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Abstract

We study the task of toxic spans detection,
which concerns the detection of the spans that
make a text toxic, when detecting such spans
is possible. We introduce a dataset for this
task, TOXICSPANS, which we release publicly.
By experimenting with several methods, we
show that sequence labeling models perform
best. Moreover, methods that add generic ratio-
nale extraction mechanisms on top of classifiers
trained to predict if a post is toxic or not are
also surprisingly promising. Finally, we use
TOXICSPANS and systems trained on it, to pro-
vide further analysis of state-of-the-art toxic to
non-toxic transfer systems, as well as of human
performance on that latter task. Our work high-
lights challenges in finer toxicity detection and
mitigation.

1 Introduction

In social media and online fora, toxic content can
be defined as rude, disrespectful, or unreasonable
posts that would make users want to leave the con-
versation (Borkan et al., 2019). Although several
toxicity detection datasets (Wulczyn et al., 2017;
Borkan et al., 2019) and models (Schmidt and Wie-
gand, 2017; Pavlopoulos et al., 2017c; Zampieri
et al., 2019) exist, most of them classify whole
posts, without identifying the specific spans that
make a text toxic. But highlighting such toxic
spans can assist human moderators (e.g., news
portal moderators) who often deal with lengthy
comments, and who prefer attribution instead of
a system-generated unexplained toxicity score per
post. Locating toxic spans within a text is thus
a major step towards successful semi-automated
moderation and healthier online discussions.

To promote research on this new task, we release
the first dataset of English posts with annotations of

toxic spans, called TOXICSPANS.1 We discuss how
it was created and propose an evaluation framework
for toxic spans detection. We consider methods
that (i) perform sequence labeling (tag words) or
(ii) rely on an attentional binary classifier to predict
if a post is toxic or not, then invoke its attention
at inference time to obtain toxic spans as in ratio-
nale extraction. The latter approach allows leverag-
ing larger existing training datasets, which provide
gold labels indicating which posts are toxic or not,
without providing gold toxic span annotations. Al-
though sequence labeling performed overall better,
the binary attentional classifier performed surpris-
ingly well too, despite having been trained on data
without span annotations.

We then study some characteristics of supervised
and self-supervised toxic-to-civil transfer models
(Laugier et al., 2021) by comparing them on sev-
eral datasets, including a recently released parallel
toxic-to-civil dataset (Dementieva et al., 2021) and
the new TOXICSPANS dataset. Using the latter,
we introduce a measure to evaluate the elimina-
tion of explicit toxicity, and we use this measure
to compare the behavior and performance of toxic-
to-civil models. Lastly, by applying toxic span
detection systems, we assess the performance of
human crowdworkers on the toxic-to-civil task.

2 Related work

Toxicity detection systems (Schmidt and Wiegand,
2017; Pavlopoulos et al., 2017c; Zampieri et al.,
2019) are typically trained on datasets annotated
at the post level (a text is annotated as toxic or
not) (Wulczyn et al., 2017; Borkan et al., 2019).
Our work differs from general toxicity detection

1Our code and dataset are publicly available at https:
//github.com/ipavlopoulos/toxic_spans with
a CC0 licence. Part of the dataset was also used in the
SemEval-2021 Task 5 (Pavlopoulos et al., 2021).
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Gold Spans (set of character offsets) Post
{55, 56, 57, 58, 59, 60} What if his opinion is that most other commenters are idiots? :-)
{80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
176, 177, 178, 179, 180}

Survival of the fittest would not have produced you. You are alive because your
weak blood is supported by welfare and food stamps. Please don’t reference
Darwin in your icon. Loser.

{ } So tired of all these Portlanders moving to California and ruining the culture.
When will it stop?!?

Table 1: Examples of toxic posts and their ground truth toxic spans (also shown in bold red). In the left column,
toxic spans are shown as sets of character offsets. No toxic spans are included in the ground truth of the last post.

in that we detect toxic spans, instead of assigning
toxicity labels to entire texts. Toxic spans detection
can be seen as a case of attribution or rationale
extraction (Li et al., 2016; Ribeiro et al., 2016;
Lei et al., 2016; Zhang et al., 2021; Jain et al.,
2020; DeYoung et al., 2020), but specifically for
toxic posts, a task that has never been considered
in general toxicity detection before.

Detecting spans, instead of entire posts, was
recently also considered in propaganda (Martino
et al., 2020) and hate speech detection (Mathew
et al., 2021). Although the ground truth type is
similar (spans), propaganda detection is a different
task from ours. Hate speech is a particular type of
toxicity (Borkan et al., 2019), which can be tackled
by more general toxicity detectors (Van Aken et al.,
2018), but not the other way round; i.e., we address
a broader problem. This probably explains why
a pattern-matching baseline, based on the data of
Mathew et al. (2021), achieved only slightly better
results than a random baseline on our dataset.

Suggesting civil rephrases of posts found to be
toxic (Nogueira dos Santos et al., 2018; Laugier
et al., 2021) is the next step towards healthier on-
line discussions, and can be viewed as style transfer
(Shen et al., 2017; Fu et al., 2018; Lample et al.,
2019). We show how toxic spans detection can con-
tribute in the assessment of toxic-to-civil transfer,
linking the two tasks together for the first time.

