task-agnostic pretraining phase without requir-
ing any labels or any computation by a separate
language model. Specifically, we identify impor-
tant tokens as the ones hard to predict by the model

3774

itself through its loss during training, which is adap-
tive to its training process and leads to practically
no computational overhead. We show examples of
dropped tokens in Figure 1.

Recent approaches such as RoBERTa (Liu et al.,
2019) suggest packing input sequences. In this
way, there are no [PAD] tokens, which makes it
a non-trivial task to identify unimportant tokens.
We identify unimportant tokens in each sequence
with the smallest historical MLM loss (we take the
running average of the MLM loss of each token
throughout the pretraining process). By removing
them from intermediate layers of a BERT model
during training, we save an enormous amount of
computation and memory. We keep them in the
first several layers as well as in the last layer so
that they are still present in the model. Therefore,
the inputs and outputs of BERT model are kept
consistent with the conventional all-token training
process. Without modifying the original BERT
architecture or training setting, this simple token-
dropping strategy trains intermediate layers mainly
on a few important tokens. As demonstrated in
our experiments, models pretrained in this way
generalize well on diverse downstream tasks with
full sequences.

To summarize, our contributions are as fol-
lows. (1) We show that BERT models can
be pretrained with only a subset of the layers
focusing on important tokens. Even though
the model is trained on sub-sequences of im-
portant tokens only, it generalizes well to full
sequences during fine-tuning on downstream
tasks. (2) We identify important tokens through
the pretraining process by exploring the training
dynamics, with minimal computational overhead
and without modifying the model architecture.
(3) We show that our token dropping strategy
can save 25% of pretraining time while achiev-
ing similar performance on downstream tasks.
Code is available at https://github.com/
tensorflow/models/tree/master/
official/projects/token_dropping.

2 Prerequisites

2.1 Sequence Packing

Recall that a sequence in BERT consists of two sen-
tences as well as the “classification” token [CLS]
and the “separator” token [SEP]. If the resulting
number of tokens is smaller than 512, then padding
tokens are added to ensure that each sequence is

Does(1.1) the(0.3) experiment(3.2) look(1.3) good(2.10) ?(0.6)

They(1.0) smell(2.1) something(1.8) horribly(5.4) wrong(2.3) .(0.2)

Saturn(2.9) is(0.4) the(0.3) sixth(3.0) planet(2.4) from(1.0) the(0.3)
sun(1.9) and(0.6) the(0.3) second(1.8) -(0.8) largest(1.4) in(0.5)
the(0.3) solar(2.3) system(2.2) ,(0.4) after(1.5) jupiter(3.3) .(0.2)
It(0.7) is(0.4) a(0.5) gas(2.2) giant(4.0) with(0.9) an(0.8)
average(1.2) radius(3.3) of(0.3) about(1.3) nine(3.5) and(0.6)
a(0.5) half(2.0) times(1.6) that(0.8) of(0.3) earth(2.4) .(0.2)

Figure 1: Randomly selected example sentences with
actual importance scores (cumulative losses, to be dis-
cussed in Section 3.3) from our model. For efficient
pretraining, tokens in bold are preserved in every BERT
encoder layer, whereas other tokens are dropped for cer-
tain layers.

exactly 512-token long.
We decide to use sequence packing (Liu et al.,

2019) so that there would be no [PAD] symbols,
throughout the paper. We also remove the next-
sentence prediction training criteria as well. The
rationale for using sequence-packing is two-fold.
First, sequence packing provides a competitive
baseline in terms of pretraining efficiency (So et al.,
2019; Liu et al., 2019; Kosec et al., 2021; Zhang
et al., 2021). Second, using sequence-packing
can stress-test our algorithm under the absence of
padding symbols to see if it brings further improve-
ments beyond dropping padding tokens: without
sequence packing, our algorithm can label [PAD]
as the unimportant tokens, which trivially improves
pretraining efficiency; with sequence packing, how-
ever, our algorithm has to identify and drop real
tokens as unimportant tokens to improve the effi-
ciency.

2.2 Multi-Head Attention

Define T to be the input sequence length and dk, dv
to be the size of each individual key and value vec-
tor respectively. The multi-head attention function
with h attention heads is defined as:

MultiHeadAttention(Q,K, V) =

concat(H1, . . . ,Hh)W
O,

where

Hi = Attention(QWQ
i ,KW

K
i , V W

V
i)

= softmax

(
(QWQ

i)(KWK
i)>√

dk

)
VW V

i .

3775

https://github.com/tensorflow/models/tree/master/official/projects/token_dropping
https://github.com/tensorflow/models/tree/master/official/projects/token_dropping
https://github.com/tensorflow/models/tree/master/official/projects/token_dropping

Use dmodel to denote the hidden size of the model
(usually equal to hdk). We have the following:

Q,K, V ∈ RT×dmodel ,

WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk ,

W V
i ∈ Rdmodel×dv , WO

i ∈ Rhdv×dmodel .

2.3 Feed-Forward Networks

Besides the attention sub-layer, each BERT encoder
layer also contains the feed-forward sub-layer (or
“feed-forward network,” abbreviated as FFN). Each
FFN is a position-wise function: it is applied to
each position of the input, identically.