3 The new TOXICSPANS dataset

We used posts (comments) from the publicly avail-
able Civil Comments dataset (Borkan et al., 2019),
which already provides whole-post toxicity anno-
tations. We followed the toxicity definition that
was used in Civil Comments, i.e., we use ‘toxic’
as an umbrella term that covers abusive language
phenomena, such as insults, hate speech, identity
attack, or profanity. This definition of toxicity has
been used extensively in previous work (Hosseini
et al., 2017; Van Aken et al., 2018; Karan and Šna-
jder, 2019; Han and Tsvetkov, 2020; Pavlopou-
los et al., 2020). We asked crowd annotators to

highlight the spans that constitute “anything that
is rude, disrespectful, or unreasonable that would
make someone want to leave a conversation”. Be-
sides toxicity our annotators were also asked to
select a subtype for each highlighted span, choos-
ing between insult, threat, identity-based attack,
profane/obscene, or other toxicity. Asking the an-
notators to also select a category was intended as a
priming exercise to increase their engagement, but
it may have also helped them align their notions
of toxicity further, increasing inter-annotator agree-
ment. For the purposes of our experiments, we
collapsed all the subtypes into a single toxic class,
and we did not study them further; but the subtypes
are included in the new dataset we release.

Annotation From the original Civil Comments
dataset (1.2M posts), we retained only posts that
had been found toxic by at least half of the crowd-
raters. This left approx. 30k toxic posts. We
selected a random 11k subset of the 30k posts
for toxic spans annotation. We used the crowd-
annotation platform of Appen.2 We employed three
crowd-raters per post, all of whom were warned
for explicit content. Raters were selected from the
smallest group of the most experienced and accu-
rate contributors. The raters were asked to mark
the toxic word sequences (spans) of each post by
highlighting each toxic span on their screen. For
each post, the dataset includes the spans of all three
raters. If the raters believed a post was not actually
toxic, or that the entire post would have to be an-
notated, they were instructed to select appropriate
tick-boxes in the interface, without highlighting
any span. The tick-boxes were separate and the
dataset shows when (if) any of the two were ticked.
Hence, when no toxic spans are provided (for a par-
ticular post by a particular rater), it is clear if the
rater thought that the post was not actually toxic,
or that the entire post would have to be annotated.

It is not possible to annotate toxic spans for every
toxic post. For example, in some posts the core

2https://appen.com/
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message being conveyed may be inherently toxic
(e.g., a sarcastic post indirectly claiming that people
of a particular origin are inferior) and, hence, it may
be difficult to attribute the toxicity of those posts
to particular spans. In such cases, the posts may
end up having no toxic span annotations, according
to the guidelines given to the annotators; see the
last post of Table 1 for an example. In other cases,
however, it is easier to identify particular spans
(possibly multiple per post) that make a post toxic,
and these toxic spans often cover only a small part
of the post (see Table 1 for examples).

Agreement We measured inter-annotator agree-
ment on 87 randomly selected posts of our dataset,
using 5 crowd-annotators per post in this case. We
calculated the mean pairwise (for a pair of annota-
tors) Cohen’s kappa per post, using character off-
sets as instances being classified as toxic (included
in a toxic span) or non-toxic; we then averaged
over the posts. Although our dataset contains only
posts found toxic by at least half of the original
crowd-raters, only 31 of the 87 posts were found
toxic by all five of our annotators, and 51 were
found toxic by the majority of our annotators; this
is an indicator of the well-known subjectivity of
toxicity detection. On the 31, 51, and 87 posts,
the average kappa score was 65%, 55%, 48%, re-
spectively, indicating that when the raters agree (at
least by majority) about the toxicity of the post,
there is also reasonable agreement regarding the
toxic spans. Note that the toxic spans are typically
short. This leads to class imbalance (most offsets
are marked as non-toxic), increases agreement by
chance (on the non-toxic offsets), and leads to low
kappa scores (kappa adjusts for chance agreement).
Another reason behind this modest (compared to
other tasks) inter-annotator agreement is the inher-
ent subjectivity of deciding if a post is toxic or
not. Our kappa score is in fact slightly higher than
in previous work on toxicity detection, classifying
posts as toxic or not (Sap et al., 2020; Pavlopoulos
et al., 2017a), and in that sense our inter-annotator
agreement can be seen as an improvement.

Ground truth To obtain the ground truth of our
dataset, we averaged the labels per character of the
annotators per post. We used the following process:
for each post t, first we mapped each annotated
span of each rater to its character offsets. We then
assigned a toxicity score to each character offset of
t, computed as the fraction of raters who annotated

that character offset as toxic (included it in their
toxic spans). We retained only character offsets
with toxicity scores higher than 50%; i.e., at least
two raters must have included each character offset
in their spans. Table 1 shows examples.

The dataset TOXICSPANS contains the 11,035
posts we annotated for toxic spans. The unique
posts are actually 11,006, since a few were dupli-
cates and were removed in subsequent experiments.
A few other posts were used as quiz questions to
check the reliability of candidate annotators and
were also discarded in subsequent experiments.

Exploratory analysis Although we instructed
the crowd-raters to click the appropriate tick-box
and not highlight any span when the whole post
would have to be highlighted, the ground truth of 34
out of the 11k posts covers the entire post. However,
14 out of the 34 posts are single-word texts, while
the other posts are very short (Appendix A shows
more details); it seems that in very short posts the
raters sometimes did not realize they ended up high-
lighting the entire post. Furthermore, about 5k of
the 11k posts have an empty ground truth set of
toxic character offsets (as in the last post of Ta-
ble 1), even though all the posts of our dataset had
been found toxic by the original raters. This is
partly due to the fact that we include in the ground
truth only character offsets that were included in
the toxic spans of the majority of our annotators. It
also confirms it is not always possible to attribute
(at least not by consensus) the toxicity of a post
to particular toxic spans. In almost all posts, the
ground truth covers less than half of the post; and
in the vast majority, less than 20% of the post. A
dense toxic span of a post is a maximal sequence of
contiguous toxic characters. There exist posts with
more than one dense toxic span, but most posts in-
clude only one. Table 2 provides further statistics.