The input to FFN is a matrix ∈ RT×dmodel . The
input will be transformed by a two-layer perceptron
(with ReLU activation in between) into an output
matrix ∈ RT×do . In Vaswani et al. (2017), do =
dmodel and the hidden size of the intermediate layer
dff = 4 · dmodel due to empirical investigation.

3 Token-Dropping

Suppose the input sequence contains 512 tokens.
Having 512 hidden states (corresponding to 512
tokens) after each encoder layer may not be nec-
essary, given that certain words may never heav-
ily influence the meaning of the sentence.3 More-
over, removing unimportant tokens in intermediate
layers would produce a “dropout” effect, so that
our network would learn to reconstruct the masked
words with more noisy hidden states. Therefore,
we decide to allocate the full amount of computa-
tion only to important tokens. Figure 2 gives an
illustration of where the unimportant tokens are
dropped in a BERT model.

3.1 Stage-1 Pretraining

Each row of query Q, key K, and value V in a
self-attention module in each transformer encoder
layer corresponds to a single token. Suppose Lf =
Lfull is the set of layers whose input covers all the
tokens;4 Lh = Lhalf is the set of layers whose input
only cover a proper subset of tokens.

3Relatedly, Zhang et al. (2019) have shown in computer
vision, using fully-connected networks and convolutional neu-
ral networks, that certain layers called “ambient” layers can
be reset with almost no negative consequence on performance,
while other layers called “critical” layers are necessary.

4In this paper, “input covers all the tokens” means that the
query, key, and value metrics in the layer have T rows, so no
rows are discarded from the matrices.

Attention

Important tokens Unimportant tokens

Important tokens Unimportant tokens

Input sequence

Attention

FFW

Important tokens

Attention

FFW

Attention

Important tokens Unimportant tokens

Pretraining loss

FFW

FFW

✕ (Lfull-1)

✕ (Lhalf-1)

Figure 2: Illustration of the token dropping method.
The first several layers and the last layer process all
tokens (the order of tokens are preserved in our imple-
mentation; the separation of important and unimportant
tokens in the figure is for illustration purposes only).
The middle layers only process important tokens. The
important tokens are identified based on the historical
MLM loss of each token: we maintain the running av-
erage of the MLM loss of each token.

Separation. During stage-1 pretraining, if the
layer l ∈ Lf and the next layer l+1 ∈ Lh, then we
remove the rows in Q corresponding to the unim-
portant tokens for layer l + 1 but keep K and V
intact. After the removal, we have Q ∈ RM×dmodel

where M is the number of important tokens. We
also have K,V ∈ RT×dmodel where T is the input
sequence length.5

Suppose l′ is the first layer above layer l+1 such
that l′ ∈ Lf . Suppose l+ 2 ∈ Lh. Then, for layers
l + 2, . . . , l′ − 1, we have Q,K, V ∈ RM×dmodel ,
which means that their rows correspond to only the
important tokens.

Merging. Given that l′ is the first layer above
layer l + 1 such that l′ ∈ Lf , before layer l′, we

5In practice, using TensorFlow, the separation step in stage-
1 pretraining and the merge step can be done using the func-
tion tf.gather(). The number of important tokens for
different sequences has to be the same in order to use modern
accelerators like TPUs. Using sparse tensors can address the
issue of having a different number of important tokens, but
sparse tensor operations in practice are slow.

3776

0 2 4 6 8 10

to
ke

n
co

un
t

Importance score

Figure 3: The distribution of importance scores (cumu-
lative losses) derived from the pretraining process ac-
cording to Equation 1. If a token has not been masked
before, it has the default cumulative loss of 10.

merge the hidden states corresponding to the unim-
portant tokens (taken from the outputs of layer l)
with the hidden states corresponding to the impor-
tant tokens (taken from the outputs of layer l′ − 1).
We keep the order of hidden states consistent with
the order of the input tokens.

Alternatively: token passing instead of token
dropping. In layers where unimportant tokens
are dropped, the input to the layers effectively cor-
responds to partial and incoherent sentences. We
thus attempt the token passing approach, which can
ensure that the input to such layers corresponds to
complete and coherent sentences. Token passing is
described as follows.

In layers l+1, . . . , l′− 1 ∈ Lh, we can keep the
rows of K and V corresponding to the unimportant
tokens. More specifically, the rows of K that cor-
respond to important tokens come from the hidden
states outputted by the previous encoder layer. The
rows of K that correspond to unimportant tokens
come from the hidden states outputted by layer
l. This procedure results in Q ∈ RM×dmodel and
K,V ∈ RT×dmodel for layers l + 1, . . . , l′ − 1. See
Section 5 for empirical studies.

Determining l and l′. We leave details on de-
termining l and l′ to later sections. Empirically,
l = LE

2 − 1 and l′ = LE − 1 consistently lead to
good performance, where LE is the total number
of encoder layers. For instance, if LE = 12, then
the full layers in Lf (i.e., layers in which the query,
key, and value matrices all have T rows) would be
layers 1 through 5 as well as layer 12.

3.2 (Optional) Stage-2 Pretraining
At test-time or when we fine-tune on downstream
tasks, all the encoder layers are full layers, mean-

ing we do not do any token dropping. Given the
mismatch between the neural network in stage 1
and the neural network used for fine-tuning and
test-time, during stage 2, we simply pretrain using
the full model (i.e., all tokens passing through all
layers). Stage-2 pretraining requires only a smaller
number of steps, compared to stage-1 pretraining.
However, stage-2 pretraining turns out to be unnec-
essary, which we discuss in later sections.