4 Evaluation framework for toxic spans

For the newly introduced toxic spans detection task,
we evaluate systems in terms of F1 score, as in the
work of Da San Martino et al. (2019). Given a test
post t, let system Ai return a set St

Ai
of character

offsets, for parts of the post found to be toxic. Let
St
G be the character offsets of the ground truth an-

notations of t. We compute the F1 score of system
Ai with respect to the ground truth G for post t:

F t
1(Ai, G) =

2 · P t(Ai, G) ·Rt(Ai, G)

P t(Ai, G) +Rt(Ai, G)
(1)
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Mean Min Max
Post length 208.14 4 1,000

Dense toxic span length 7.01 3 87
# Dense toxic spans 0.58 0 8

Table 2: TOXICSPANS statistics. Lengths in characters.

P t(Ai, G) =
|St

Ai
∩ St

G|
|St

Ai
| , Rt(Ai, G) =

|St
Ai

∩ St
G|

|St
G|

(2)

If St
G is empty for some post t (no gold spans

are given for t), we set F t
1(Ai, G) = 1 if St

Ai
is

also empty, and F t
1(Ai, G) = 0 otherwise. We

average F t
1(Ai, G) over all test posts t to obtain a

single score for system Ai. We use F1 as the main
evaluation measure in experiments reported below.

5 Methods for toxic spans detection

5.1 Simplistic baselines

TRAIN-MATCH, is a simple lookup-based model
that classifies as toxic any tokens encountered in-
side toxic spans of the training data. HATE-MATCH

operates similarly, but the lookup is within the hate-
ful/offensive spans of the data of Mathew et al.
(2021). A naive baseline, RAND-SEQ, randomly
classifies tokens as toxic or not.

5.2 Supervised sequence labelling

Toxic spans detection can be seen as sequence la-
beling (tagging words). As a baseline of this kind,
we employ SPACY’S Convolutional Neural Net-
work, which is pre-trained for tagging, parsing,
entity recognition (Honnibal and Montani, 2017).
We call this model CNN-SEQ and fine-tune it on
dense toxic spans, treated as ‘entities’. We also
train a bidirectional LSTM (BILSTM-SEQ),3 and
fine-tune BERT (Devlin et al., 2019) and SPAN-
BERT (Joshi et al., 2020) for toxic spans (BERT-
SEQ, SPAN-BERT-SEQ).4 These methods require
training data manually annotated with toxic spans.

5.3 Weakly supervised learning

We trained binary classifiers to predict the toxicity
label of each post, and we employed attention as
a rationale extraction mechanism at inference to
obtain toxic spans, an approach Pavlopoulos et al.
(2017b) found to work reasonably well in toxicity
detection.5 We experimented with two classifiers:

3We used the probabilistic ground truth for training and
mean square error as the loss function of BILSTM-SEQ, which
yielded best results in preliminary experiments.

4More details can be found in the Appendix A.3.
5Similar attention-based rationale-extraction methods have

been used, e.g., by DeYoung et al. (2020) and Jain et al. (2020),

F1 (%) P (%) R (%)
BILSTM-SEQ 58.9 59.8 58.9
CNN-SEQ 59.3 60.7 59.0
BERT-SEQ 59.7 60.7 60.0
SPAN-BERT-SEQ 63.0 63.8 62.8
BILSTM+ARE 57.7 58.4 57.3
BERT+ARE 49.1 49.4 49.5
RAND 7.3 5.3 25.4
TRAIN-MATCH 41.0 39.1 48.7
HATE-MATCH 10.6 7.1 43.7

Table 3: F1, Precision (P ), Recall (R) of sequence label-
ing (1st zone), attentional (2nd), and look-up methods
(3rd) in toxic spans detection. Average scores of a 5-fold
Monte Carlo cross-validation shown. The standard error
of mean is always lower than a percentage point. The
ROC AUC scores of BILSTM and BERT (the attention-
based rationale extraction methods) in toxic/non-toxic
text classification are 90.9% and 96.1%, respectively.

a BILSTM with deep self-attention as in the work
of Pavlopoulos et al. (2017b), but training with a
regression objective and probabilistic labels follow-
ing D’Sa et al. (2020) and Wulczyn et al. (2017);
and BERT with a dense layer and sigmoid on the
[CLS] embedding. To detect toxic spans, we used
the attention scores of the BILSTM and the attention
scores from the heads of BERT’s last layer averaged
over the heads, respectively. In both cases, we
obtain a sequence of binary decisions (toxic, non-
toxic) for the tokens of the post (inherited by their
character offsets) by using a probability threshold
(tuned on development data) applied to the atten-
tion scores. We refer to these two attention-based
rationale extraction methods as BILSTM+ARE and
BERT+ARE, respectively. These methods require
training posts annotated only with toxicity labels
per post (no toxic span annotations).

6 Experimental results for toxic spans

We used a 5-fold Monte Carlo cross-validation (5
random training/development/test splits) on the 11k
posts of TOXICSPANS. In each fold, we use 10% of
the data for testing, 10% for development, and 80%
for training. In ARE-based methods, which rely on
an underlying classifier to predict if a post is toxic
or not, the classifier is trained on the training part of
the fold (which contains only toxic posts, ignoring
the toxic span annotations) and a randomly selected

but not in toxicity detection. See also Wiegreffe and Pinter
(2019), Kobayashi et al. (2020), Ferrando and Costa-jussà
(2021) for a broader discussion of attention as an explainability
mechanism.
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You can stick your d**k up anyone’s butt. Why have any laws at all?
Not sure if "people are dumb" is the best descriptor, but you are correct that we tend to seek out and grasp at anything that
supports our beliefs and hopes. Hence the proliferation of "fake news", which feeds those wants.
They can shuffle the cabinet seven ways from Sunday and it’s still a cabal of losers.

Table 4: Examples of posts with toxic posts (ground truth in red) which SPAN-BERT-SEQ predicted (in bold)
incorrectly. The ground truth is empty (no toxic spans) in the two last posts.

equal number of non-toxic posts from Civil Com-
ments that are not included in our dataset. When
measuring the (binary) classification performance
of the underlying classifier, the classifier is evalu-
ated on a new equally balanced test set of 3k ran-
domly sampled unseen posts from Civil Comments.

Both look-up methods (TRAIN-MATCH, HATE-
MATCH) outperform the random baseline (Table 3).
However, TRAIN-MATCH performs much better,
which agrees with our hypothesis that toxicity de-
tection is a broader problem than hate speech de-
tection. Both look-up methods are outperformed
by the sequence labeling models (-SEQ), espe-
cially SPAN-BERT-SEQ, which is pre-trained to
predict spans. These results show that the to-
kens of toxic spans are context-dependent and their
meaning is not captured well by context-unaware
look-up lexicons. An error analysis of the best-
performing SPAN-BERT-SEQ showed that mistakes
include both false negatives (e.g., incorrectly re-
turning an empty span, 1st row of Table 4) and
false positives (2nd and 3rd row). BERT+ARE per-
forms worse than BILSTM+ARE, despite the fact
that the underlying BERT classifier is much better
(ROC AUC 96.1%) at separating toxic from non-
toxic posts than the underlying BILSTM (90.9%).
Interestingly, the BILSTM binary toxicity classi-
fier with the attention-based toxic span detection
mechanism (Pavlopoulos et al., 2017b) is close in
performance with BILSTM-SEQ, despite the fact
that the latter is directly trained on toxic span anno-
tations, whereas the former is trained with binary
post-level annotations only (toxic, non-toxic post).

Several large datasets with post-level toxicity an-
notations are publicly available (Pavlopoulos et al.,
2019). Therefore, attribution-based toxic span de-
tectors, such as BILSTM+ARE, can in principle per-
form even better if the underlying binary classifier
is trained on a larger existing dataset. To investigate
this, we increased the training set of the underlying
BILSTM classifier of BILSTM+ARE. We added to
the training set of each cross-validation fold 80k
further toxic and non-toxic posts (still equally bal-
anced, without toxic spans) from the dataset of

Borkan et al. (2019), excluding posts used in TOX-
ICSPANS. The ROC AUC score of the underlying
BILSTM (in the task of separating toxic from non-
toxic posts) improved from 90.9% to 94.2%, and
the F1 score of BILSTM+ARE (in toxic spans de-
tection) improved from 57.7% to 58.8%, almost
reaching the performance of BILSTM-SEQ.6

7 Toxic spans in toxic-to-civil transfer

As shown in Section 6, a toxic span detection
method can be used to highlight toxic parts of a
post, to assist, for instance, human moderators. The
new TOXICSPANS dataset and toxic span detec-
tion methods, however, can assist in more ways.
This section describes how we combined the new
dataset and the best-performing toxic span detec-
tor (SPAN-BERT-SEQ) to show how they can be
useful in toxic-to-civil text transfer (Nogueira dos
Santos et al., 2018; Laugier et al., 2021). In the
context of detoxifying comments to nudge users
towards healthier conversations online, this task
aims at suggesting civil rephrasings of toxic posts.
More specifically, we study the following research
question: “Can TOXICSPANS data and toxic span
detectors be used to assess the mitigation of explicit
toxicity in toxic-to-civil transfer?” To answer this
question, we proceeded in two ways: (i) evaluat-
ing the transfer of toxic spans in system-detoxified
posts, and (ii) studying any remaining toxic spans
in human-detoxified posts.

7.1 System-detoxified posts

We first compare the performance of two toxic-to-
civil transfer models, CAE-T5 and SED-T5, both
based on the T5 transformer encoder-decoder ar-
chitecture (Raffel et al., 2019); they both fine-tune
the weights of the same pre-trained model, namely
T5-large. CAE-T5 (Laugier et al., 2021) is a self-
supervised Conditional Auto-Encoder, fine-tuned
on a large non-parallel (NP) dataset based on pre-
processed posts from the Civil Comments (CC)
dataset, the dataset (with post-level annotations)
that TOXICSPANS was also based on. SED-T5 is a

6Appendix A reports results for less added data.
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Dataset Parallel (P) Non-Parallel (NP)
Attribute Toxic-to-Civil pairs Toxic Civil
Train 2,222 90,293 5,653,785
Dev 278 4,825 308,130
Test 278 4,878 305,267
Av. len. 19.8 (toxic) 19.4 21.9

Table 5: Statistics for the parallel (P) and non-parallel (NP)
datasets, used to train the SED-T5 and CAE-T5 toxic-to-civil
models, respectively. Average lengths are reported by counting
SentencePiece (Kudo and Richardson, 2018) tokens.

Supervised Encoder-Decoder; we fine-tuned it on a
smaller parallel (P) dataset created by Dementieva
et al. (2021), consisting of pairs of comments: a
toxic comment and a detoxified paraphrase written
by a crowdworker.