3.3 Identifying Important Tokens
In this subsection, we elaborate on which tokens
to drop (i.e., which corresponding rows to discard
in the query, key, and value matrices) in a given
sequence. First, we never drop special tokens in-
cluding [MASK], [CLS], and [SEP]. In other
words, we always treat these tokens as important
tokens. Recall that we use sequence packing in all
of our experiments, unless noted otherwise. There-
fore, there are no padding tokens [PAD].6

We introduce two approaches for identifying im-
portant tokens in the following sub-sections. In the
ablation studies (Section 4.2), we will introduce
more straightforward approaches as baselines.

3.3.1 Dynamic Approach:
Cumulative-Loss-Based Dropping

Updating the cumulative loss vector. We use a
vector m ∈ R|V| to approximate the “difficulty” of
learning a specific token in the vocabulary V . The
vector m is updated throughout the pretraining.
Recall that BERT pretraining involves the masked
language modeling (MLM) objective, where the
model is asked to predict the tokens of the masked-
out input tokens. Suppose n tokens in a sequence
are masked out, then we would obtain n MLM
negative log-likelihood (NLL) losses. For each
token, we update the corresponding entry in the
cumulative loss vector as follows:

mi ← β ·mi + (1− β) · `i, (1)

where `i is the NLL loss that corresponds to the
token i and β ∈ (0, 1) is a coefficient that is close
to 1. In particular, we never update the cumulative
losses corresponding to the aforementioned special
tokens ([MASK], [CLS], and [SEP]). The losses
for those tokens are set to a large number such as
104.7

6If we do not use sequence packing, we would always drop
the [PAD] tokens.

7If there are padding tokens in the sequence, then we set
the loss to a negative number −104 so that we can ensure that

3777

Deciding which tokens are unimportant. We
need to drop the rows in the query, key, and
value matrices corresponding to the unimportant
tokens. To decide which tokens will be treated
as unimportant ones, given a sequence of 512
tokens, we simply look up the 512 corresponding
cumulative losses using m, and label the tokens
that correspond to the smallest cumulative losses
as unimportant tokens. In other words, suppose
we have a sequence x = (x1, x2, . . . , xT) where
T is the sequence length. Use [T] to denote
{1, 2, . . . , T}. Suppose σ : [T] → [T] is a
function such that xσ(1), xσ(2), . . . , xσ(T) are
the tokens sorted in decreasing order of the
aforementioned cumulative loss. Then, we are
treating xσ(1), . . . , xσ(M) as important tokens
(i.e., the tokens to keep), where M is a positive
integer (e.g., M = int(T/2)). We are treating
xσ(M+1), . . . , xσ(T) as unimportant tokens.

Optionally: adding randomness. We can op-
tionally assign every token with a nonzero prob-
ability to be selected as an important token,
which can potentially make the model general-
ize well on full sequences. For example, let
J = int(0.05T), given xσ(1), xσ(2), . . . , xσ(T) as
described above, we replace the last J important
tokens xσ(M−J+1), . . . , xσ(M) with J tokens ran-
domly chosen from xσ(M−J+1), . . . , xσ(T). Then,
the J randomly chosen tokens will be treated as
important tokens. In later sections, we will empiri-
cally investigate whether the randomness is helpful.

3.3.2 Static Approach: Frequency-Based
Dropping

Before the start of pretraining, we count the num-
ber of occurrences of each token in the vocabulary
V . During pretraining, given a sequence, suppose
there are s special tokens. This approach assigns
the special tokens as well as the M − s tokens that
correspond to the lowest frequency as important
tokens, where M is the target number of important
tokens in a sequence. It treats the rest of the tokens
as unimportant tokens.

4 Experimental Details

4.1 Datasets
Pretraining. For pretraining, we use the same
dataset as BERT: the BooksCorpus dataset (Zhu
et al., 2015) and the English Wikipedia dataset.

the padding token has the smallest loss—given that NLL loss
is always non-negative for all other tokens.

We use the sequence-packed version of the dataset
(Section 2.1) so as to ensure that we have to drop
meaningful tokens instead of the [PAD] tokens.

Downstream tasks. We fine-tune on GLUE
tasks (Wang et al., 2018), whose datasets are on
the larger end. We only use the 6 largest GLUE
datasets: MNLI, where we use MNLI-m to denote
MNLI-matched and MNLI-mm to denote MNLI-
mismatched (Williams et al., 2018), QNLI (Ra-
jpurkar et al., 2016), QQP8, SST (Socher et al.,
2013), and the GLUE diagnostics set AX (Wang
et al., 2018). Additionally, we also experiment on
the question answering datasets: SQuAD v1.1 (Ra-
jpurkar et al., 2016) and SQuAD v2.0 (Rajpurkar
et al., 2018). The evaluation metric for each task
can be found in Table 1.

4.2 Methods Tested
By default, the total training steps of each model
is 1 million, using the settings in Section 4.4. We
experiment with the following models. First, we
have the baseline models.

• baseline (no sequence packing): The original
BERT with the non-sequence-packed input.

• baseline: The original BERT with the
sequence-packed input.

• baseline (75% steps): The original BERT with
the sequence-packed input but only trained
for 75 % of the steps. This baseline is trained
using a similar amount of computation as our
proposed token dropping methods.

Next, we have the following methods that aim
to save pretraining time. For token dropping meth-
ods, we drop 50% of the tokens (unless mentioned
otherwise) in order to compare with the average
pooling method (Dai et al., 2020) which reduces
the sequence length by half.

• token drop: We perform stage-1 pretraining
using the cumulative-loss token-dropping for
1M steps.

• token drop (rand): Similar to the “token drop”
method, except that we randomly drop 50%
non-special tokens in a sequence, instead of
dropping unimportant tokens. Special tokens
like [CLS] and [SEP] are not dropped.

8https://quoradata.quora.com/First-Quora-Dataset-
Release-Question-Pairs

3778

• token drop (half-rand): It is similar to the
“token drop” method except adding extra ran-
domness to the important token selection, as
introduced in Section 3.3. This half-random
method can be viewed as a combination of
“token drop” and “token drop (rand).”

• token drop (layer rearranged): It is similar
to the “token drop” method except moving
the last layer that processes all tokens to the
beginning of the model. In other words, the
layers in Figure 2 are rearranged such that
full-sequence layers are only at the bottom.

• token drop (freq): Similar to the “token
drop” method, except that we identify im-
portant tokens using the frequency-based
token-dropping scheme, as discussed in Sec-
tion 3.3.2.

• token avg: Similar to the “token drop” method,
except that we use average-pooling to com-
press the sequences instead of “token drop.”
Suppose layer l ∈ Lf and the immediate
next layer l′ ∈ Lh, as described in Section 3.
Instead of dropping rows of the query, key,
and value matrices, we apply average pool-
ing with a window size of 2 and a stride
of 2. In other words, suppose q1, . . . , qT
are the rows of the query vector. Then, the
T/2 new query vectors are (q1 + q2)/2, (q3 +
q4)/2, . . . , (qT−1, qT)/2, assuming that T is
an even number. This idea is introduced in
Funnel transformer (Dai et al., 2020).

• token pass: As discussed in Section 3, we
drop certain rows in the query, but we do not
drop any row in the key and value matrices.

We also experiment with adding the optional
stage-2 pretraining phase to the methods described
above. In such cases, we first perform stage-1 pre-
training for 900k steps and then stage-2 pretraining
for 100k steps. To distinguish between the stage-1
only methods, we add + stage-2 at the end of the
method description.

4.3 Model Architectures
The BERT architectures are the same as the ones in
Devlin et al. (2019). We experiment on both BERT-
base and BERT-large. For each BERT architecture,
we train with two different input sequence lengths:
512 and 128. We use the sequence-packed input
data, unless otherwise noted.

4.4 Hyperparameters and Other Details

We use TPUv3 to pretrain the BERT models. The
batch size of each pretraining step is 512. We train
each BERT model for 1 million steps. We use the
AdamW optimizer (Loshchilov and Hutter, 2019).
We adopt a peak learning rate of 1e− 4 and use the
linear decay scheduler for the learning rate.

We conduct extensive hyperparameter tuning
for downstream tasks. For all GLUE tasks, we
test different numbers of training epochs ξ ∈
{2, 3, 4, 5, 6, 8, 10} and peak learning rate values
η ∈ {5e− 6, 1e− 5, 2e− 5, 3e− 5, 4e− 5} using
the baseline pretrained BERT model. ξ ∈ {3, 6}
and η ∈ {1e − 5, 2e − 5} give the best overall
results. Thus, for every pretrained model, we fine-
tune on each individual GLUE task using the com-
binations of the two best ξ and η values (four set-
tings in total) and take the best validation result.
For SQuAD tasks, we test ξ ∈ {1, 2, 3, 4, 5, 6, 8}
and η ∈ {5e− 5, 6e− 5, 8e− 5, 1e− 4, 1.2e− 4}
using the baseline pretrained BERT model and find
out that ξ ∈ {4, 8} and η ∈ {2e− 5, 4e− 5} pro-
duce the best results overall. Thus, we fine-tune
every model with these settings and report the best
validation result.

We apply the linear decay learning rate schedule
that ends with zero for all experiments. For each
method, we pretrain two models with different ran-
dom seeds. Then these two models are fine-tuned
separately on individual downstream tasks. We
then report the averaged result as the final result for
each task.

5 Results

Table 1 shows the ablation study. As mentioned,
each number in the table corresponds to the aver-
age performance of two pretrained models (using
different random seeds) that are then separately
fine-tuned.