Table 5 summarizes statistics of the two datasets
(P, NP) and highlights a trade-off between the level
of supervision and number of samples: there is
a 1:40 ratio between toxic comments in P (direct
supervision, parallel data) and NP (indirect super-
vision, no parallel data). Table 6 shows our exper-
imental results. Following Laugier et al. (2021),
we report accuracy (ACC), perplexity (PPL), simi-
larity (SIM), and the geometric mean (GM) of ACC,
1/PPL, SIM. Accuracy measures the rate of suc-
cessful transfers from toxic to civil, and computes
the fraction of posts whose civil version is classi-
fied as non-toxic by a BERT toxicity classifier; we
used the BERT-based toxicity classifier of Laugier
et al. (2021). Perplexity is used here as a measure
of fluency and is computed with GPT-2 (Radford
et al., 2019). Similarity measures content preserva-
tion between the original toxic text and its system-
rephrased civil version (self-SIM) or the gold (hu-
man) civil rephrasing (ref-SIM, only for P); in both
cases, it is computed as the cosine similarity be-
tween the single-vector representations of the two
texts, produced by the universal sentence encoder
of Cer et al. (2018).

As can be seen in Table 6, CAE-T5 has better ag-
gregated results (higher GM) than SED-T5 in all
three datasets, which are due to lower perplex-
ity and (in NP and TOXICSPANS) higher accuracy.
However, SED-T5 learned to preserve content bet-
ter (higher SIM in all three datasets), because of the
parallel data (P, with gold rephrases) it was trained
on. By contrast, CAE-T5 was trained without paral-
lel data (NP) using a cycle-consistency loss, which
leads to more frequent hallucinations of content
that was not present in the original post (Laugier
et al., 2021). These hallucinations may also help
CAE-T5 obtain better perplexity scores, by gener-

Evaluation Dataset Metric CAE-T5 SED-T5

Non-Parallel (NP)

ACC ↑ 75.0% 52.2%
ACC2 ↑ 83.4% 67.3%
PPL ↓ 5.2 11.8

self-SIM ↑ 70.0% 87.9%
GM (self) ↑ 0.466 0.338

ACC3 ↑ 86.7% 64.1%
ACC4 ↑ 83.2% 59.5%

Parallel (P)

ACC ↑ 94.3% 94.3%
ACC2 ↑ 94.7% 94.3%
PPL ↓ 9.1 38.3

ref-SIM ↑ 27.6 % 65.3%
self-SIM ↑ 32.6 % 65.6%
GM (ref) ↑ 0.306 0.252
GM (self) ↑ 0.323 0.252

ACC3 ↑ 98.8% 94.3%
ACC4 ↑ 94.7% 91.9%

TOXICSPANS

ACC ↑ 92.9% 65.6%
ACC2 ↑ 92.5% 63.7%
PPL ↓ 7.2 24.9

self-SIM ↑ 34.5% 82.1%
GM (self) ↑ 0.355 0.279

ACC3 ↑ 96.9% 62.0%
ACC4 ↑ 92.0% 54.7%

Table 6: Automatic evaluation scores of CAE-T5 (trained
on NP’s training subset) and SED-T5 (trained on P’s training
subset), when the test sets are from NP, P, and TOXICSPANS.
ACC2, ACC3, ACC4 also consider toxic spans (Section 7.2).

ating fluent civil ‘rephrases’ that do not preserve,
however, the original semantics. Also, although
the general trends are similar in all three datasets
(SED-T5 preserves content better, CAE-T5 is better
in perplexity and GM), there are several differences
too across the three datasets. For example, CAE-
T5 is much better than SED-T5 in accuracy (posts
detoxified) on NP and TOXICSPANS, but both sys-
tems have the same accuracy on P; and the scores
of the systems vary a lot across the three datasets.

These considerations motivated us to seek ways
to further analyse the behavior of toxic-to-civil
transfer models. TOXICSPANS and toxic span de-
tectors are an opportunity to move towards this di-
rection, by studying how well transfer models cope
with explicit toxicity, i.e., spans that can be explic-
itly pointed to as sources of toxicity. We leave for
future work the flip side of this study, i.e., studying
cases where transfer models rephrase spans not ex-
plicitly marked (by toxic span detectors or human
annotators) as explicitly toxic.

7.2 Explicit Toxicity Removal Accuracy

Recall that the accuracy (ACC) scores of Table 6
measure the percentage of toxic posts that the trans-
fer models (CAE-T5, SED-T5) rephrased to forms
that a (BERT-based) toxicity classifier considered
non-toxic. One could question, however, if it is pos-
sible (even for humans) to produce a civil rephrase
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of a toxic post when it is impossible to point to
particular spans of the post that cause its toxicity
(as in the last post of Table 1). Detoxifying posts of
this kind may constitute a mission impossible for
most models (possibly even for humans); the only
way to produce a non-toxic ‘rephrase’ may be to
change the original post beyond recognition, which
may be rewarding systems like CAE-T5 that often
hallucinate in their rephrases, as already discussed.

Hence, it makes sense to focus on posts that con-
tain explicit toxic spans, marked by human annota-
tors (for TOXICSPANS) or our best toxic span detec-
tor (SPAN-BERT-SEQ). Using these toxic spans, we
define three additional variants of accuracy: ACC2
is the same as ACC, but ignores (in its denominator)
posts that do not contain at least one toxic span;
ACC3 also considers (in its denominator) only posts
that contained at least one toxic span, but computes
the fraction of these posts that had all of their toxic
spans rephrased (even partly) by the transfer model;
ACC4 is a stricter version of ACC3 that requires the
posts to also be judged non-toxic by the (BERT-
based) toxicity classifier.