5.1 Observations

On whether stage-2 pretraining is useful.
There is a mismatch between the neural network
in stage-1 pretraining and the neural network used
for fine-tuning and test-time. Therefore, we pro-
pose stage-2 pretraining where there is no token
dropping so as to address the train-test mismatch.
Comparing “token drop” with “token drop + stage-
2” in Table 1, we see that the performance of the
model trained without stage-2 pretraining and the
model trained with stage-2 pretraining perform sim-

3779

Methods
BERT-base

AX MNLI-mm MNLI-m QNLI QQP SST GLUE-avg SQuAD SQuAD SQuAD
(corr.) (acc.) (acc.) (acc.) (F1) (acc.) -v1 (F1) -v2 (F1) -avg

baseline (no sequence packing) 76.36 84.61 84.28 91.56 90.94 95.73 87.25 90.11 78.89 84.50
baseline 76.52 84.47 84.44 90.58 90.97 96.18 87.19 89.71 79.00 84.35
baseline (75%) 76.38 84.43 84.36 90.21 90.82 96.00 87.04 89.33 78.14 83.73
proposed token drop 77.77 85.28 85.20 91.25 91.00 95.54 87.67 90.44 81.09 85.77
token drop + stage-2 77.70 84.91 85.04 91.40 91.00 95.98 87.67 90.32 79.90 85.11
token drop (half-rand) 77.08 84.92 84.81 91.36 90.94 96.80 87.65 90.34 80.38 85.36
token drop (half-rand) + stage-2 77.25 85.19 84.89 91.52 90.67 94.94 87.41 90.47 79.81 85.14
token drop (rand) + stage-2 76.88 84.56 84.56 91.27 90.78 95.65 87.28 89.65 78.61 84.13
token drop (freq) + stage-2 76.19 84.35 84.27 91.05 90.80 96.48 87.19 89.38 77.32 83.35
token avg + stage-2 76.92 84.83 84.69 90.94 90.89 97.03 87.55 90.23 79.35 84.79
token pass + stage-2 77.04 84.58 84.86 91.36 90.89 95.67 87.40 89.98 79.85 84.92
token drop (layer rearranged) +

stage-2 76.61 84.52 84.37 90.78 90.76 96.65 87.28 90.05 78.38 84.21

Table 1: Evaluating different pretraining methods by finetuning pretrained models on downstream tasks. We
pretrain BERT-base models on packed sequences of 512 tokens. Each number corresponds to the average of two
different pretraining and finetuning runs (using different random seeds).

ilarly. We hypothesize that the train-test mismatch
can be easily addressed during downstream task
fine-tuning.

On determining which tokens are important.
Figure 1 shows which tokens are labeled as im-
portant using three examples from our “token drop”
model. Additionally, in Section 3.3, we propose to
optionally replace the important tokens that have
the lowest cumulative losses with unimportant to-
kens. Comparing “token drop“ with “token drop
(half-rand)” and “token drop (rand)” in Table 1, we
see that adding randomness does not help. Finally,
we see that the cumulative-loss-based dropping per-
forms better than frequency-based dropping and
random dropping.

On how many tokens to drop. We report results
with different token dropping percentages on train-
ing the BERT-base model in Table 4. We see
that dropping more than 62.5% of the tokens yield
worse results. By default, our experiments drop
50% of the tokens.

On determining which layers to drop. Com-
paring “token drop (half-rand) + stage-2” with “to-
ken drop (layer rearranged) + stage-2,” we can see
that putting one full-sequence layer at the end of
the model yields better results.

On token dropping vs. token passing. Com-
paring “token drop + stage-2” with “token pass +
stage-2,” we see that passing the unimportant to-
kens instead of dropping them does not affect the
performance. Recall that for layers where unim-
portant tokens are dropped, token dropping would

make the input to such layers correspond to in-
coherent sentences, which could impact BERT’s
learning ability. However, we find that doing to-
ken passing makes pretraining slightly less efficient
while providing no improvement on downstream
performance.

On token dropping vs. token averaging. Com-
paring “token drop + stage-2” with “token avg +
stage-2,” we see that average pooling instead of
dropping unimportant tokens yields slightly worse
results. This means that our importance-driven
token selection is more efficient than directly aver-
aging embedding across every nearby token pair.

5.2 Results on Different BERT Models and
Sequence Lengths

We test our method on BERT-base and BERT-large
with a sequence length of 128 and 512. We re-
port the results in Table 2. Overall, our proposed
method performs similarly as the baseline method.
As shown in Table 3, when taking the average
across all GLUE and SQuAD scores and across
all four settings (two BERT models times two se-
quence lengths) and two pretraining runs with dif-
ferent random seeds, our proposed token dropping
method outperforms the baseline method by 0.3%
(85.16% to 85.45%) in addition to the 25% pre-
training time reduction.

6 Related Work

One strategy to improve data efficiency during
language model pretraining is by designing bet-
ter pretraining objectives (Lan et al., 2020; Clark

3780

Methods AX MNLI-mm MNLI-m QNLI QQP SST GLUE-avg SQuAD SQuAD SQuAD-avg
(corr.) (acc.) (acc.) (acc.) (F1) (acc.) v1 (F1) v2 (F1)

BERT-large, sequence length 128
baseline 78.69 85.64 85.82 90.86 91.05 96.42 88.08 81.69 75.31 78.50
proposed token drop 78.61 85.42 85.46 91.39 90.64 97.98 88.25 82.91 75.18 79.05
token drop + stage-2 78.59 85.41 85.55 91.08 90.59 97.03 88.04 82.19 75.48 78.84
token drop (half-rand) 77.90 85.20 85.34 90.17 90.60 96.95 87.70 83.20 75.34 79.28
token drop (half-rand) +

stage-2 78.51 85.49 85.56 91.33 90.67 97.21 88.13 82.91 74.76 78.84

BERT-large, sequence length 512
baseline 81.94 87.56 87.97 93.78 91.36 96.89 89.92 93.30 85.89 89.59
proposed token drop 81.48 87.00 87.23 92.91 91.24 97.75 89.60 92.80 85.92 89.36
token drop + stage-2 81.18 87.34 87.53 93.46 91.46 97.75 89.79 92.88 85.69 89.28
token drop (half-rand) 80.73 87.19 87.22 93.52 91.21 97.69 89.59 92.67 85.19 88.93
token drop (half-rand) +

stage-2 80.86 87.03 87.56 92.75 91.05 97.48 89.45 92.48 85.11 88.80

BERT-base, sequence length 128
baseline 75.89 83.96 83.94 89.36 90.69 96.32 86.69 81.54 72.09 76.82
proposed token drop 75.25 83.64 83.27 90.00 90.66 95.20 86.34 83.33 71.83 77.58
token drop + stage-2 75.03 83.64 83.47 90.39 90.58 96.23 86.55 81.03 73.64 77.33
token drop (half-rand) 74.14 83.23 82.77 88.47 90.40 96.30 85.88 82.64 71.30 76.97
token drop (half-rand) +

stage-2 74.61 83.69 83.20 89.09 90.35 95.33 86.04 82.98 72.42 77.70

Table 2: Downstream task performance of BERT-base and BERT-large models pretrained with different input
sequence lengths. Results using BERT-base and sequence length of 512 tokens are in Table 1. Each number in the
table corresponds to the average of two different pretraining and finetuning runs (using different random seeds).

Methods Average across models
and downstream tasks

baseline 85.16
proposed token drop 85.45
token drop + stage-2 85.33
token drop (half-rand) 85.17
token drop (half-rand) + stage-2 85.19

Table 3: The averaged result of all finetuning experi-
ments. For each method, we pretrain eight BERT mod-
els (BERT-base and BERT-large, with sequence length
128 and 512, with different random seeds), finetune
them on individual GLUE and SQuAD tasks, and aver-
age all finetune results. Our proposed token dropping
approach outperforms the baseline approach slightly in
addition to 25% pretraining time reduction.

Token dropping rates GLUE-avg SQuAD-avg

drop 0% (baseline) 87.19 84.35
drop 25% 87.59 85.23
drop 50% (proposed) 87.67 85.77
drop 62.5% 87.01 84.50
drop 75% 86.56 83.71

Table 4: Results on BERT-base models on packed se-
quences of 512 tokens with different token dropping
rates. We see that dropping more than 62.5% of the to-
kens yield worse results, whereas dropping about 50%
of the tokens yield slightly better results.

et al., 2020; Raffel et al., 2020). Concurrently,
researchers have also been exploring certain hard-
ware properties to improve pretraining efficiency,
e.g., mixed-precision training (Shoeybi et al., 2019)
and huge-batch distributed training (You et al.,
2020). Recently, Wu et al. (2021) propose to
tackle the efficient pretraining problem through
rare words or phrases, and they provide rare words
with a “note embedding” to make models better
aware of the contextual information in a sequence.

The faster depth-adaptive transformer approach
is applied to text classification tasks (Liu et al.,
2021). It identifies important tokens by either com-
puting the mutual information between each token
and the given sequence label, or using a separate
BERT model to exhaustively evaluate the masked
language model loss for each token. There is a rich
body of literature on faster inference of sequence
generation problems, such as early layer exits dur-
ing translation (Elbayad et al., 2020; Han et al.,
2021), non-autoregressive machine translation (Gu
et al., 2018; Tu et al., 2020b), and amortizing the
cost of complex decoding objectives (Chen et al.,
2018; Tu et al., 2020a; Pang et al., 2021a).

Several ideas are particularly relevant to token-
wise layer dropping: Zhang and He (2020) propose
to use a fixed probability to drop an entire layer dur-
ing pretraining; here, we use the more fine-grained

3781

token-wise layer dropping. The dynamic halting
algorithm (Dehghani et al., 2019), motivated by
the finding that transformers fail to generalize to
many simple tasks, stops the processing of a token
through upper layers if its representation is good
enough. However, the implementation does not
improve training time, as its goal is to improve
performance.

7 Conclusion

We present a simple yet effective approach to save
BERT pretraining time. Our approach identifies
unimportant tokens with practically no computa-
tional overhead and cuts unnecessary computation
on these unimportant tokens for training. Experi-
ments show that BERT models pretrained in this
manner save 25% pretraining time, while generaliz-
ing similarly well on downstream tasks. We show
that our token dropping approach performs better
than average pooling along the sequence dimension.
Future work will involve extending token dropping
to pretraining transformer models that can process
a much longer context, as well as extending this
algorithm to a wider range of transformer-based
tasks, including translation and text generation.

Acknowledgments

The authors thank the anonymous reviewers for
helpful feedback.

References
Wissam Antoun, Fady Baly, and Hazem Hajj. 2020.

AraBERT: Transformer-based model for Arabic lan-
guage understanding. In Proceedings of the 4th
Workshop on Open-Source Arabic Corpora and Pro-
cessing Tools, with a Shared Task on Offensive Lan-
guage Detection, pages 9–15, Marseille, France. Eu-
ropean Language Resource Association.

Dzmitry Bahdanau. 2022. The FLOPs calculus of lan-
guage model training.

Iz Beltagy, Matthew E Peters, and Arman Cohan.
2020. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Ilias Chalkidis, Manos Fergadiotis, Prodromos Malaka-
siotis, Nikolaos Aletras, and Ion Androutsopoulos.