Table 6 shows that restricting ACC to consider
only posts with at least one toxic post (ACC2) sub-
stantially improves the performance of both models
on the NP dataset, indicating that it contains many
‘mission impossible’ instances (posts with no toxic
spans) that the original ACC considers. By contrast,
switching from ACC to ACC2 leads to mostly negli-
gible changes on the P and TOXICSPANS datasets,
which is in accordance with the fact that they con-
tain fewer posts with no toxic spans (11.5% and
48.7%, respectively, compared to 67.4% for NP).
Another interesting observation is that ACC4 is al-
ways substantially lower than ACC3 (for both sys-
tems, on all three datasets), indicating that the mod-
els often successfully detect toxic spans and try to
rephrase them, but the rephrases are still toxic, at
least according to the toxicity classifier.

7.3 Human-detoxified posts

In this experiment, we wished to study the extent to
which humans rephrase known toxic spans, when
asked to produce civil rephrases of toxic posts. We
used the P dataset, the only one of the three consid-
ered that contains human rephrases.7 Since P does
not contain gold toxic spans, we again employed
SPAN-BERT-SEQ to add toxic spans to the source
posts and retained only the 1,354 (out of 2,778 in

7We used all the P data, since no training was involved.

total) source-target pairs of posts with at least one
toxic span in their source post.8 In all but 6 of the
1,354 posts, the humans have rephrased (in the gold
target post they provided) all the toxic spans of the
source post. The 6 posts were mainly cases where
the human changed the context to mitigate toxicity,
while retaining the original toxic span. For exam-
ple, “he’s not that stupid” became “he’s not stupid”
(original toxic span shown in bold); in this case re-
moving the ‘that’ from the context arguably makes
the post less offensive. Overall, we conclude that
humans did rephrase almost all cases of explicit
toxicity in the toxic posts they were given.

We also applied SPAN-BERT-SEQ to the gold tar-
get (rephrased) posts that the humans provided to
check if any explicit toxicity remained or was in-
troduced by the rephrases. This flagged 93 gold
target posts as comprising at least one toxic span. A
manual inspection of the 93 posts revealed that they
fall in two main categories. The first category com-
prises cases where a toxic span of the source post
was rephrased, but the rephrase might not be consid-
ered totally civil; e.g., “how freaking narcissistic
do you have to be?” became “how narcissistic do
you have to be?”, where SPAN-BERT-SEQ marked
the ‘narcissistic’ of the rephrase as a toxic span.
The second category comprises cases where SPAN-
BERT-SEQ produced false positives; e.g., the source
post “most of the information is total garbage” be-
came “most of the information is totally useless”,
but SPAN-BERT-SEQ marked (arguably incorrectly)
‘useless’ as a toxic span.

7.4 Toxicity scores of posts with and without
explicit toxicity

We also applied the BERT-based text toxicity clas-
sifier of Laugier et al. (2021) to the 2,778 posts
of the P dataset, dividing them in two sets: posts
that comprised at least one toxic span detected by
SPAN-BERT-SEQ (1,354 posts with explicit toxicity)
and the rest (implicit toxicity). The BERT-based
toxicity classifier considered more toxic (higher av-
erage toxicity score) the 1,354 posts of the first set
compared to the second one, i.e., it was more confi-
dent that the posts of the first set (explicit toxicity)
were toxic, as one might expect. By resampling
1,000 subsets (of 50 posts each) from the two sets,
we confirmed that this is a statistically significant
difference (P = 0.001). The difference of the av-
erage predicted toxicity score between the two sets

8The most frequent spans were ‘sh*t’, ‘st*p*d’, ‘f*ck’.
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is 14% (from 0.94 down to 0.80).

8 Discussion

The posts we annotated for toxic spans were ex-
tracted from an already heavily studied public do-
main benchmark dataset (Civil Comments) that has
been examined by thousands of teams in a Kag-
gle competition,9 and that has been cited in over
50 academic publications. The Civil Comments
dataset was filtered to remove any potential per-
sonally identifiable information before it was re-
leased. Our annotation cost was $21,089 for 59,486
judgements, paying $0.30 per item. All raters were
warned for the explicit content of the job and only
high accuracy raters were selected (70+%), based
on performance on quiz questions. The most com-
mon countries of origin of our crowd-annotators
were Venezuela and USA (Fig. 6 in Appendix A.1).
In the contributor satisfaction survey, 51 partici-
pants gave an overall task rating of 3.6/5.0, with
pay and test question fairness rated slightly higher
than ease of job and clarity of instructions.

We note that it is more difficult and costly (ap-
proximately 3 times more) to manually annotate
toxic spans, instead of just labeling entire posts as
toxic or not. This is why we also explored adding
rationale extraction components on top of toxicity
classifiers trained on existing much larger datasets.
We showed that BILSTM+ARE has the potential to
reach the performance of BILSTM-SEQ, which is
important for future work aiming to build toxic
span detectors without any toxic span annotations
in the training data. This may be particularly useful
in low-resourced languages with limited resources
for text toxicity (Zampieri et al., 2020).

Having two separate systems, one for toxicity
detection and one for toxic spans identification, is
more easily compatible with existing deployed toxi-
city detectors. One can simply add a component for
toxic spans at the end of a pipeline for toxicity de-
tection, and the new component would be invoked
only when toxicity would be detected, leaving the
rest of the existing pipeline unchanged. Since the
vast majority of posts in real-world applications is
non-toxic (Borkan et al., 2019), this pipeline ap-
proach would only increase the computational load
for the relatively few posts classified as toxic. Us-
ing only toxic posts in this study was also a way to
simplify this first approach to toxic spans detection,
assuming an oracle system achieved the first step

9shorturl.at/hqEJ3

(deciding which posts are toxic). However, we note
that future work could study adding non-toxic posts
to our dataset and requiring systems to first detect
toxic posts, then extract toxic spans for toxic posts.