2020. LEGAL-BERT: The muppets straight out of
law school. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 2898–
2904, Online. Association for Computational Lin-
guistics.

Yun Chen, Victor O.K. Li, Kyunghyun Cho, and
Samuel Bowman. 2018. A stable and effective learn-
ing strategy for trainable greedy decoding. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 380–
390, Brussels, Belgium. Association for Computa-
tional Linguistics.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: Pre-
training text encoders as discriminators rather than
generators. In International Conference on Learn-
ing Representations.

Zihang Dai, Guokun Lai, Yiming Yang, and Quoc V Le.
2020. Funnel-transformer: Filtering out sequential
redundancy for efficient language processing. In Ad-
vances in Neural Information Processing Systems.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals,
Jakob Uszkoreit, and Lukasz Kaiser. 2019. Univer-
sal transformers. In International Conference on
Learning Representations.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Maha Elbayad, Jiatao Gu, Edouard Grave, and Michael
Auli. 2020. Depth-adaptive transformer. In Interna-
tional Conference on Learning Representations.

Linyuan Gong, Di He, Zhuohan Li, Tao Qin, Liwei
Wang, and Tieyan Liu. 2019. Efficient training of
BERT by progressively stacking. In Proceedings
of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine
Learning Research, pages 2337–2346. PMLR.

Jiatao Gu, James Bradbury, Caiming Xiong, Vic-
tor O.K. Li, and Richard Socher. 2018. Non-
autoregressive neural machine translation. In Inter-
national Conference on Learning Representations.

Yizeng Han, Gao Huang, Shiji Song, Le Yang,
Honghui Wang, and Yulin Wang. 2021. Dynamic
neural networks: A survey. IEEE Transactions on
Pattern Analysis and Machine Intelligence.

Matej Kosec, Sheng Fu, and Mario Michael Krell.
2021. Packing: Towards 2x nlp bert acceleration.
arXiv preprint arXiv:2107.02027.

3782

https://aclanthology.org/2020.osact-1.2
https://aclanthology.org/2020.osact-1.2
https://doi.org/10.18653/v1/2020.findings-emnlp.261
https://doi.org/10.18653/v1/2020.findings-emnlp.261
https://doi.org/10.18653/v1/D18-1035
https://doi.org/10.18653/v1/D18-1035
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=HyzdRiR9Y7
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=SJg7KhVKPH
http://proceedings.mlr.press/v97/gong19a.html
http://proceedings.mlr.press/v97/gong19a.html
https://openreview.net/forum?id=B1l8BtlCb
https://openreview.net/forum?id=B1l8BtlCb

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A lite BERT for self-supervised
learning of language representations. In Interna-
tional Conference on Learning Representations.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim,
Donghyeon Kim, Sunkyu Kim, Chan Ho So,
and Jaewoo Kang. 2020. BioBERT: a pre-
trained biomedical language representation model
for biomedical text mining. Bioinformatics,
36(4):1234–1240.

Yijin Liu, Fandong Meng, Jie Zhou, Yufeng Chen, and
Jinan Xu. 2021. Faster depth-adaptive transformers.
Proceedings of the AAAI Conference on Artificial In-
telligence, 35(15):13424–13432.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Con-
ference on Learning Representations.

Richard Yuanzhe Pang, He He, and Kyunghyun Cho.
2021a. Amortized noisy channel neural machine
translation. arXiv preprint arXiv:2112.08670.

Richard Yuanzhe Pang, Alicia Parrish, Nitish Joshi,
Nikita Nangia, Jason Phang, Angelica Chen,
Vishakh Padmakumar, Johnny Ma, Jana Thompson,
He He, and Samuel R. Bowman. 2021b. QuAL-
ITY: Question answering with long input texts, yes!
arXiv preprint arXiv:2112.08608.

David Patterson, Joseph Gonzalez, Quoc Le, Chen
Liang, Lluis-Miquel Munguia, Daniel Rothchild,
David So, Maud Texier, and Jeff Dean. 2021. Car-
bon emissions and large neural network training.
arXiv preprint arXiv:2104.10350.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring
the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Re-
search, 21(140):1–67.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for SQuAD. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 784–
789, Melbourne, Australia. Association for Compu-
tational Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky.
2020. A primer in BERTology: What we know
about how BERT works. Transactions of the Associ-
ation for Computational Linguistics, 8:842–866.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2019. Megatron-lm: Training multi-billion pa-
rameter language models using model parallelism.
arXiv preprint arXiv:1909.08053.

David So, Quoc Le, and Chen Liang. 2019. The
evolved transformer. In Proceedings of the 36th In-
ternational Conference on Machine Learning, vol-
ume 97 of Proceedings of Machine Learning Re-
search, pages 5877–5886. PMLR.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1631–1642, Seattle, Washington, USA. Asso-
ciation for Computational Linguistics.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in NLP. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 3645–3650, Florence, Italy.
Association for Computational Linguistics.

Yu Sun, Shuohuan Wang, Shikun Feng, Siyu Ding,
Chao Pang, Junyuan Shang, Jiaxiang Liu, Xuyi
Chen, Yanbin Zhao, Yuxiang Lu, et al. 2021.
ERNIE 3.0: Large-scale knowledge enhanced pre-
training for language understanding and generation.
arXiv preprint arXiv:2107.02137.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang
Shen, Dara Bahri, Philip Pham, Jinfeng Rao, Liu
Yang, Sebastian Ruder, and Donald Metzler. 2021.
Long range arena : A benchmark for efficient trans-
formers. In International Conference on Learning
Representations.

Lifu Tu, Richard Yuanzhe Pang, and Kevin Gimpel.
2020a. Improving joint training of inference net-
works and structured prediction energy networks. In
Proceedings of the Fourth Workshop on Structured
Prediction for NLP, pages 62–73, Online. Associa-
tion for Computational Linguistics.

Lifu Tu, Richard Yuanzhe Pang, Sam Wiseman, and
Kevin Gimpel. 2020b. ENGINE: Energy-based in-
ference networks for non-autoregressive machine
translation. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2819–2826, Online. Association for Computa-
tional Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all

3783

https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://ojs.aaai.org/index.php/AAAI/article/view/17584
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.1162/tacl_a_00349
https://doi.org/10.1162/tacl_a_00349
https://proceedings.mlr.press/v97/so19a.html
https://proceedings.mlr.press/v97/so19a.html
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
https://openreview.net/forum?id=qVyeW-grC2k
https://openreview.net/forum?id=qVyeW-grC2k
https://doi.org/10.18653/v1/2020.spnlp-1.8
https://doi.org/10.18653/v1/2020.spnlp-1.8
https://doi.org/10.18653/v1/2020.acl-main.251
https://doi.org/10.18653/v1/2020.acl-main.251
https://doi.org/10.18653/v1/2020.acl-main.251

you need. Advances in neural information process-
ing systems, 30.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353–355, Brussels, Belgium.
Association for Computational Linguistics.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Qiyu Wu, Chen Xing, Yatao Li, Guolin Ke, Di He, and
Tie-Yan Liu. 2021. Taking notes on the fly helps
language pre-training. In International Conference
on Learning Representations.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu,
Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan Song,
James Demmel, Kurt Keutzer, and Cho-Jui Hsieh.
2020. Large batch optimization for deep learning:
Training bert in 76 minutes. In International Con-
ference on Learning Representations.

Chiyuan Zhang, Samy Bengio, and Yoram Singer.
2019. Are all layers created equal? arXiv preprint
arXiv:1902.01996.

Minjia Zhang and Yuxiong He. 2020. Accelerating
training of transformer-based language models with
progressive layer dropping. In Advances in Neural
Information Processing Systems, volume 33, pages
14011–14023. Curran Associates, Inc.

Wei Zhang, Wei Wei, Wen Wang, Lingling Jin, and
Zheng Cao. 2021. Reducing BERT computation
by padding removal and curriculum learning. In
2021 IEEE International Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS),
pages 90–92. IEEE.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In Proceedings of the IEEE inter-
national conference on computer vision, pages 19–
27.

Lixin Zou, Shengqiang Zhang, Hengyi Cai, Dehong
Ma, Suqi Cheng, Shuaiqiang Wang, Daiting Shi,
Zhicong Cheng, and Dawei Yin. 2021. Pre-trained
language model based ranking in Baidu search. In
Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery & Data Mining, KDD ’21,
page 4014–4022, New York, NY, USA. Association
for Computing Machinery.

A Appendix

A.1 Discussion on compute
On a high level, the FLOPs for language model
pretraining come largely from the MLP layers
(Shoeybi et al., 2019).

Given that the attention compute grows quadrati-
cally with respect to sequence length, our approach
saves > 50% compute in the attention module in
half of the encoder layers. But we ignore atten-
tion from our discussion, given that the FLOPs for
BERT come largely from the MLP layers. In fact,
the attention operations typically use smaller than
10% of the total compute, and other operations
like layer norm and activations are more negligible
(Brown et al., 2020; Shoeybi et al., 2019).

The total MLP compute is proportional to TL
where T is the number of tokens in each sequence,
and L is the number of total layers (Brown et al.,
2020; Bahdanau, 2022). In our case, given that
we are dropping 50% of the tokens in 50% of the
layers, we would save around 25% of the FLOPs.

A.2 Potential Limitations and Other
Considerations

Given that the community is paying more atten-
tion to long-document tasks (Beltagy et al., 2020;
Tay et al., 2021; Pang et al., 2021b), it is worth
investigating whether token dropping can be used
to pretrain transformers with a much larger context
length, like Longformer encoder decoder (LED)
(Beltagy et al., 2020) which accepts a context
length of 16,384.

One limitation is that our pretraining corpus and
the downstream task datasets are in English. There
is no guarantee that the same token dropping ratio
applies to corpora or tasks in all other languages.

3784

https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://openreview.net/forum?id=lU5Rs_wCweN
https://openreview.net/forum?id=lU5Rs_wCweN
https://openreview.net/forum?id=Syx4wnEtvH
https://openreview.net/forum?id=Syx4wnEtvH
https://proceedings.neurips.cc/paper/2020/file/a1140a3d0df1c81e24ae954d935e8926-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/a1140a3d0df1c81e24ae954d935e8926-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/a1140a3d0df1c81e24ae954d935e8926-Paper.pdf
https://doi.org/10.1145/3447548.3467147
https://doi.org/10.1145/3447548.3467147