A direct comparison (in terms of size) of TOX-
ICSPANS with other existing toxicity datasets is
only possible if one focuses on the toxic class, typ-
ically the minority one, since our dataset contains
only toxic posts. By adding non-toxic posts, much
larger versions of our dataset can be compiled, of
sizes similar to those of existing previous datasets
(that provide post-level annotations only). Hence,
our TOXICSPANS dataset is accessible with the fol-
lowing versions: First, only toxic posts included
(11,006 posts), which is the version we discuss in
this work. Second, the previous version will be aug-
mented with the same number of randomly selected
non-toxic Civil Comments posts. Third, a version
similar to the previous one, but where the ratio of
toxic to non-toxic posts will be 1:40 to be closer to
that of real-world datasets (325,499 posts).

As shown in Section 7, the TOXICSPANS dataset
and toxic span detectors can also help study and
evaluate explicit toxicity removal when rephrasing
toxic posts to be civil. In this case, toxic spans
can be used to get a better understanding of how
toxic-to-civil models operate, by showing the toxic
spans and their context, along with their rephrases.

9 Intended use and misuse potential

The toxic span detection systems we consider are
trained (the sequence-labeling ones) and tested (all
systems) on posts with binary ground-truth charac-
ter offset labels (toxic or not), reflecting the major-
ity opinion of the annotators (Section 3). This runs
the risk of ignoring the opinions of minorities, who
may also be minorities among crowd-annotators.
To address this issue, we also release the toxic
spans of all the annotators and the pseudonymous
rater identities, not just the spans that reflect the ma-
jority opinion, to allow different label binarisation
strategies and further studies.

Toxic span detection systems are intended to
assist the decision making of moderators, not to re-
place moderators. When they operate correctly, sys-
tems of this kind are expected to ease decision mak-
ing (reject/accept a post). Incorrect results could be
of two types; toxic spans that were not highlighted
and non-toxic spans that were highlighted. Mis-
takes of both types, especially of the first one, may
mislead a moderator working under time pressure.
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As with other content filtering systems (e.g.,
spam filters, phishing detectors), toxic span de-
tectors may trigger an adversarial reaction of ma-
licious users, who may study which types of toxic
expressions evade the detectors (esp. publicly avail-
able ones) and may gradually start using more
implicit toxic language (e.g., irony, false claims),
which may be more difficult to detect. However,
this is a danger that concerns any toxicity detection
system, including systems that classify user content
at the post level (without detecting toxic spans).

10 Conclusions and future work

We studied toxicity detection, which aims to iden-
tify the spans of a user post that make it toxic.
Our work is the first of this kind in general tox-
icity detection. We constructed and released a
dataset for the new task, along with baselines and
models. Fine-tuning the SPAN-BERT sequence la-
belling model of Joshi et al. (2020), yielded the
best results. A post-level BILSTM toxicity classifier
that was combined with an attention-based attri-
bution method, not trained on annotations at the
span level, performed well for the task. By leverag-
ing the dataset of posts annotated as toxic or non-
toxic (without spans), we showed that this method
can reach the performance of a BILSTM sequence
labelling approach that was trained on the more
costly toxic spans annotations. This result is partic-
ularly interesting for future work aiming to perform
toxic spans detection by using only datasets with
whole-post toxicity annotations. In a final experi-
ment, we examined toxic-to-civil transfer, showing
how toxic spans can help shed more light on this
task too, by helping assess how well systems and
humans address explicit toxicity. In future work
we plan to study toxic span detection in multiple
languages and in context-dependent toxic posts.
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A Appendix

A.1 Exploratory analysis of TOXICSPANS

Figure 1: Distribution of the percentage of characters of
each post that are covered by the ground truth spans.

Figure 1 shows the distribution of the percentage
of character offsets of each post that are included
in toxic spans. Figure 2 illustrates the distribution
of dense toxic spans per post. Figure 3 shows the
most frequent toxic spans in the dataset (after lower-
casing each post) and their frequencies. Figure 4
shows the most frequent multi-word toxic spans
(again after lower-casing). Figure 5 illustrates the
distribution of the size (in words) of those posts
whose ground truth covers the whole post. Figure 6
shows the frequencies of the countries of origin of
the TOXICSPANS crowd-annotators.

A.2 Error analysis of SPAN-BERT-SEQ

We performed an error analysis on our best toxic
spans detector (SPAN-BERT-SEQ). We analyzed its
predictions on the first fold of the Monte Carlo
Cross-Validation, which comprises 10% of the
dataset or 1001 posts. We identified three main
types of errors. The first, which is the most frequent
one occurring in 235 out of 1001 posts (23.5%),
comprises posts for which SPAN-BERT-SEQ failed
to find all toxic spans. This type of error can be
divided in two sub-types: the first sub-type com-

Figure 2: Distribution of the number of dense ground
truth toxic spans per post in TOXICSPANS.
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Figure 3: Most frequent toxic spans in TOXICSPANS.

Figure 4: Most frequent multi-word toxic spans.

Figure 5: Distribution of size (in words) of posts whose
ground truth covers the whole post.

Figure 6: Frequency of annotations based on the country
of origin of the crowd-annotators.

You can stick your d**k up anyone’s butt.
Of course they do. Stupid people really have to meet
everyone else half way if they don’t want to be called
stupid, starting with not saying stupid things.

Table 7: Examples posts where SPAN-BERT-SEQ incor-
rectly predicted no spans. Ground truth in red.

Play stupid games, win stupid prizes.
I always smile when I’ve been called stupid by a fool.

Table 8: Examples posts where SPAN-BERT-SEQ pre-
dicted some, but not all of the gold spans. Ground truth
in red. Predictions of SPAN-BERT-SEQ in bold.

prises posts for which SPAN-BERT-SEQ predicted
no spans at all (Table 7), while the second sub-type
comprises posts for which SPAN-BERT-SEQ pre-
dicted some, but not all of the gold spans (Table 8).
The first sub-type occurs more often, with 217 out
of the 235 total occurrences of the first error type,
while the second sub-type occurs only a few times
(18 out of 235). The second type of error, which
is the second most frequent one, occurred in 173
out of the 1001 posts (17.3%). It occurs when the
ground truth of a post is empty, but SPAN-BERT-
SEQ predicts at least one toxic span (Table 9). The
last type of error occurs rarely (only 10 out of 1001
posts) when the ground truth of a post is not empty,
and SPAN-BERT-SEQ predicts more (or larger) toxic
spans than it should (Table 10).

A.3 Experimental Settings

Sequence labelling
BILSTM-SEQ was implemented in KERAS 2.7.0.10

We used word embeddings of size 200 and hid-
den states of size 128; mean squared error (MSE)
loss; the Adam optimiser; learning rate 0.001; post
padding; maxlen and batch size 128; training for
max. 100 epochs. We used early stopping with 5
epoch patience, monitoring the validation loss. The
classification threshold was set to 0.5. CNN-SEQ

was trained for 30 epochs; we used 0.5 recurrent
dropout; progressively increasing batch size from
4 to 32 with step 1. All the other hyper-parameters
were set to their default values. BERT-SEQ was im-
plemented using the Huggingface Transformers li-
brary.11 We used the bert-base-cased model, binary
cross entropy loss; the Adam optimiser; learning
rate 2 · 10−5; maxlen 128; batch size 32; training
for max. 100 epochs; early stopping with 5 epoch
patience, monitoring validation loss. The classifi-

10https://keras.io/
11https://huggingface.co/transformers/
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This outlet should hire some editors. Nobody I’ve crossed
paths with would green light this crap.
Actually, Seaton is a wealthy man and can do without his
day job quite easily. If he would just get rid of that friggin’
stupid cap....
In other word, blah, blah, blah, blah. It’s bullshit. Deal
with it. No proof=doesn’t exist.
Or maybe we should place a tax on stupid ideas like yours

Table 9: Examples posts where the ground truth was
empty, but SPAN-BERT-SEQ incorrectly predicted at
least one span. Predictions of SPAN-BERT-SEQ in bold.

People don’t normally take it to heart when an idiot calls
someone stupid.
$10B a GW avg compared to $2.5B a GW for a 2nd Candu
nuke at LePreau. Stupid is as stupid does I guess.
All useless piles of crap.
oh no, this isn’t even in the top 10 moronic statements
by this babbling fool.

Table 10: Examples posts where the ground truth was
not empty, and SPAN-BERT-SEQ incorrectly predicted
more (or larger) toxic spans. Ground truth in red. Pre-
dictions of SPAN-BERT-SEQ in bold.

cation threshold was 0.5.
SPAN-BERT base (cased) was fine-tuned in the

same way that Joshi et al. (2020) fine-tunes it on
SQUAD 2.0 (Rajpurkar et al., 2018) with the format
mapping presented in Table 11. At training time,
we ignore posts with more than one dense toxic
span, since the SQUAD 2.0 format allows for only
one dense answer span in the context. We trained
with a learning rate 2 · 10−5, for 4 epochs with
training batches of size 32.

Post-level classifiers with attribution

BILSTM+ARE was implemented in KERAS, like
BILSTM-SEQ. We used maxlen of 128; post
padding; early stopping with patience 5 epoch,
monitoring the validation loss; Adam optimizer
with 0.001 learning rate; MSE loss. The text clas-
sification threshold was 0.5. BERT+ARE was im-
plemented with Huggingface Transformers simi-
larly to BERT-SEQ. We used maxlen of 128; post
padding; early stopping with patience 5 epoch,
monitoring the validation loss; Adam optimizer

SQUAD 2.0 TOXICSPANS
Context Post
Question Empty string

is_impossible boolean toxic_spans_is_empty boolean
Answer Toxic span

Table 11: Mapping between the SQUAD 2.0 format and
TOXICSPANS examples.

with 2 · 10−5 learning rate; binary cross-entropy
loss. The text classification threshold was 0.5. In
both models, the attention threshold (above which
a token is considered toxic) was fine-tuned on the
development set of each Monte Carlo C-V fold.

Further implementation details can be found in
our code repository (Section 1).

A.4 Improving BILSTM+ARE with more
training of the underlying BILSTM

Figure 7 shows the improvement in the F1 score of
BILSTM+ARE when increasing the training set of
the underlying BILSTM with 5k, 10k, 20k, 40k, 80k
more posts (always balanced toxic/non-toxic) with
post-level annotations only (no toxic span annota-
tions). The dashed lines represent the sequence la-
beling methods, which cannot benefit directly from
training data without toxic span annotations. Simi-
larly, Fig. 8 shows the corresponding improvement
in the ROC AUC score of the underlying BILSTM in
the toxic/non-toxic text classification task.

Figure 7: Improvement in the F1 of BILSTM+ARE when
increasing the training set of its underlying BILSTM with
posts tagged at the post-level (toxic/non-toxic, no toxic
spans). Standard error of mean shown as error bars.
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Figure 8: Improvement in the ROC AUC of BIL-
STM+ARE in the toxic spans detection task, when in-
creasing the training set of its underlying BILSTM with
posts tagged at the post-level (no toxic spans).
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